1 /* 2 * ARM GICv3 support - common bits of emulated and KVM kernel model 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Copyright (c) 2015 Huawei. 6 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 7 * Written by Peter Maydell 8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu/module.h" 27 #include "qemu/error-report.h" 28 #include "hw/core/cpu.h" 29 #include "hw/intc/arm_gicv3_common.h" 30 #include "hw/qdev-properties.h" 31 #include "migration/vmstate.h" 32 #include "gicv3_internal.h" 33 #include "hw/arm/linux-boot-if.h" 34 #include "sysemu/kvm.h" 35 36 37 static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs) 38 { 39 if (cs->gicd_no_migration_shift_bug) { 40 return; 41 } 42 43 /* Older versions of QEMU had a bug in the handling of state save/restore 44 * to the KVM GICv3: they got the offset in the bitmap arrays wrong, 45 * so that instead of the data for external interrupts 32 and up 46 * starting at bit position 32 in the bitmap, it started at bit 47 * position 64. If we're receiving data from a QEMU with that bug, 48 * we must move the data down into the right place. 49 */ 50 memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8, 51 sizeof(cs->group) - GIC_INTERNAL / 8); 52 memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8, 53 sizeof(cs->grpmod) - GIC_INTERNAL / 8); 54 memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8, 55 sizeof(cs->enabled) - GIC_INTERNAL / 8); 56 memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8, 57 sizeof(cs->pending) - GIC_INTERNAL / 8); 58 memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8, 59 sizeof(cs->active) - GIC_INTERNAL / 8); 60 memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8, 61 sizeof(cs->edge_trigger) - GIC_INTERNAL / 8); 62 63 /* 64 * While this new version QEMU doesn't have this kind of bug as we fix it, 65 * so it needs to set the flag to true to indicate that and it's necessary 66 * for next migration to work from this new version QEMU. 67 */ 68 cs->gicd_no_migration_shift_bug = true; 69 } 70 71 static int gicv3_pre_save(void *opaque) 72 { 73 GICv3State *s = (GICv3State *)opaque; 74 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 75 76 if (c->pre_save) { 77 c->pre_save(s); 78 } 79 80 return 0; 81 } 82 83 static int gicv3_post_load(void *opaque, int version_id) 84 { 85 GICv3State *s = (GICv3State *)opaque; 86 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 87 88 gicv3_gicd_no_migration_shift_bug_post_load(s); 89 90 if (c->post_load) { 91 c->post_load(s); 92 } 93 return 0; 94 } 95 96 static bool virt_state_needed(void *opaque) 97 { 98 GICv3CPUState *cs = opaque; 99 100 return cs->num_list_regs != 0; 101 } 102 103 static const VMStateDescription vmstate_gicv3_cpu_virt = { 104 .name = "arm_gicv3_cpu/virt", 105 .version_id = 1, 106 .minimum_version_id = 1, 107 .needed = virt_state_needed, 108 .fields = (const VMStateField[]) { 109 VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), 110 VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), 111 VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), 112 VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), 113 VMSTATE_END_OF_LIST() 114 } 115 }; 116 117 static int vmstate_gicv3_cpu_pre_load(void *opaque) 118 { 119 GICv3CPUState *cs = opaque; 120 121 /* 122 * If the sre_el1 subsection is not transferred this 123 * means SRE_EL1 is 0x7 (which might not be the same as 124 * our reset value). 125 */ 126 cs->icc_sre_el1 = 0x7; 127 return 0; 128 } 129 130 static bool icc_sre_el1_reg_needed(void *opaque) 131 { 132 GICv3CPUState *cs = opaque; 133 134 return cs->icc_sre_el1 != 7; 135 } 136 137 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = { 138 .name = "arm_gicv3_cpu/sre_el1", 139 .version_id = 1, 140 .minimum_version_id = 1, 141 .needed = icc_sre_el1_reg_needed, 142 .fields = (const VMStateField[]) { 143 VMSTATE_UINT64(icc_sre_el1, GICv3CPUState), 144 VMSTATE_END_OF_LIST() 145 } 146 }; 147 148 static bool gicv4_needed(void *opaque) 149 { 150 GICv3CPUState *cs = opaque; 151 152 return