xref: /openbmc/qemu/hw/intc/arm_gicv3_common.c (revision 7618fffd)
1 /*
2  * ARM GICv3 support - common bits of emulated and KVM kernel model
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Copyright (c) 2015 Huawei.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Written by Peter Maydell
8  * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/module.h"
27 #include "qemu/error-report.h"
28 #include "hw/core/cpu.h"
29 #include "hw/intc/arm_gicv3_common.h"
30 #include "hw/qdev-properties.h"
31 #include "migration/vmstate.h"
32 #include "gicv3_internal.h"
33 #include "hw/arm/linux-boot-if.h"
34 #include "sysemu/kvm.h"
35 
36 
37 static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs)
38 {
39     if (cs->gicd_no_migration_shift_bug) {
40         return;
41     }
42 
43     /* Older versions of QEMU had a bug in the handling of state save/restore
44      * to the KVM GICv3: they got the offset in the bitmap arrays wrong,
45      * so that instead of the data for external interrupts 32 and up
46      * starting at bit position 32 in the bitmap, it started at bit
47      * position 64. If we're receiving data from a QEMU with that bug,
48      * we must move the data down into the right place.
49      */
50     memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8,
51             sizeof(cs->group) - GIC_INTERNAL / 8);
52     memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8,
53             sizeof(cs->grpmod) - GIC_INTERNAL / 8);
54     memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8,
55             sizeof(cs->enabled) - GIC_INTERNAL / 8);
56     memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8,
57             sizeof(cs->pending) - GIC_INTERNAL / 8);
58     memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8,
59             sizeof(cs->active) - GIC_INTERNAL / 8);
60     memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8,
61             sizeof(cs->edge_trigger) - GIC_INTERNAL / 8);
62 
63     /*
64      * While this new version QEMU doesn't have this kind of bug as we fix it,
65      * so it needs to set the flag to true to indicate that and it's necessary
66      * for next migration to work from this new version QEMU.
67      */
68     cs->gicd_no_migration_shift_bug = true;
69 }
70 
71 static int gicv3_pre_save(void *opaque)
72 {
73     GICv3State *s = (GICv3State *)opaque;
74     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
75 
76     if (c->pre_save) {
77         c->pre_save(s);
78     }
79 
80     return 0;
81 }
82 
83 static int gicv3_post_load(void *opaque, int version_id)
84 {
85     GICv3State *s = (GICv3State *)opaque;
86     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
87 
88     gicv3_gicd_no_migration_shift_bug_post_load(s);
89 
90     if (c->post_load) {
91         c->post_load(s);
92     }
93     return 0;
94 }
95 
96 static bool virt_state_needed(void *opaque)
97 {
98     GICv3CPUState *cs = opaque;
99 
100     return cs->num_list_regs != 0;
101 }
102 
103 static const VMStateDescription vmstate_gicv3_cpu_virt = {
104     .name = "arm_gicv3_cpu/virt",
105     .version_id = 1,
106     .minimum_version_id = 1,
107     .needed = virt_state_needed,
108     .fields = (const VMStateField[]) {
109         VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4),
110         VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState),
111         VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX),
112         VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState),
113         VMSTATE_END_OF_LIST()
114     }
115 };
116 
117 static int vmstate_gicv3_cpu_pre_load(void *opaque)
118 {
119     GICv3CPUState *cs = opaque;
120 
121    /*
122     * If the sre_el1 subsection is not transferred this
123     * means SRE_EL1 is 0x7 (which might not be the same as
124     * our reset value).
