1 /* 2 * ARM GICv3 support - common bits of emulated and KVM kernel model 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Copyright (c) 2015 Huawei. 6 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 7 * Written by Peter Maydell 8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu/module.h" 27 #include "hw/core/cpu.h" 28 #include "hw/intc/arm_gicv3_common.h" 29 #include "hw/qdev-properties.h" 30 #include "migration/vmstate.h" 31 #include "gicv3_internal.h" 32 #include "hw/arm/linux-boot-if.h" 33 #include "sysemu/kvm.h" 34 35 36 static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs) 37 { 38 if (cs->gicd_no_migration_shift_bug) { 39 return; 40 } 41 42 /* Older versions of QEMU had a bug in the handling of state save/restore 43 * to the KVM GICv3: they got the offset in the bitmap arrays wrong, 44 * so that instead of the data for external interrupts 32 and up 45 * starting at bit position 32 in the bitmap, it started at bit 46 * position 64. If we're receiving data from a QEMU with that bug, 47 * we must move the data down into the right place. 48 */ 49 memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8, 50 sizeof(cs->group) - GIC_INTERNAL / 8); 51 memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8, 52 sizeof(cs->grpmod) - GIC_INTERNAL / 8); 53 memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8, 54 sizeof(cs->enabled) - GIC_INTERNAL / 8); 55 memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8, 56 sizeof(cs->pending) - GIC_INTERNAL / 8); 57 memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8, 58 sizeof(cs->active) - GIC_INTERNAL / 8); 59 memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8, 60 sizeof(cs->edge_trigger) - GIC_INTERNAL / 8); 61 62 /* 63 * While this new version QEMU doesn't have this kind of bug as we fix it, 64 * so it needs to set the flag to true to indicate that and it's necessary 65 * for next migration to work from this new version QEMU. 66 */ 67 cs->gicd_no_migration_shift_bug = true; 68 } 69 70 static int gicv3_pre_save(void *opaque) 71 { 72 GICv3State *s = (GICv3State *)opaque; 73 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 74 75 if (c->pre_save) { 76 c->pre_save(s); 77 } 78 79 return 0; 80 } 81 82 static int gicv3_post_load(void *opaque, int version_id) 83 { 84 GICv3State *s = (GICv3State *)opaque; 85 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 86 87 gicv3_gicd_no_migration_shift_bug_post_load(s); 88 89 if (c->post_load) { 90 c->post_load(s); 91 } 92 return 0; 93 } 94 95 static bool virt_state_needed(void *opaque) 96 { 97 GICv3CPUState *cs = opaque; 98 99 return cs->num_list_regs != 0; 100 } 101 102 static const VMStateDescription vmstate_gicv3_cpu_virt = { 103 .name = "arm_gicv3_cpu/virt", 104 .version_id = 1, 105 .minimum_version_id = 1, 106 .needed = virt_state_needed, 107 .fields = (VMStateField[]) { 108 VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), 109 VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), 110 VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), 111 VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), 112 VMSTATE_END_OF_LIST() 113 } 114 }; 115 116 static int vmstate_gicv3_cpu_pre_load(void *opaque) 117 { 118 GICv3CPUState *cs = opaque; 119 120 /* 121 * If the sre_el1 subsection is not transferred this 122 * means SRE_EL1 is 0x7 (which might not be the same as 123 * our reset value). 