1 /* 2 * ARM GICv3 support - common bits of emulated and KVM kernel model 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Copyright (c) 2015 Huawei. 6 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 7 * Written by Peter Maydell 8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu/module.h" 27 #include "qom/cpu.h" 28 #include "hw/intc/arm_gicv3_common.h" 29 #include "gicv3_internal.h" 30 #include "hw/arm/linux-boot-if.h" 31 #include "sysemu/kvm.h" 32 33 34 static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs) 35 { 36 if (cs->gicd_no_migration_shift_bug) { 37 return; 38 } 39 40 /* Older versions of QEMU had a bug in the handling of state save/restore 41 * to the KVM GICv3: they got the offset in the bitmap arrays wrong, 42 * so that instead of the data for external interrupts 32 and up 43 * starting at bit position 32 in the bitmap, it started at bit 44 * position 64. If we're receiving data from a QEMU with that bug, 45 * we must move the data down into the right place. 46 */ 47 memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8, 48 sizeof(cs->group) - GIC_INTERNAL / 8); 49 memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8, 50 sizeof(cs->grpmod) - GIC_INTERNAL / 8); 51 memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8, 52 sizeof(cs->enabled) - GIC_INTERNAL / 8); 53 memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8, 54 sizeof(cs->pending) - GIC_INTERNAL / 8); 55 memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8, 56 sizeof(cs->active) - GIC_INTERNAL / 8); 57 memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8, 58 sizeof(cs->edge_trigger) - GIC_INTERNAL / 8); 59 60 /* 61 * While this new version QEMU doesn't have this kind of bug as we fix it, 62 * so it needs to set the flag to true to indicate that and it's necessary 63 * for next migration to work from this new version QEMU. 64 */ 65 cs->gicd_no_migration_shift_bug = true; 66 } 67 68 static int gicv3_pre_save(void *opaque) 69 { 70 GICv3State *s = (GICv3State *)opaque; 71 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 72 73 if (c->pre_save) { 74 c->pre_save(s); 75 } 76 77 return 0; 78 } 79 80 static int gicv3_post_load(void *opaque, int version_id) 81 { 82 GICv3State *s = (GICv3State *)opaque; 83 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 84 85 gicv3_gicd_no_migration_shift_bug_post_load(s); 86 87 if (c->post_load) { 88 c->post_load(s); 89 } 90 return 0; 91 } 92 93 static bool virt_state_needed(void *opaque) 94 { 95 GICv3CPUState *cs = opaque; 96 97 return cs->num_list_regs != 0; 98 } 99 100 static const VMStateDescription vmstate_gicv3_cpu_virt = { 101 .name = "arm_gicv3_cpu/virt", 102 .version_id = 1, 103 .minimum_version_id = 1, 104 .needed = virt_state_needed, 105 .fields = (VMStateField[]) { 106 VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), 107 VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), 108 VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), 109 VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), 110 VMSTATE_END_OF_LIST() 111 } 112 }; 113 114 static int vmstate_gicv3_cpu_pre_load(void *opaque) 115 { 116 GICv3CPUState *cs = opaque; 117 118 /* 119 * If the sre_el1 subsection is not transferred this 120 * means SRE_EL1 is 0x7 (which might not be the same as 121 * our reset value). 122 */ 123 cs->icc_sre_el1 = 0x7; 124 return 0; 125 } 126 127 static bool icc_sre_el1_reg_needed(void *opaque) 128 { 129 GICv3CPUState *cs = opaque; 130 131 return cs->icc_sre_el1 != 7; 132 } 133 134 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = { 135 .name = "arm_gicv3_cpu/sre_el1", 136 .version_id = 1, 137 .minimum_version_id = 1, 138 .needed = icc_sre_el1_reg_needed, 139 .fields = (VMStateField[]) { 140 VMSTATE_UINT64(icc_sre_el1, GICv3CPUState), 141 VMSTATE_END_OF_LIST() 142 } 143 }; 144 145 static const VMStateDescription vmstate_gicv3_cpu = { 146 .name = "arm_gicv3_cpu", 147 .version_id = 1, 148 .minimum_version_id = 1, 149 .pre_load = vmstate_gicv3_cpu_pre_load, 150 .fields = (VMStateField[]) { 151 VMSTATE_UINT32(level, GICv3CPUState), 152 VMSTATE_UINT32(gicr_ctlr, GICv3CPUState), 153 VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2), 154 VMSTATE_UINT32(gicr_waker, GICv3CPUState), 155 VMSTATE_UINT64(gicr_propbaser, GICv3CPUState), 156 VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState), 