125     */
126     cs->icc_sre_el1 = 0x7;
127     return 0;
128 }
129 
130 static bool icc_sre_el1_reg_needed(void *opaque)
131 {
132     GICv3CPUState *cs = opaque;
133 
134     return cs->icc_sre_el1 != 7;
135 }
136 
137 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = {
138     .name = "arm_gicv3_cpu/sre_el1",
139     .version_id = 1,
140     .minimum_version_id = 1,
141     .needed = icc_sre_el1_reg_needed,
142     .fields = (const VMStateField[]) {
143         VMSTATE_UINT64(icc_sre_el1, GICv3CPUState),
144         VMSTATE_END_OF_LIST()
145     }
146 };
147 
148 static bool gicv4_needed(void *opaque)
149 {
150     GICv3CPUState *cs = opaque;
151 
152     return cs->gic->revision > 3;
153 }
154 
155 const VMStateDescription vmstate_gicv3_gicv4 = {
156     .name = "arm_gicv3_cpu/gicv4",
157     .version_id = 1,
158     .minimum_version_id = 1,
159     .needed = gicv4_needed,
160     .fields = (const VMStateField[]) {
161         VMSTATE_UINT64(gicr_vpropbaser, GICv3CPUState),
162         VMSTATE_UINT64(gicr_vpendbaser, GICv3CPUState),
163         VMSTATE_END_OF_LIST()
164     }
165 };
166 
167 static const VMStateDescription vmstate_gicv3_cpu = {
168     .name = "arm_gicv3_cpu",
169     .version_id = 1,
170     .minimum_version_id = 1,
171     .pre_load = vmstate_gicv3_cpu_pre_load,
172     .fields = (const VMStateField[]) {
173         VMSTATE_UINT32(level, GICv3CPUState),
174         VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
175         VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
176         VMSTATE_UINT32(gicr_waker, GICv3CPUState),
177         VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
178         VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
179         VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
180         VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
181         VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
182         VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
183         VMSTATE_UINT32(edge_trigger, GICv3CPUState),
184         VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
185         VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
186         VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
187         VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
188         VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
189         VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
190         VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
191         VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
192         VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
193         VMSTATE_END_OF_LIST()
194     },
195     .subsections = (const VMStateDescription * const []) {
196         &vmstate_gicv3_cpu_virt,
197         &vmstate_gicv3_cpu_sre_el1,
198         &vmstate_gicv3_gicv4,
199         NULL
200     }
201 };
202 
203 static int gicv3_pre_load(void *opaque)
204 {
205     GICv3State *cs = opaque;
206 
207    /*
208     * The gicd_no_migration_shift_bug flag is used for migration compatibility
209     * for old version QEMU which may have the GICD bmp shift bug under KVM mode.
210     * Strictly, what we want to know is whether the migration source is using
211     * KVM. Since we don't have any way to determine that, we look at whether the
212     * destination is using KVM; this is close enough because for the older QEMU
213     * versions with this bug KVM -> TCG migration didn't work anyway. If the
214     * source is a newer QEMU without this bug it will transmit the migration
215     * subsection which sets the flag to true; otherwise it will remain set to
216     * the value we select here.
217     */
218     if (kvm_enabled()) {
219         cs->gicd_no_migration_shift_bug = false;
220     }
221 
222     return 0;
223 }
224 
225 static bool needed_always(void *opaque)
226 {
227     return true;
228 }
229 
230 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = {
231     .name = "arm_gicv3/gicd_no_migration_shift_bug",
232     .version_id = 1,
233     .minimum_version_id = 1,
234     .needed = needed_always,
235     .fields = (const VMStateField[]) {
236         VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State),
237         VMSTATE_END_OF_LIST()
238     }
239 };
240 
241 static const VMStateDescription vmstate_gicv3 = {
242     .name = "arm_gicv3",
243     .version_id = 1,
244     .minimum_version_id = 1,
245     .pre_load = gicv3_pre_load,
246     .pre_save = gicv3_pre_save,
247     .post_load = gicv3_post_load,
248     .priority = MIG_PRI_GICV3,
249     .fields = (const VMStateField[]) {
250         VMSTATE_UINT32(gicd_ctlr, GICv3State),
251         VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
252         VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
253         VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
254         VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
255         VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
256         VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
257         VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
258         VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
259         VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
260         VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
261         VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
262                              DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
263         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
264                                              vmstate_gicv3_cpu, GICv3CPUState),
265         VMSTATE_END_OF_LIST()
266     },
267     .subsections = (const VMStateDescription * const []) {
268         &vmstate_gicv3_gicd_no_migration_shift_bug,
269         NULL
270     }
271 };
272 
273 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
274                               const MemoryRegionOps *ops)
275 {
276     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
277     int i;
278     int cpuidx;
279 
280     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
281      * GPIO array layout is thus:
282      *  [0..N-1] spi
283      *  [N..N+31] PPIs for CPU 0
284      *  [N+32..N+63] PPIs for CPU 1
285      *   ...