124 */ 125 cs->icc_sre_el1 = 0x7; 126 return 0; 127 } 128 129 static bool icc_sre_el1_reg_needed(void *opaque) 130 { 131 GICv3CPUState *cs = opaque; 132 133 return cs->icc_sre_el1 != 7; 134 } 135 136 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = { 137 .name = "arm_gicv3_cpu/sre_el1", 138 .version_id = 1, 139 .minimum_version_id = 1, 140 .needed = icc_sre_el1_reg_needed, 141 .fields = (VMStateField[]) { 142 VMSTATE_UINT64(icc_sre_el1, GICv3CPUState), 143 VMSTATE_END_OF_LIST() 144 } 145 }; 146 147 static bool gicv4_needed(void *opaque) 148 { 149 GICv3CPUState *cs = opaque; 150 151 return cs->gic->revision > 3; 152 } 153 154 const VMStateDescription vmstate_gicv3_gicv4 = { 155 .name = "arm_gicv3_cpu/gicv4", 156 .version_id = 1, 157 .minimum_version_id = 1, 158 .needed = gicv4_needed, 159 .fields = (VMStateField[]) { 160 VMSTATE_UINT64(gicr_vpropbaser, GICv3CPUState), 161 VMSTATE_UINT64(gicr_vpendbaser, GICv3CPUState), 162 VMSTATE_END_OF_LIST() 163 } 164 }; 165 166 static const VMStateDescription vmstate_gicv3_cpu = { 167 .name = "arm_gicv3_cpu", 168 .version_id = 1, 169 .minimum_version_id = 1, 170 .pre_load = vmstate_gicv3_cpu_pre_load, 171 .fields = (VMStateField[]) { 172 VMSTATE_UINT32(level, GICv3CPUState), 173 VMSTATE_UINT32(gicr_ctlr, GICv3CPUState), 174 VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2), 175 VMSTATE_UINT32(gicr_waker, GICv3CPUState), 176 VMSTATE_UINT64(gicr_propbaser, GICv3CPUState), 177 VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState), 178 VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState), 179 VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState), 180 VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState), 181 VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState), 182 VMSTATE_UINT32(edge_trigger, GICv3CPUState), 183 VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState), 184 VMSTATE_UINT32(gicr_nsacr, GICv3CPUState), 185 VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL), 186 VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2), 187 VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState), 188 VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3), 189 VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4), 190 VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), 191 VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), 192 VMSTATE_END_OF_LIST() 193 }, 194 .subsections = (const VMStateDescription * []) { 195 &vmstate_gicv3_cpu_virt, 196 &vmstate_gicv3_cpu_sre_el1, 197 &vmstate_gicv3_gicv4, 198 NULL 199 } 200 }; 201 202 static int gicv3_pre_load(void *opaque) 203 { 204 GICv3State *cs = opaque; 205 206 /* 207 * The gicd_no_migration_shift_bug flag is used for migration compatibility 208 * for old version QEMU which may have the GICD bmp shift bug under KVM mode. 209 * Strictly, what we want to know is whether the migration source is using 210 * KVM. Since we don't have any way to determine that, we look at whether the 211 * destination is using KVM; this is close enough because for the older QEMU 212 * versions with this bug KVM -> TCG migration didn't work anyway. If the 213 * source is a newer QEMU without this bug it will transmit the migration 214 * subsection which sets the flag to true; otherwise it will remain set to 215 * the value we select here. 216 */ 217 if (kvm_enabled()) { 218 cs->gicd_no_migration_shift_bug = false; 219 } 220 221 return 0; 222 } 223 224 static bool needed_always(void *opaque) 225 { 226 return true; 227 } 228 229 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = { 230 .name = "arm_gicv3/gicd_no_migration_shift_bug", 231 .version_id = 1, 232 .minimum_version_id = 1, 233 .needed = needed_always, 234 .fields = (VMStateField[]) { 235 VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State), 236 VMSTATE_END_OF_LIST() 237 } 238 }; 239 240 static const VMStateDescription vmstate_gicv3 = { 241 .name = "arm_gicv3", 242 .version_id = 1, 243 .minimum_version_id = 1, 244 .pre_load = gicv3_pre_load, 245 .pre_save = gicv3_pre_save, 246 .post_load = gicv3_post_load, 247 .priority = MIG_PRI_GICV3, 248 .fields = (VMStateField[]) { 249 VMSTATE_UINT32(gicd_ctlr, GICv3State), 250 VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2), 251 VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE), 252 VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE), 253 VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE), 