157 VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState), 158 VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState), 159 VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState), 160 VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState), 161 VMSTATE_UINT32(edge_trigger, GICv3CPUState), 162 VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState), 163 VMSTATE_UINT32(gicr_nsacr, GICv3CPUState), 164 VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL), 165 VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2), 166 VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState), 167 VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3), 168 VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4), 169 VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), 170 VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), 171 VMSTATE_END_OF_LIST() 172 }, 173 .subsections = (const VMStateDescription * []) { 174 &vmstate_gicv3_cpu_virt, 175 &vmstate_gicv3_cpu_sre_el1, 176 NULL 177 } 178 }; 179 180 static int gicv3_pre_load(void *opaque) 181 { 182 GICv3State *cs = opaque; 183 184 /* 185 * The gicd_no_migration_shift_bug flag is used for migration compatibility 186 * for old version QEMU which may have the GICD bmp shift bug under KVM mode. 187 * Strictly, what we want to know is whether the migration source is using 188 * KVM. Since we don't have any way to determine that, we look at whether the 189 * destination is using KVM; this is close enough because for the older QEMU 190 * versions with this bug KVM -> TCG migration didn't work anyway. If the 191 * source is a newer QEMU without this bug it will transmit the migration 192 * subsection which sets the flag to true; otherwise it will remain set to 193 * the value we select here. 194 */ 195 if (kvm_enabled()) { 196 cs->gicd_no_migration_shift_bug = false; 197 } 198 199 return 0; 200 } 201 202 static bool needed_always(void *opaque) 203 { 204 return true; 205 } 206 207 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = { 208 .name = "arm_gicv3/gicd_no_migration_shift_bug", 209 .version_id = 1, 210 .minimum_version_id = 1, 211 .needed = needed_always, 212 .fields = (VMStateField[]) { 213 VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State), 214 VMSTATE_END_OF_LIST() 215 } 216 }; 217 218 static const VMStateDescription vmstate_gicv3 = { 219 .name = "arm_gicv3", 220 .version_id = 1, 221 .minimum_version_id = 1, 222 .pre_load = gicv3_pre_load, 223 .pre_save = gicv3_pre_save, 224 .post_load = gicv3_post_load, 225 .priority = MIG_PRI_GICV3, 226 .fields = (VMStateField[]) { 227 VMSTATE_UINT32(gicd_ctlr, GICv3State), 228 VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2), 229 VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE), 230 VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE), 231 VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE), 232 VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE), 233 VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE), 234 VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE), 235 VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE), 236 VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ), 237 VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ), 238 VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State, 239 DIV_ROUND_UP(GICV3_MAXIRQ, 16)), 240 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu, 241 vmstate_gicv3_cpu, GICv3CPUState), 242 VMSTATE_END_OF_LIST() 243 }, 244 .subsections = (const VMStateDescription * []) { 245 &vmstate_gicv3_gicd_no_migration_shift_bug, 246 NULL 247 } 248 }; 249 250 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, 251 const MemoryRegionOps *ops, Error **errp) 252 { 253 SysBusDevice *sbd = SYS_BUS_DEVICE(s); 254 int rdist_capacity = 0; 255 int i; 256 257 for (i = 0; i < s->nb_redist_regions; i++) { 258 rdist_capacity += s->redist_region_count[i]; 259 } 260 if (rdist_capacity < s->num_cpu) { 261 error_setg(errp, "Capacity of the redist regions(%d) " 262 "is less than number of vcpus(%d)", 263 rdist_capacity, s->num_cpu); 264 return; 265 } 266 267 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. 268 * GPIO array layout is thus: 269 * [0..N-1] spi 270 * [N..N+31] PPIs for CPU 0 271 * [N+32..N+63] PPIs for CPU 1 272 * ... 