286      */
287     i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
288     qdev_init_gpio_in(DEVICE(s), handler, i);
289 
290     for (i = 0; i < s->num_cpu; i++) {
291         sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
292     }
293     for (i = 0; i < s->num_cpu; i++) {
294         sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
295     }
296     for (i = 0; i < s->num_cpu; i++) {
297         sysbus_init_irq(sbd, &s->cpu[i].parent_virq);
298     }
299     for (i = 0; i < s->num_cpu; i++) {
300         sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq);
301     }
302 
303     memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
304                           "gicv3_dist", 0x10000);
305     sysbus_init_mmio(sbd, &s->iomem_dist);
306 
307     s->redist_regions = g_new0(GICv3RedistRegion, s->nb_redist_regions);
308     cpuidx = 0;
309     for (i = 0; i < s->nb_redist_regions; i++) {
310         char *name = g_strdup_printf("gicv3_redist_region[%d]", i);
311         GICv3RedistRegion *region = &s->redist_regions[i];
312 
313         region->gic = s;
314         region->cpuidx = cpuidx;
315         cpuidx += s->redist_region_count[i];
316 
317         memory_region_init_io(&region->iomem, OBJECT(s),
318                               ops ? &ops[1] : NULL, region, name,
319                               s->redist_region_count[i] * gicv3_redist_size(s));
320         sysbus_init_mmio(sbd, &region->iomem);
321         g_free(name);
322     }
323 }
324 
325 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
326 {
327     GICv3State *s = ARM_GICV3_COMMON(dev);
328     int i, rdist_capacity, cpuidx;
329 
330     /*
331      * This GIC device supports only revisions 3 and 4. The GICv1/v2
332      * is a separate device.
333      * Note that subclasses of this device may impose further restrictions
334      * on the GIC revision: notably, the in-kernel KVM GIC doesn't
335      * support GICv4.
336      */
337     if (s->revision != 3 && s->revision != 4) {
338         error_setg(errp, "unsupported GIC revision %d", s->revision);
339         return;
340     }
341 
342     if (s->num_irq > GICV3_MAXIRQ) {
343         error_setg(errp,
344                    "requested %u interrupt lines exceeds GIC maximum %d",
345                    s->num_irq, GICV3_MAXIRQ);
346         return;
347     }
348     if (s->num_irq < GIC_INTERNAL) {
349         error_setg(errp,
350                    "requested %u interrupt lines is below GIC minimum %d",
351                    s->num_irq, GIC_INTERNAL);
352         return;
353     }
354     if (s->num_cpu == 0) {
355         error_setg(errp, "num-cpu must be at least 1");
356         return;
357     }
358 
359     /* ITLinesNumber is represented as (N / 32) - 1, so this is an
360      * implementation imposed restriction, not an architectural one,
361      * so we don't have to deal with bitfields where only some of the
362      * bits in a 32-bit word should be valid.
363      */
364     if (s->num_irq % 32) {
365         error_setg(errp,
366                    "%d interrupt lines unsupported: not divisible by 32",
367                    s->num_irq);
368         return;
369     }
370 
371     if (s->lpi_enable && !s->dma) {
372         error_setg(errp, "Redist-ITS: Guest 'sysmem' reference link not set");
373         return;
374     }
375 
376     rdist_capacity = 0;
377     for (i = 0; i < s->nb_redist_regions; i++) {
378         rdist_capacity += s->redist_region_count[i];
379     }
380     if (rdist_capacity != s->num_cpu) {
381         error_setg(errp, "Capacity of the redist regions(%d) "
382                    "does not match the number of vcpus(%d)",
383                    rdist_capacity, s->num_cpu);
384         return;
385     }
386 
387     if (s->lpi_enable) {
388         address_space_init(&s->dma_as, s->dma,
389                            "gicv3-its-sysmem");
390     }
391 
392     s->cpu = g_new0(GICv3CPUState, s->num_cpu);
393 
394     for (i = 0; i < s->num_cpu; i++) {
395         CPUState *cpu = qemu_get_cpu(i);
396         uint64_t cpu_affid;
397 
398         s->cpu[i].cpu = cpu;
399         s->cpu[i].gic = s;
400         /* Store GICv3CPUState in CPUARMState gicv3state pointer */
401         gicv3_set_gicv3state(cpu, &s->cpu[i]);
402 
403         /* Pre-construct the GICR_TYPER:
404          * For our implementation:
405          *  Top 32 bits are the affinity value of the associated CPU
406          *  CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
407          *  Processor_Number == CPU index starting from 0
408          *  DPGS == 0 (GICR_CTLR.DPG* not supported)
409          *  Last == 1 if this is the last redistributor in a series of
410          *            contiguous redistributor pages
411          *  DirectLPI == 0 (direct injection of LPIs not supported)
412          *  VLPIS == 1 if vLPIs supported (GICv4 and up)
413          *  PLPIS == 1 if LPIs supported
414          */
415         cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL);
416 
417         /* The CPU mp-affinity property is in MPIDR register format; squash
418          * the affinity bytes into 32 bits as the GICR_TYPER has them.
