xref: /openbmc/qemu/hw/intc/arm_gicv3_common.c (revision 8692aa29)
1 /*
2  * ARM GICv3 support - common bits of emulated and KVM kernel model
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Copyright (c) 2015 Huawei.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Written by Peter Maydell
8  * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qom/cpu.h"
27 #include "hw/intc/arm_gicv3_common.h"
28 #include "gicv3_internal.h"
29 #include "hw/arm/linux-boot-if.h"
30 
31 static void gicv3_pre_save(void *opaque)
32 {
33     GICv3State *s = (GICv3State *)opaque;
34     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
35 
36     if (c->pre_save) {
37         c->pre_save(s);
38     }
39 }
40 
41 static int gicv3_post_load(void *opaque, int version_id)
42 {
43     GICv3State *s = (GICv3State *)opaque;
44     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
45 
46     if (c->post_load) {
47         c->post_load(s);
48     }
49     return 0;
50 }
51 
52 static const VMStateDescription vmstate_gicv3_cpu = {
53     .name = "arm_gicv3_cpu",
54     .version_id = 1,
55     .minimum_version_id = 1,
56     .fields = (VMStateField[]) {
57         VMSTATE_UINT32(level, GICv3CPUState),
58         VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
59         VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
60         VMSTATE_UINT32(gicr_waker, GICv3CPUState),
61         VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
62         VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
63         VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
64         VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
65         VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
66         VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
67         VMSTATE_UINT32(edge_trigger, GICv3CPUState),
68         VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
69         VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
70         VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
71         VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
72         VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
73         VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
74         VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
75         VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
76         VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
77         VMSTATE_END_OF_LIST()
78     }
79 };
80 
81 static const VMStateDescription vmstate_gicv3 = {
82     .name = "arm_gicv3",
83     .version_id = 1,
84     .minimum_version_id = 1,
85     .pre_save = gicv3_pre_save,
86     .post_load = gicv3_post_load,
87     .fields = (VMStateField[]) {
88         VMSTATE_UINT32(gicd_ctlr, GICv3State),
89         VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
90         VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
91         VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
92         VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
93         VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
94         VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
95         VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
96         VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
97         VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
98         VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
99         VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
100                              DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
101         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
102                                              vmstate_gicv3_cpu, GICv3CPUState),
103         VMSTATE_END_OF_LIST()
104     }
105 };
106 
107 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
108                               const MemoryRegionOps *ops)
109 {
110     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
111     int i;
112 
113     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
114      * GPIO array layout is thus:
115      *  [0..N-1] spi
116      *  [N..N+31] PPIs for CPU 0
117      *  [N+32..N+63] PPIs for CPU 1
118      *   ...
119      */
120     i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
121     qdev_init_gpio_in(DEVICE(s), handler, i);
122 
123     for (i = 0; i < s->num_cpu; i++) {
124         sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
125     }
126     for (i = 0; i < s->num_cpu; i++) {
127         sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
128     }
129 
130     memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
131                           "gicv3_dist", 0x10000);
132     memory_region_init_io(&s->iomem_redist, OBJECT(s), ops ? &ops[1] : NULL, s,
133                           "gicv3_redist", 0x20000 * s->num_cpu);
134 
135     sysbus_init_mmio(sbd, &s->iomem_dist);
136     sysbus_init_mmio(sbd, &s->iomem_redist);
137 }
138 
139 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
140 {
141     GICv3State *s = ARM_GICV3_COMMON(dev);
142     int i;
143 
144     /* revision property is actually reserved and currently used only in order
145      * to keep the interface compatible with GICv2 code, avoiding extra
146      * conditions. However, in future it could be used, for example, if we
147      * implement GICv4.
148      */
149     if (s->revision != 3) {
150         error_setg(errp, "unsupported GIC revision %d", s->revision);
151         return;
152     }
153 
154     if (s->num_irq > GICV3_MAXIRQ) {
155         error_setg(errp,
156                    "requested %u interrupt lines exceeds GIC maximum %d",
157                    s->num_irq, GICV3_MAXIRQ);
158         return;
159     }
160     if (s->num_irq < GIC_INTERNAL) {
161         error_setg(errp,
162                    "requested %u interrupt lines is below GIC minimum %d",
163                    s->num_irq, GIC_INTERNAL);
164         return;
165     }
166 
167     /* ITLinesNumber is represented as (N / 32) - 1, so this is an
168      * implementation imposed restriction, not an architectural one,
169      * so we don't have to deal with bitfields where only some of the
170      * bits in a 32-bit word should be valid.
171      */
172     if (s->num_irq % 32) {
173         error_setg(errp,
174                    "%d interrupt lines unsupported: not divisible by 32",
175                    s->num_irq);
176         return;
177     }
178 
179     s->cpu = g_new0(GICv3CPUState, s->num_cpu);
180 
181     for (i = 0; i < s->num_cpu; i++) {
182         CPUState *cpu = qemu_get_cpu(i);
183         uint64_t cpu_affid;
184         int last;
185 
186         s->cpu[i].cpu = cpu;
187         s->cpu[i].gic = s;
188 
189         /* Pre-construct the GICR_TYPER:
190          * For our implementation:
191          *  Top 32 bits are the affinity value of the associated CPU
192          *  CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
193          *  Processor_Number == CPU index starting from 0
194          *  DPGS == 0 (GICR_CTLR.DPG* not supported)
195          *  Last == 1 if this is the last redistributor in a series of
196          *            contiguous redistributor pages
197          *  DirectLPI == 0 (direct injection of LPIs not supported)
198          *  VLPIS == 0 (virtual LPIs not supported)
199          *  PLPIS == 0 (physical LPIs not supported)
200          */
201         cpu_affid = object_property_get_int(OBJECT(cpu), "mp-affinity", NULL);
202         last = (i == s->num_cpu - 1);
203 
204         /* The CPU mp-affinity property is in MPIDR register format; squash
205          * the affinity bytes into 32 bits as the GICR_TYPER has them.