cs->gic->revision > 3; 153 } 154 155 const VMStateDescription vmstate_gicv3_gicv4 = { 156 .name = "arm_gicv3_cpu/gicv4", 157 .version_id = 1, 158 .minimum_version_id = 1, 159 .needed = gicv4_needed, 160 .fields = (const VMStateField[]) { 161 VMSTATE_UINT64(gicr_vpropbaser, GICv3CPUState), 162 VMSTATE_UINT64(gicr_vpendbaser, GICv3CPUState), 163 VMSTATE_END_OF_LIST() 164 } 165 }; 166 167 static bool gicv3_cpu_nmi_needed(void *opaque) 168 { 169 GICv3CPUState *cs = opaque; 170 171 return cs->gic->nmi_support; 172 } 173 174 static const VMStateDescription vmstate_gicv3_cpu_nmi = { 175 .name = "arm_gicv3_cpu/nmi", 176 .version_id = 1, 177 .minimum_version_id = 1, 178 .needed = gicv3_cpu_nmi_needed, 179 .fields = (const VMStateField[]) { 180 VMSTATE_UINT32(gicr_inmir0, GICv3CPUState), 181 VMSTATE_END_OF_LIST() 182 } 183 }; 184 185 static const VMStateDescription vmstate_gicv3_cpu = { 186 .name = "arm_gicv3_cpu", 187 .version_id = 1, 188 .minimum_version_id = 1, 189 .pre_load = vmstate_gicv3_cpu_pre_load, 190 .fields = (const VMStateField[]) { 191 VMSTATE_UINT32(level, GICv3CPUState), 192 VMSTATE_UINT32(gicr_ctlr, GICv3CPUState), 193 VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2), 194 VMSTATE_UINT32(gicr_waker, GICv3CPUState), 195 VMSTATE_UINT64(gicr_propbaser, GICv3CPUState), 196 VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState), 197 VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState), 198 VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState), 199 VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState), 200 VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState), 201 VMSTATE_UINT32(edge_trigger, GICv3CPUState), 202 VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState), 203 VMSTATE_UINT32(gicr_nsacr, GICv3CPUState), 204 VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL), 205 VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2), 206 VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState), 207 VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3), 208 VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4), 209 VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), 210 VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), 211 VMSTATE_END_OF_LIST() 212 }, 213 .subsections = (const VMStateDescription * const []) { 214 &vmstate_gicv3_cpu_virt, 215 &vmstate_gicv3_cpu_sre_el1, 216 &vmstate_gicv3_gicv4, 217 &vmstate_gicv3_cpu_nmi, 218 NULL 219 } 220 }; 221 222 static int gicv3_pre_load(void *opaque) 223 { 224 GICv3State *cs = opaque; 225 226 /* 227 * The gicd_no_migration_shift_bug flag is used for migration compatibility 228 * for old version QEMU which may have the GICD bmp shift bug under KVM mode. 229 * Strictly, what we want to know is whether the migration source is using 230 * KVM. Since we don't have any way to determine that, we look at whether the 231 * destination is using KVM; this is close enough because for the older QEMU 232 * versions with this bug KVM -> TCG migration didn't work anyway. If the 233 * source is a newer QEMU without this bug it will transmit the migration 234 * subsection which sets the flag to true; otherwise it will remain set to 235 * the value we select here. 236 */ 237 if (kvm_enabled()) { 238 cs->gicd_no_migration_shift_bug = false; 239 } 240 241 return 0; 242 } 243 244 static bool needed_always(void *opaque) 245 { 246 return true; 247 } 248 249 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = { 250 .name = "arm_gicv3/gicd_no_migration_shift_bug", 251 .version_id = 1, 252 .minimum_version_id = 1, 253 .needed = needed_always, 254 .fields = (const VMStateField[]) { 255 VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State), 256 VMSTATE_END_OF_LIST() 257 } 258 }; 259 260 static bool gicv3_nmi_needed(void *opaque) 261 { 262 GICv3State *cs = opaque; 263 264 return cs->nmi_support; 265 } 266 267 const VMStateDescription vmstate_gicv3_gicd_nmi = { 268 .name = "arm_gicv3/gicd_nmi", 269 .version_id = 1, 270 .minimum_version_id = 1, 271 .needed = gicv3_nmi_needed, 272 .fields = (const VMStateField[]) { 273 VMSTATE_UINT32_ARRAY(nmi, GICv3State, GICV3_BMP_SIZE), 274 VMSTATE_END_OF_LIST() 275 } 276 }; 277 278 static const VMStateDescription vmstate_gicv3 = { 279 .name = "arm_gicv3", 280 .version_id = 1, 281 .minimum_version_id = 1, 282 .pre_load = gicv3_pre_load, 283 .pre_save = gicv3_pre_save, 284 .post_load = gicv3_post_load, 285 .priority = MIG_PRI_GICV3, 286 .fields = (const VMStateField[]) { 287 VMSTATE_UINT32(gicd_ctlr, GICv3State), 288 VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2), 289 VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE), 290 VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE), 291 VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE), 292 VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE), 293 VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE), 294 VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE), 295 VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE), 296 VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ), 297 VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ), 298 VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State, 299 DIV_ROUND_UP(GICV3_MAXIRQ, 16)), 300 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu, 301 vmstate_gicv3_cpu, GICv3CPUState), 302 VMSTATE_END_OF_LIST() 303 }, 304 .subsections = (const VMStateDescription * const []) { 305 &vmstate_gicv3_gicd_no_migration_shift_bug, 306 &vmstate_gicv3_gicd_nmi, 307 NULL 308 } 309 }; 310 311 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, 312 const MemoryRegionOps *ops) 313 { 314 SysBusDevice *sbd = SYS_BUS_DEVICE(s); 315 int i; 316 int cpuidx; 317 318 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. 319 * GPIO array layout is thus: 320 * [0..N-1] spi 321 * [N..N+31] PPIs for CPU 0 322 * [N+32..N+63] PPIs for CPU 1 323 * ... 324 */ 325 i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu; 326 qdev_init_gpio_in(DEVICE(s), handler, i); 327 328 for (i = 0; i < s->num_cpu; i++) { 329 sysbus_init_irq(sbd, &s->cpu[i].parent_irq); 330 } 331 for (i = 0; i < s->num_cpu; i++) { 332 sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); 333 } 334 for (i = 0; i < s->num_cpu; i++) { 335 sysbus_init_irq(sbd, &s->cpu[i].parent_virq); 336 } 337 for (i = 0; i < s->num_cpu; i++) { 338 sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); 339 } 340 for (i = 0; i < s->num_cpu; i++) { 341 sysbus_init_irq(sbd, &s->cpu[i].parent_nmi); 342 } 343 for (i = 0; i < s->num_cpu; i++) { 344 sysbus_init_irq(sbd, &s->cpu[i].parent_vnmi); 345 } 346 347 memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, 348 "gicv3_dist", 0x10000); 349 sysbus_init_mmio(sbd, &s->iomem_dist); 350 351 s->redist_regions = g_new0(GICv3RedistRegion, s->nb_redist_regions); 352 cpuidx = 0; 353 for (i = 0; i < s->nb_redist_regions; i++) { 354 char *name = g_strdup_printf("gicv3_redist_region[%d]", i); 355 GICv3RedistRegion *region = &s->redist_regions[i]; 356 357 region->gic = s; 358 region->cpuidx = cpuidx; 359 cpuidx += s->redist_region_count[i]; 360 361 memory_region_init_io(®ion->iomem, OBJECT(s), 362 ops ? &ops[1] : NULL, region, name, 363 s->redist_region_count[i] * gicv3_redist_size(s)); 364 sysbus_init_mmio(sbd, ®ion->iomem); 365 g_free(name); 366 } 367 } 368 369 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) 370 { 371 GICv3State *s = ARM_GICV3_COMMON(dev); 372 int i, rdist_capacity, cpuidx; 373 374 /* 375 * This GIC device supports only revisions 3 and 4. The GICv1/v2 376 * is a separate device. 377 * Note that subclasses of this device may impose further restrictions 378 * on the GIC revision: notably, the in-kernel KVM GIC doesn't 379 * support GICv4. 