419          */
420         cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) |
421                      (cpu_affid & 0xFFFFFF);
422         s->cpu[i].gicr_typer = (cpu_affid << 32) |
423             (1 << 24) |
424             (i << 8);
425 
426         if (s->lpi_enable) {
427             s->cpu[i].gicr_typer |= GICR_TYPER_PLPIS;
428             if (s->revision > 3) {
429                 s->cpu[i].gicr_typer |= GICR_TYPER_VLPIS;
430             }
431         }
432     }
433 
434     /*
435      * Now go through and set GICR_TYPER.Last for the final
436      * redistributor in each region.
437      */
438     cpuidx = 0;
439     for (i = 0; i < s->nb_redist_regions; i++) {
440         cpuidx += s->redist_region_count[i];
441         s->cpu[cpuidx - 1].gicr_typer |= GICR_TYPER_LAST;
442     }
443 
444     s->itslist = g_ptr_array_new();
445 }
446 
447 static void arm_gicv3_finalize(Object *obj)
448 {
449     GICv3State *s = ARM_GICV3_COMMON(obj);
450 
451     g_free(s->redist_region_count);
452 }
453 
454 static void arm_gicv3_common_reset_hold(Object *obj)
455 {
456     GICv3State *s = ARM_GICV3_COMMON(obj);
457     int i;
458 
459     for (i = 0; i < s->num_cpu; i++) {
460         GICv3CPUState *cs = &s->cpu[i];
461 
462         cs->level = 0;
463         cs->gicr_ctlr = 0;
464         if (s->lpi_enable) {
465             /* Our implementation supports clearing GICR_CTLR.EnableLPIs */
466             cs->gicr_ctlr |= GICR_CTLR_CES;
467         }
468         cs->gicr_statusr[GICV3_S] = 0;
469         cs->gicr_statusr[GICV3_NS] = 0;
470         cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
471         cs->gicr_propbaser = 0;
472         cs->gicr_pendbaser = 0;
473         cs->gicr_vpropbaser = 0;
474         cs->gicr_vpendbaser = 0;
475         /* If we're resetting a TZ-aware GIC as if secure firmware
476          * had set it up ready to start a kernel in non-secure, we
477          * need to set interrupts to group 1 so the kernel can use them.
478          * Otherwise they reset to group 0 like the hardware.
479          */
480         if (s->irq_reset_nonsecure) {
481             cs->gicr_igroupr0 = 0xffffffff;
482         } else {
483             cs->gicr_igroupr0 = 0;
484         }
485 
486         cs->gicr_ienabler0 = 0;
487         cs->gicr_ipendr0 = 0;
488         cs->gicr_iactiver0 = 0;
489         cs->edge_trigger = 0xffff;
490         cs->gicr_igrpmodr0 = 0;
491         cs->gicr_nsacr = 0;
492         memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
493 
494         cs->hppi.prio = 0xff;
495         cs->hpplpi.prio = 0xff;
496         cs->hppvlpi.prio = 0xff;
497 
498         /* State in the CPU interface must *not* be reset here, because it
499          * is part of the CPU's reset domain, not the GIC device's.