254 VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE), 255 VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE), 256 VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE), 257 VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE), 258 VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ), 259 VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ), 260 VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State, 261 DIV_ROUND_UP(GICV3_MAXIRQ, 16)), 262 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu, 263 vmstate_gicv3_cpu, GICv3CPUState), 264 VMSTATE_END_OF_LIST() 265 }, 266 .subsections = (const VMStateDescription * []) { 267 &vmstate_gicv3_gicd_no_migration_shift_bug, 268 NULL 269 } 270 }; 271 272 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, 273 const MemoryRegionOps *ops) 274 { 275 SysBusDevice *sbd = SYS_BUS_DEVICE(s); 276 int i; 277 int cpuidx; 278 279 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. 280 * GPIO array layout is thus: 281 * [0..N-1] spi 282 * [N..N+31] PPIs for CPU 0 283 * [N+32..N+63] PPIs for CPU 1 284 * ... 285 */ 286 i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu; 287 qdev_init_gpio_in(DEVICE(s), handler, i); 288 289 for (i = 0; i < s->num_cpu; i++) { 290 sysbus_init_irq(sbd, &s->cpu[i].parent_irq); 291 } 292 for (i = 0; i < s->num_cpu; i++) { 293 sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); 294 } 295 for (i = 0; i < s->num_cpu; i++) { 296 sysbus_init_irq(sbd, &s->cpu[i].parent_virq); 297 } 298 for (i = 0; i < s->num_cpu; i++) { 299 sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); 300 } 301 302 memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, 303 "gicv3_dist", 0x10000); 304 sysbus_init_mmio(sbd, &s->iomem_dist); 305 306 s->redist_regions = g_new0(GICv3RedistRegion, s->nb_redist_regions); 307 cpuidx = 0; 308 for (i = 0; i < s->nb_redist_regions; i++) { 309 char *name = g_strdup_printf("gicv3_redist_region[%d]", i); 310 GICv3RedistRegion *region = &s->redist_regions[i]; 311 312 region->gic = s; 313 region->cpuidx = cpuidx; 314 cpuidx += s->redist_region_count[i]; 315 316 memory_region_init_io(®ion->iomem, OBJECT(s), 317 ops ? &ops[1] : NULL, region, name, 318 s->redist_region_count[i] * gicv3_redist_size(s)); 319 sysbus_init_mmio(sbd, ®ion->iomem); 320 g_free(name); 321 } 322 } 323 324 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) 325 { 326 GICv3State *s = ARM_GICV3_COMMON(dev); 327 int i, rdist_capacity, cpuidx; 328 329 /* 330 * This GIC device supports only revisions 3 and 4. The GICv1/v2 331 * is a separate device. 332 * Note that subclasses of this device may impose further restrictions 333 * on the GIC revision: notably, the in-kernel KVM GIC doesn't 334 * support GICv4. 335 */ 336 if (s->revision != 3 && s->revision != 4) { 337 error_setg(errp, "unsupported GIC revision %d", s->revision); 338 return; 339 } 340 341 if (s->num_irq > GICV3_MAXIRQ) { 342 error_setg(errp, 343 "requested %u interrupt lines exceeds GIC maximum %d", 344 s->num_irq, GICV3_MAXIRQ); 345 return; 346 } 347 if (s->num_irq < GIC_INTERNAL) { 348 error_setg(errp, 349 "requested %u interrupt lines is below GIC minimum %d", 350 s->num_irq, GIC_INTERNAL); 351 return; 352 } 353 if (s->num_cpu == 0) { 354 error_setg(errp, "num-cpu must be at least 1"); 355 return; 356 } 357 358 /* ITLinesNumber is represented as (N / 32) - 1, so this is an 359 * implementation imposed restriction, not an architectural one, 360 * so we don't have to deal with bitfields where only some of the 361 * bits in a 32-bit word should be valid. 