206          */
207         cpu_affid = (cpu_affid & 0xFF00000000ULL >> 8) | (cpu_affid & 0xFFFFFF);
208         s->cpu[i].gicr_typer = (cpu_affid << 32) |
209             (1 << 24) |
210             (i << 8) |
211             (last << 4);
212     }
213 }
214 
215 static void arm_gicv3_common_reset(DeviceState *dev)
216 {
217     GICv3State *s = ARM_GICV3_COMMON(dev);
218     int i;
219 
220     for (i = 0; i < s->num_cpu; i++) {
221         GICv3CPUState *cs = &s->cpu[i];
222 
223         cs->level = 0;
224         cs->gicr_ctlr = 0;
225         cs->gicr_statusr[GICV3_S] = 0;
226         cs->gicr_statusr[GICV3_NS] = 0;
227         cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
228         cs->gicr_propbaser = 0;
229         cs->gicr_pendbaser = 0;
230         /* If we're resetting a TZ-aware GIC as if secure firmware
231          * had set it up ready to start a kernel in non-secure, we
232          * need to set interrupts to group 1 so the kernel can use them.
233          * Otherwise they reset to group 0 like the hardware.
234          */
235         if (s->irq_reset_nonsecure) {
236             cs->gicr_igroupr0 = 0xffffffff;
237         } else {
238             cs->gicr_igroupr0 = 0;
239         }
240 
241         cs->gicr_ienabler0 = 0;
242         cs->gicr_ipendr0 = 0;
243         cs->gicr_iactiver0 = 0;
244         cs->edge_trigger = 0xffff;
245         cs->gicr_igrpmodr0 = 0;
246         cs->gicr_nsacr = 0;
247         memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
248 
249         cs->hppi.prio = 0xff;
250 
251         /* State in the CPU interface must *not* be reset here, because it
252          * is part of the CPU's reset domain, not the GIC device's.
253          */
254     }
255 
256     /* For our implementation affinity routing is always enabled */
257     if (s->security_extn) {
258         s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
259     } else {
260         s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
261     }
262 
263     s->gicd_statusr[GICV3_S] = 0;
264     s->gicd_statusr[GICV3_NS] = 0;
265 
266     memset(s->group, 0, sizeof(s->group));
267     memset(s->grpmod, 0, sizeof(s->grpmod));
268     memset(s->enabled, 0, sizeof(s->enabled));
269     memset(s->pending, 0, sizeof(s->pending));
270     memset(s->active, 0, sizeof(s->active));
271     memset(s->level, 0, sizeof(s->level));
272     memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
273     memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
274     memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
275     memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
276     /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
277      * write these to get sane behaviour and we need not populate the
278      * pointer cache here; however having the cache be different for
279      * "happened to be 0 from reset" and "guest wrote 0" would be
280      * too confusing.
281      */
282     gicv3_cache_all_target_cpustates(s);
283 
284     if (s->irq_reset_nonsecure) {
285         /* If we're resetting a TZ-aware GIC as if secure firmware
286          * had set it up ready to start a kernel in non-secure, we
287          * need to set interrupts to group 1 so the kernel can use them.
288          * Otherwise they reset to group 0 like the hardware.
289          */
290         for (i = GIC_INTERNAL; i < s->num_irq; i++) {
291             gicv3_gicd_group_set(s, i);
292         }
293     }
294 }
295 
296 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
297                                       bool secure_boot)
298 {
299     GICv3State *s = ARM_GICV3_COMMON(obj);
300 
301     if (s->security_extn && !secure_boot) {
302         /* We're directly booting a kernel into NonSecure. If this GIC
303          * implements the security extensions then we must configure it
304          * to have all the interrupts be NonSecure (this is a job that
305          * is done by the Secure boot firmware in real hardware, and in
306          * this mode QEMU is acting as a minimalist firmware-and-bootloader
307          * equivalent).
308          */
309         s->irq_reset_nonsecure = true;
310     }
311 }
312 
313 static Property arm_gicv3_common_properties[] = {
314     DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
315     DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
316     DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
317     DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
318     DEFINE_PROP_END_OF_LIST(),
319 };
320 
321 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
322 {
323     DeviceClass *dc = DEVICE_CLASS(klass);
324     ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
325 
326     dc->reset = arm_gicv3_common_reset;
327     dc->realize = arm_gicv3_common_realize;
328     dc->props = arm_gicv3_common_properties;
329     dc->vmsd = &vmstate_gicv3;
330     albifc->arm_linux_init = arm_gic_common_linux_init;
331 }
332 
333 static const TypeInfo arm_gicv3_common_type = {
334     .name = TYPE_ARM_GICV3_COMMON,
335     .parent = TYPE_SYS_BUS_DEVICE,
336     .instance_size = sizeof(GICv3State),
337     .class_size = sizeof(ARMGICv3CommonClass),
338     .class_init = arm_gicv3_common_class_init,
339     .abstract = true,
340     .interfaces = (InterfaceInfo []) {
341         { TYPE_ARM_LINUX_BOOT_IF },
342         { },
343     },
344 };
345 
346 static void register_types(void)
347 {
348     type_register_static(&arm_gicv3_common_type);
349 }
350 
351 type_init(register_types)
352