500          */
501     }
502 
503     /* For our implementation affinity routing is always enabled */
504     if (s->security_extn) {
505         s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
506     } else {
507         s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
508     }
509 
510     s->gicd_statusr[GICV3_S] = 0;
511     s->gicd_statusr[GICV3_NS] = 0;
512 
513     memset(s->group, 0, sizeof(s->group));
514     memset(s->grpmod, 0, sizeof(s->grpmod));
515     memset(s->enabled, 0, sizeof(s->enabled));
516     memset(s->pending, 0, sizeof(s->pending));
517     memset(s->active, 0, sizeof(s->active));
518     memset(s->level, 0, sizeof(s->level));
519     memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
520     memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
521     memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
522     memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
523     /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
524      * write these to get sane behaviour and we need not populate the
525      * pointer cache here; however having the cache be different for
526      * "happened to be 0 from reset" and "guest wrote 0" would be
527      * too confusing.
528      */
529     gicv3_cache_all_target_cpustates(s);
530 
531     if (s->irq_reset_nonsecure) {
532         /* If we're resetting a TZ-aware GIC as if secure firmware
533          * had set it up ready to start a kernel in non-secure, we
534          * need to set interrupts to group 1 so the kernel can use them.
535          * Otherwise they reset to group 0 like the hardware.
536          */
537         for (i = GIC_INTERNAL; i < s->num_irq; i++) {
538             gicv3_gicd_group_set(s, i);
539         }
540     }
541     s->gicd_no_migration_shift_bug = true;
542 }
543 
544 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
545                                       bool secure_boot)
546 {
547     GICv3State *s = ARM_GICV3_COMMON(obj);
548 
549     if (s->security_extn && !secure_boot) {
550         /* We're directly booting a kernel into NonSecure. If this GIC
551          * implements the security extensions then we must configure it
552          * to have all the interrupts be NonSecure (this is a job that
553          * is done by the Secure boot firmware in real hardware, and in
554          * this mode QEMU is acting as a minimalist firmware-and-bootloader
555          * equivalent).
556          */
557         s->irq_reset_nonsecure = true;
558     }
559 }
560 
561 static Property arm_gicv3_common_properties[] = {
562     DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
563     DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
564     DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
565     DEFINE_PROP_BOOL("has-lpi", GICv3State, lpi_enable, 0),
566     DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
567     /*
568      * Compatibility property: force 8 bits of physical priority, even
569      * if the CPU being emulated should have fewer.
570      */
571     DEFINE_PROP_BOOL("force-8-bit-prio", GICv3State, force_8bit_prio, 0),
572     DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions,
573                       redist_region_count, qdev_prop_uint32, uint32_t),
574     DEFINE_PROP_LINK("sysmem", GICv3State, dma, TYPE_MEMORY_REGION,
575                      MemoryRegion *),
576     DEFINE_PROP_END_OF_LIST(),
577 };
578 
579 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
580 {
581     DeviceClass *dc = DEVICE_CLASS(klass);
582     ResettableClass *rc = RESETTABLE_CLASS(klass);
583     ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
584 
585     rc->phases.hold = arm_gicv3_common_reset_hold;
586     dc->realize = arm_gicv3_common_realize;
587     device_class_set_props(dc, arm_gicv3_common_properties);
588     dc->vmsd = &vmstate_gicv3;
589     albifc->arm_linux_init = arm_gic_common_linux_init;
590 }
591 
592 static const TypeInfo arm_gicv3_common_type = {
593     .name = TYPE_ARM_GICV3_COMMON,
594     .parent = TYPE_SYS_BUS_DEVICE,
595     .instance_size = sizeof(GICv3State),
596     .class_size = sizeof(ARMGICv3CommonClass),
597     .class_init = arm_gicv3_common_class_init,
598     .instance_finalize = arm_gicv3_finalize,
599     .abstract = true,
600     .interfaces = (InterfaceInfo []) {
601         { TYPE_ARM_LINUX_BOOT_IF },
602         { },
603     },
604 };
605 
606 static void register_types(void)
607 {
608     type_register_static(&arm_gicv3_common_type);
609 }
610 
611 type_init(register_types)
612 
613 const char *gicv3_class_name(void)
614 {
615     if (kvm_irqchip_in_kernel()) {
616         return "kvm-arm-gicv3";
617     } else {
618         if (kvm_enabled()) {
619             error_report("Userspace GICv3 is not supported with KVM");
620             exit(1);
621         }
622         return "arm-gicv3";
623     }
624 }
625