380 */ 381 if (s->revision != 3 && s->revision != 4) { 382 error_setg(errp, "unsupported GIC revision %d", s->revision); 383 return; 384 } 385 386 if (s->num_irq > GICV3_MAXIRQ) { 387 error_setg(errp, 388 "requested %u interrupt lines exceeds GIC maximum %d", 389 s->num_irq, GICV3_MAXIRQ); 390 return; 391 } 392 if (s->num_irq < GIC_INTERNAL) { 393 error_setg(errp, 394 "requested %u interrupt lines is below GIC minimum %d", 395 s->num_irq, GIC_INTERNAL); 396 return; 397 } 398 if (s->num_cpu == 0) { 399 error_setg(errp, "num-cpu must be at least 1"); 400 return; 401 } 402 403 /* ITLinesNumber is represented as (N / 32) - 1, so this is an 404 * implementation imposed restriction, not an architectural one, 405 * so we don't have to deal with bitfields where only some of the 406 * bits in a 32-bit word should be valid. 407 */ 408 if (s->num_irq % 32) { 409 error_setg(errp, 410 "%d interrupt lines unsupported: not divisible by 32", 411 s->num_irq); 412 return; 413 } 414 415 if (s->lpi_enable && !s->dma) { 416 error_setg(errp, "Redist-ITS: Guest 'sysmem' reference link not set"); 417 return; 418 } 419 420 rdist_capacity = 0; 421 for (i = 0; i < s->nb_redist_regions; i++) { 422 rdist_capacity += s->redist_region_count[i]; 423 } 424 if (rdist_capacity != s->num_cpu) { 425 error_setg(errp, "Capacity of the redist regions(%d) " 426 "does not match the number of vcpus(%d)", 427 rdist_capacity, s->num_cpu); 428 return; 429 } 430 431 if (s->lpi_enable) { 432 address_space_init(&s->dma_as, s->dma, 433 "gicv3-its-sysmem"); 434 } 435 436 s->cpu = g_new0(GICv3CPUState, s->num_cpu); 437 438 for (i = 0; i < s->num_cpu; i++) { 439 CPUState *cpu = qemu_get_cpu(i); 440 uint64_t cpu_affid; 441 442 s->cpu[i].cpu = cpu; 443 s->cpu[i].gic = s; 444 /* Store GICv3CPUState in CPUARMState gicv3state pointer */ 445 gicv3_set_gicv3state(cpu, &s->cpu[i]); 446 447 /* Pre-construct the GICR_TYPER: 448 * For our implementation: 449 * Top 32 bits are the affinity value of the associated CPU 450 * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table) 451 * Processor_Number == CPU index starting from 0 452 * DPGS == 0 (GICR_CTLR.DPG* not supported) 453 * Last == 1 if this is the last redistributor in a series of 454 * contiguous redistributor pages 455 * DirectLPI == 0 (direct injection of LPIs not supported) 456 * VLPIS == 1 if vLPIs supported (GICv4 and up) 457 * PLPIS == 1 if LPIs supported 458 */ 459 cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL); 460 461 /* The CPU mp-affinity property is in MPIDR register format; squash 462 * the affinity bytes into 32 bits as the GICR_TYPER has them. 463 */ 464 cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) | 465 (cpu_affid & 0xFFFFFF); 466 s->cpu[i].gicr_typer = (cpu_affid << 32) | 467 (1 << 24) | 468 (i << 8); 469 470 if (s->lpi_enable) { 471 s->cpu[i].gicr_typer |= GICR_TYPER_PLPIS; 472 if (s->revision > 3) { 473 s->cpu[i].gicr_typer |= GICR_TYPER_VLPIS; 474 } 475 } 476 } 477 478 /* 479 * Now go through and set GICR_TYPER.Last for the final 480 * redistributor in each region. 481 */ 482 cpuidx = 0; 483 for (i = 0; i < s->nb_redist_regions; i++) { 484 cpuidx += s->redist_region_count[i]; 485 s->cpu[cpuidx - 1].gicr_typer |= GICR_TYPER_LAST; 486 } 487 488 s->itslist = g_ptr_array_new(); 489 } 490 491 static void arm_gicv3_finalize(Object *obj) 492 { 493 GICv3State *s = ARM_GICV3_COMMON(obj); 494 495 g_free(s->redist_region_count); 496 } 497 498 static void arm_gicv3_common_reset_hold(Object *obj, ResetType type) 499 { 500 GICv3State *s = ARM_GICV3_COMMON(obj); 501 int i; 502 503 for (i = 0; i < s->num_cpu; i++) { 504 GICv3CPUState *cs = &s->cpu[i]; 505 506 cs->level = 0; 507 cs->gicr_ctlr = 0; 508 if (s->lpi_enable) { 509 /* Our implementation supports clearing GICR_CTLR.EnableLPIs */ 510 cs->gicr_ctlr |= GICR_CTLR_CES; 511 } 512 cs->gicr_statusr[GICV3_S] = 0; 513 cs->gicr_statusr[GICV3_NS] = 0; 514 cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep; 515 cs->gicr_propbaser = 0; 516 cs->gicr_pendbaser = 0; 517 cs->gicr_vpropbaser = 0; 518 cs->gicr_vpendbaser = 0; 519 /* If we're resetting a TZ-aware GIC as if secure firmware 520 * had set it up ready to start a kernel in non-secure, we 521 * need to set interrupts to group 1 so the kernel can use them. 522 * Otherwise they reset to group 0 like the hardware. 