362 */ 363 if (s->num_irq % 32) { 364 error_setg(errp, 365 "%d interrupt lines unsupported: not divisible by 32", 366 s->num_irq); 367 return; 368 } 369 370 if (s->lpi_enable && !s->dma) { 371 error_setg(errp, "Redist-ITS: Guest 'sysmem' reference link not set"); 372 return; 373 } 374 375 rdist_capacity = 0; 376 for (i = 0; i < s->nb_redist_regions; i++) { 377 rdist_capacity += s->redist_region_count[i]; 378 } 379 if (rdist_capacity != s->num_cpu) { 380 error_setg(errp, "Capacity of the redist regions(%d) " 381 "does not match the number of vcpus(%d)", 382 rdist_capacity, s->num_cpu); 383 return; 384 } 385 386 if (s->lpi_enable) { 387 address_space_init(&s->dma_as, s->dma, 388 "gicv3-its-sysmem"); 389 } 390 391 s->cpu = g_new0(GICv3CPUState, s->num_cpu); 392 393 for (i = 0; i < s->num_cpu; i++) { 394 CPUState *cpu = qemu_get_cpu(i); 395 uint64_t cpu_affid; 396 397 s->cpu[i].cpu = cpu; 398 s->cpu[i].gic = s; 399 /* Store GICv3CPUState in CPUARMState gicv3state pointer */ 400 gicv3_set_gicv3state(cpu, &s->cpu[i]); 401 402 /* Pre-construct the GICR_TYPER: 403 * For our implementation: 404 * Top 32 bits are the affinity value of the associated CPU 405 * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table) 406 * Processor_Number == CPU index starting from 0 407 * DPGS == 0 (GICR_CTLR.DPG* not supported) 408 * Last == 1 if this is the last redistributor in a series of 409 * contiguous redistributor pages 410 * DirectLPI == 0 (direct injection of LPIs not supported) 411 * VLPIS == 1 if vLPIs supported (GICv4 and up) 412 * PLPIS == 1 if LPIs supported 413 */ 414 cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL); 415 416 /* The CPU mp-affinity property is in MPIDR register format; squash 417 * the affinity bytes into 32 bits as the GICR_TYPER has them. 418 */ 419 cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) | 420 (cpu_affid & 0xFFFFFF); 421 s->cpu[i].gicr_typer = (cpu_affid << 32) | 422 (1 << 24) | 423 (i << 8); 424 425 if (s->lpi_enable) { 426 s->cpu[i].gicr_typer |= GICR_TYPER_PLPIS; 427 if (s->revision > 3) { 428 s->cpu[i].gicr_typer |= GICR_TYPER_VLPIS; 429 } 430 } 431 } 432 433 /* 434 * Now go through and set GICR_TYPER.Last for the final 435 * redistributor in each region. 436 */ 437 cpuidx = 0; 438 for (i = 0; i < s->nb_redist_regions; i++) { 439 cpuidx += s->redist_region_count[i]; 440 s->cpu[cpuidx - 1].gicr_typer |= GICR_TYPER_LAST; 441 } 442 443 s->itslist = g_ptr_array_new(); 444 } 445 446 static void arm_gicv3_finalize(Object *obj) 447 { 448 GICv3State *s = ARM_GICV3_COMMON(obj); 449 450 g_free(s->redist_region_count); 451 } 452 453 static void arm_gicv3_common_reset_hold(Object *obj) 454 { 455 GICv3State *s = ARM_GICV3_COMMON(obj); 456 int i; 457 458 for (i = 0; i < s->num_cpu; i++) { 459 GICv3CPUState *cs = &s->cpu[i]; 460 461 cs->level = 0; 462 cs->gicr_ctlr = 0; 463 if (s->lpi_enable) { 464 /* Our implementation supports clearing GICR_CTLR.EnableLPIs */ 465 cs->gicr_ctlr |= GICR_CTLR_CES; 466 } 467 cs->gicr_statusr[GICV3_S] = 0; 468 cs->gicr_statusr[GICV3_NS] = 0; 469 cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep; 470 cs->gicr_propbaser = 0; 471 cs->gicr_pendbaser = 0; 472 cs->gicr_vpropbaser = 0; 473 cs->gicr_vpendbaser = 0; 474 /* If we're resetting a TZ-aware GIC as if secure firmware 475 * had set it up ready to start a kernel in non-secure, we 476 * need to set interrupts to group 1 so the kernel can use them. 477 * Otherwise they reset to group 0 like the hardware. 478 */ 479 if (s->irq_reset_nonsecure) { 480 cs->gicr_igroupr0 = 0xffffffff; 481 } else { 482 cs->gicr_igroupr0 = 0; 483 } 484 485 cs->gicr_ienabler0 = 0; 486 cs->gicr_ipendr0 = 0; 487 cs->gicr_iactiver0 = 0; 488 cs->edge_trigger = 0xffff; 489 cs->gicr_igrpmodr0 = 0; 490 cs->gicr_nsacr = 0; 491 memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr)); 492 493 cs->hppi.prio = 0xff; 494 cs->hpplpi.prio = 0xff; 495 cs->hppvlpi.prio = 0xff; 496 497 /* State in the CPU interface must *not* be reset here, because it 498 * is part of the CPU's reset domain, not the GIC device's. 499 */ 500 } 501 502 /* For our implementation affinity routing is always enabled */ 503 if (s->security_extn) { 504 s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS; 505 } else { 506 s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE; 507 } 508 509 s->gicd_statusr[GICV3_S] = 0; 510 s->gicd_statusr[GICV3_NS] = 0; 511 512 memset(s->group, 0, sizeof(s->group)); 513 memset(s->grpmod, 0, sizeof(s->grpmod)); 514 memset(s->enabled, 0, sizeof(s->enabled)); 515 memset(s->pending, 0, sizeof(s->pending)); 516 memset(s->active, 0, sizeof(s->active)); 517 memset(s->level, 0, sizeof(s->level)); 518 memset(s->edge_trigger, 0, sizeof(s->edge_trigger)); 519 memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority)); 520 memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter)); 521 memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr)); 522 /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must 523 * write these to get sane behaviour and we need not populate the 524 * pointer cache here; however having the cache be different for 525 * "happened to be 0 from reset" and "guest wrote 0" would be 526 * too confusing. 527 */ 528 gicv3_cache_all_target_cpustates(s); 529 530 if (s->irq_reset_nonsecure) { 531 /* If we're resetting a TZ-aware GIC as if secure firmware 532 * had set it up ready to start a kernel in non-secure, we 533 * need to set interrupts to group 1 so the kernel can use them. 534 * Otherwise they reset to group 0 like the hardware. 535 */ 536 for (i = GIC_INTERNAL; i < s->num_irq; i++) { 537 gicv3_gicd_group_set(s, i); 538 } 539 } 540 s->gicd_no_migration_shift_bug = true; 541 } 542 543 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, 544 bool secure_boot) 545 { 546 GICv3State *s = ARM_GICV3_COMMON(obj); 547 548 if (s->security_extn && !secure_boot) { 549 /* We're directly booting a kernel into NonSecure. If this GIC 550 * implements the security extensions then we must configure it 551 * to have all the interrupts be NonSecure (this is a job that 552 * is done by the Secure boot firmware in real hardware, and in 553 * this mode QEMU is acting as a minimalist firmware-and-bootloader 554 * equivalent). 555 */ 556 s->irq_reset_nonsecure = true; 557 } 558 } 559 560 static Property arm_gicv3_common_properties[] = { 561 DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1), 562 DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32), 563 DEFINE_PROP_UINT32("revision", GICv3State, revision, 3), 564 DEFINE_PROP_BOOL("has-lpi", GICv3State, lpi_enable, 0), 565 DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0), 566 /* 567 * Compatibility property: force 8 bits of physical priority, even 568 * if the CPU being emulated should have fewer. 569 */ 570 DEFINE_PROP_BOOL("force-8-bit-prio", GICv3State, force_8bit_prio, 0), 571 DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions, 572 redist_region_count, qdev_prop_uint32, uint32_t), 573 DEFINE_PROP_LINK("sysmem", GICv3State, dma, TYPE_MEMORY_REGION, 574 MemoryRegion *), 575 DEFINE_PROP_END_OF_LIST(), 576 }; 577 578 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data) 579 { 580 DeviceClass *dc = DEVICE_CLASS(klass); 581 ResettableClass *rc = RESETTABLE_CLASS(klass); 582 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); 583 584 rc->phases.hold = arm_gicv3_common_reset_hold; 585 dc->realize = arm_gicv3_common_realize; 586 device_class_set_props(dc, arm_gicv3_common_properties); 587 dc->vmsd = &vmstate_gicv3; 588 albifc->arm_linux_init = arm_gic_common_linux_init; 589 } 590 591 static const TypeInfo arm_gicv3_common_type = { 592 .name = TYPE_ARM_GICV3_COMMON, 593 .parent = TYPE_SYS_BUS_DEVICE, 594 .instance_size = sizeof(GICv3State), 595 .class_size = sizeof(ARMGICv3CommonClass), 596 .class_init = arm_gicv3_common_class_init, 597 .instance_finalize = arm_gicv3_finalize, 598 .abstract = true, 599 .interfaces = (InterfaceInfo []) { 600 { TYPE_ARM_LINUX_BOOT_IF }, 601 { }, 602 }, 603 }; 604 605 static void register_types(void) 606 { 607 type_register_static(&arm_gicv3_common_type); 608 } 609 610 type_init(register_types) 611