273 */ 274 i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu; 275 qdev_init_gpio_in(DEVICE(s), handler, i); 276 277 for (i = 0; i < s->num_cpu; i++) { 278 sysbus_init_irq(sbd, &s->cpu[i].parent_irq); 279 } 280 for (i = 0; i < s->num_cpu; i++) { 281 sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); 282 } 283 for (i = 0; i < s->num_cpu; i++) { 284 sysbus_init_irq(sbd, &s->cpu[i].parent_virq); 285 } 286 for (i = 0; i < s->num_cpu; i++) { 287 sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); 288 } 289 290 memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, 291 "gicv3_dist", 0x10000); 292 sysbus_init_mmio(sbd, &s->iomem_dist); 293 294 s->iomem_redist = g_new0(MemoryRegion, s->nb_redist_regions); 295 for (i = 0; i < s->nb_redist_regions; i++) { 296 char *name = g_strdup_printf("gicv3_redist_region[%d]", i); 297 298 memory_region_init_io(&s->iomem_redist[i], OBJECT(s), 299 ops ? &ops[1] : NULL, s, name, 300 s->redist_region_count[i] * GICV3_REDIST_SIZE); 301 sysbus_init_mmio(sbd, &s->iomem_redist[i]); 302 g_free(name); 303 } 304 } 305 306 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) 307 { 308 GICv3State *s = ARM_GICV3_COMMON(dev); 309 int i; 310 311 /* revision property is actually reserved and currently used only in order 312 * to keep the interface compatible with GICv2 code, avoiding extra 313 * conditions. However, in future it could be used, for example, if we 314 * implement GICv4. 315 */ 316 if (s->revision != 3) { 317 error_setg(errp, "unsupported GIC revision %d", s->revision); 318 return; 319 } 320 321 if (s->num_irq > GICV3_MAXIRQ) { 322 error_setg(errp, 323 "requested %u interrupt lines exceeds GIC maximum %d", 324 s->num_irq, GICV3_MAXIRQ); 325 return; 326 } 327 if (s->num_irq < GIC_INTERNAL) { 328 error_setg(errp, 329 "requested %u interrupt lines is below GIC minimum %d", 330 s->num_irq, GIC_INTERNAL); 331 return; 332 } 333 334 /* ITLinesNumber is represented as (N / 32) - 1, so this is an 335 * implementation imposed restriction, not an architectural one, 336 * so we don't have to deal with bitfields where only some of the 337 * bits in a 32-bit word should be valid. 338 */ 339 if (s->num_irq % 32) { 340 error_setg(errp, 341 "%d interrupt lines unsupported: not divisible by 32", 342 s->num_irq); 343 return; 344 } 345 346 s->cpu = g_new0(GICv3CPUState, s->num_cpu); 347 348 for (i = 0; i < s->num_cpu; i++) { 349 CPUState *cpu = qemu_get_cpu(i); 350 uint64_t cpu_affid; 351 int last; 352 353 s->cpu[i].cpu = cpu; 354 s->cpu[i].gic = s; 355 /* Store GICv3CPUState in CPUARMState gicv3state pointer */ 356 gicv3_set_gicv3state(cpu, &s->cpu[i]); 357 358 /* Pre-construct the GICR_TYPER: 359 * For our implementation: 360 * Top 32 bits are the affinity value of the associated CPU 361 * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table) 362 * Processor_Number == CPU index starting from 0 363 * DPGS == 0 (GICR_CTLR.DPG* not supported) 364 * Last == 1 if this is the last redistributor in a series of 365 * contiguous redistributor pages 366 * DirectLPI == 0 (direct injection of LPIs not supported) 367 * VLPIS == 0 (virtual LPIs not supported) 368 * PLPIS == 0 (physical LPIs not supported) 369 */ 370 cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL); 371 last = (i == s->num_cpu - 1); 372 373 /* The CPU mp-affinity property is in MPIDR register format; squash 374 * the affinity bytes into 32 bits as the GICR_TYPER has them. 375 */ 376 cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) | 377 (cpu_affid & 0xFFFFFF); 378 s->cpu[i].gicr_typer = (cpu_affid << 32) | 379 (1 << 24) | 380 (i << 8) | 381 (last << 4); 382 } 383 } 384 385 static void arm_gicv3_finalize(Object *obj) 386 { 387 GICv3State *s = ARM_GICV3_COMMON(obj); 388 389 g_free(s->redist_region_count); 390 } 391 392 static void arm_gicv3_common_reset(DeviceState *dev) 393 { 394 GICv3State *s = ARM_GICV3_COMMON(dev); 395 int i; 396 397 for (i = 0; i < s->num_cpu; i++) { 398 GICv3CPUState *cs = &s->cpu[i]; 399 400 cs->level = 0; 401 cs->gicr_ctlr = 0; 402 cs->gicr_statusr[GICV3_S] = 0; 403 cs->gicr_statusr[GICV3_NS] = 0; 404 cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep; 405 cs->gicr_propbaser = 0; 406 cs->gicr_pendbaser = 0; 407 /* If we're resetting a TZ-aware GIC as if secure firmware 408 * had set it up ready to start a kernel in non-secure, we 409 * need to set interrupts to group 1 so the kernel can use them. 410 * Otherwise they reset to group 0 like the hardware. 411 */ 412 if (s->irq_reset_nonsecure) { 413 cs->gicr_igroupr0 = 0xffffffff; 414 } else { 415 cs->gicr_igroupr0 = 0; 416 } 417 418 cs->gicr_ienabler0 = 0; 419 cs->gicr_ipendr0 = 0; 420 cs->gicr_iactiver0 = 0; 421 cs->edge_trigger = 0xffff; 422 cs->gicr_igrpmodr0 = 0; 423 cs->gicr_nsacr = 0; 424 memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr)); 425 426 cs->hppi.prio = 0xff; 427 428 /* State in the CPU interface must *not* be reset here, because it 429 * is part of the CPU's reset domain, not the GIC device's. 430 */ 431 } 432 433 /* For our implementation affinity routing is always enabled */ 434 if (s->security_extn) { 435 s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS; 436 } else { 437 s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE; 438 } 439 440 s->gicd_statusr[GICV3_S] = 0; 441 s->gicd_statusr[GICV3_NS] = 0; 442 443 memset(s->group, 0, sizeof(s->group)); 444 memset(s->grpmod, 0, sizeof(s->grpmod)); 445 memset(s->enabled, 0, sizeof(s->enabled)); 446 memset(s->pending, 0, sizeof(s->pending)); 447 memset(s->active, 0, sizeof(s->active)); 448 memset(s->level, 0, sizeof(s->level)); 449 memset(s->edge_trigger, 0, sizeof(s->edge_trigger)); 450 memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority)); 451 memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter)); 452 memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr)); 453 /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must 454 * write these to get sane behaviour and we need not populate the 455 * pointer cache here; however having the cache be different for 456 * "happened to be 0 from reset" and "guest wrote 0" would be 457 * too confusing. 458 */ 459 gicv3_cache_all_target_cpustates(s); 460 461 if (s->irq_reset_nonsecure) { 462 /* If we're resetting a TZ-aware GIC as if secure firmware 463 * had set it up ready to start a kernel in non-secure, we 464 * need to set interrupts to group 1 so the kernel can use them. 465 * Otherwise they reset to group 0 like the hardware. 466 */ 467 for (i = GIC_INTERNAL; i < s->num_irq; i++) { 468 gicv3_gicd_group_set(s, i); 469 } 470 } 471 s->gicd_no_migration_shift_bug = true; 472 } 473 474 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, 475 bool secure_boot) 476 { 477 GICv3State *s = ARM_GICV3_COMMON(obj); 478 479 if (s->security_extn && !secure_boot) { 480 /* We're directly booting a kernel into NonSecure. If this GIC 481 * implements the security extensions then we must configure it 482 * to have all the interrupts be NonSecure (this is a job that 483 * is done by the Secure boot firmware in real hardware, and in 484 * this mode QEMU is acting as a minimalist firmware-and-bootloader 485 * equivalent). 486 */ 487 s->irq_reset_nonsecure = true; 488 } 489 } 490 491 static Property arm_gicv3_common_properties[] = { 492 DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1), 493 DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32), 494 DEFINE_PROP_UINT32("revision", GICv3State, revision, 3), 495 DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0), 496 DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions, 497 redist_region_count, qdev_prop_uint32, uint32_t), 498 DEFINE_PROP_END_OF_LIST(), 499 }; 500 501 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data) 502 { 503 DeviceClass *dc = DEVICE_CLASS(klass); 504 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); 505 506 dc->reset = arm_gicv3_common_reset; 507 dc->realize = arm_gicv3_common_realize; 508 dc->props = arm_gicv3_common_properties; 509 dc->vmsd = &vmstate_gicv3; 510 albifc->arm_linux_init = arm_gic_common_linux_init; 511 } 512 513 static const TypeInfo arm_gicv3_common_type = { 514 .name = TYPE_ARM_GICV3_COMMON, 515 .parent = TYPE_SYS_BUS_DEVICE, 516 .instance_size = sizeof(GICv3State), 517 .class_size = sizeof(ARMGICv3CommonClass), 518 .class_init = arm_gicv3_common_class_init, 519 .instance_finalize = arm_gicv3_finalize, 520 .abstract = true, 521 .interfaces = (InterfaceInfo []) { 522 { TYPE_ARM_LINUX_BOOT_IF }, 523 { }, 524 }, 525 }; 526 527 static void register_types(void) 528 { 529 type_register_static(&arm_gicv3_common_type); 530 } 531 532 type_init(register_types) 533