523 */ 524 if (s->irq_reset_nonsecure) { 525 cs->gicr_igroupr0 = 0xffffffff; 526 } else { 527 cs->gicr_igroupr0 = 0; 528 } 529 530 cs->gicr_ienabler0 = 0; 531 cs->gicr_ipendr0 = 0; 532 cs->gicr_iactiver0 = 0; 533 cs->edge_trigger = 0xffff; 534 cs->gicr_igrpmodr0 = 0; 535 cs->gicr_nsacr = 0; 536 memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr)); 537 538 cs->hppi.prio = 0xff; 539 cs->hppi.nmi = false; 540 cs->hpplpi.prio = 0xff; 541 cs->hpplpi.nmi = false; 542 cs->hppvlpi.prio = 0xff; 543 cs->hppvlpi.nmi = false; 544 545 /* State in the CPU interface must *not* be reset here, because it 546 * is part of the CPU's reset domain, not the GIC device's. 547 */ 548 } 549 550 /* For our implementation affinity routing is always enabled */ 551 if (s->security_extn) { 552 s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS; 553 } else { 554 s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE; 555 } 556 557 s->gicd_statusr[GICV3_S] = 0; 558 s->gicd_statusr[GICV3_NS] = 0; 559 560 memset(s->group, 0, sizeof(s->group)); 561 memset(s->grpmod, 0, sizeof(s->grpmod)); 562 memset(s->enabled, 0, sizeof(s->enabled)); 563 memset(s->pending, 0, sizeof(s->pending)); 564 memset(s->active, 0, sizeof(s->active)); 565 memset(s->level, 0, sizeof(s->level)); 566 memset(s->edge_trigger, 0, sizeof(s->edge_trigger)); 567 memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority)); 568 memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter)); 569 memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr)); 570 /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must 571 * write these to get sane behaviour and we need not populate the 572 * pointer cache here; however having the cache be different for 573 * "happened to be 0 from reset" and "guest wrote 0" would be 574 * too confusing. 575 */ 576 gicv3_cache_all_target_cpustates(s); 577 578 if (s->irq_reset_nonsecure) { 579 /* If we're resetting a TZ-aware GIC as if secure firmware 580 * had set it up ready to start a kernel in non-secure, we 581 * need to set interrupts to group 1 so the kernel can use them. 582 * Otherwise they reset to group 0 like the hardware. 583 */ 584 for (i = GIC_INTERNAL; i < s->num_irq; i++) { 585 gicv3_gicd_group_set(s, i); 586 } 587 } 588 s->gicd_no_migration_shift_bug = true; 589 } 590 591 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, 592 bool secure_boot) 593 { 594 GICv3State *s = ARM_GICV3_COMMON(obj); 595 596 if (s->security_extn && !secure_boot) { 597 /* We're directly booting a kernel into NonSecure. If this GIC 598 * implements the security extensions then we must configure it 599 * to have all the interrupts be NonSecure (this is a job that 600 * is done by the Secure boot firmware in real hardware, and in 601 * this mode QEMU is acting as a minimalist firmware-and-bootloader 602 * equivalent). 603 */ 604 s->irq_reset_nonsecure = true; 605 } 606 } 607 608 static Property arm_gicv3_common_properties[] = { 609 DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1), 610 DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32), 611 DEFINE_PROP_UINT32("revision", GICv3State, revision, 3), 612 DEFINE_PROP_BOOL("has-lpi", GICv3State, lpi_enable, 0), 613 DEFINE_PROP_BOOL("has-nmi", GICv3State, nmi_support, 0), 614 DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0), 615 /* 616 * Compatibility property: force 8 bits of physical priority, even 617 * if the CPU being emulated should have fewer. 618 */ 619 DEFINE_PROP_BOOL("force-8-bit-prio", GICv3State, force_8bit_prio, 0), 620 DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions, 621 redist_region_count, qdev_prop_uint32, uint32_t), 622 DEFINE_PROP_LINK("sysmem", GICv3State, dma, TYPE_MEMORY_REGION, 623 MemoryRegion *), 624 DEFINE_PROP_END_OF_LIST(), 625 }; 626 627 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data) 628 { 629 DeviceClass *dc = DEVICE_CLASS(klass); 630 ResettableClass *rc = RESETTABLE_CLASS(klass); 631 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); 632 633 rc->phases.hold = arm_gicv3_common_reset_hold; 634 dc->realize = arm_gicv3_common_realize; 635 device_class_set_props(dc, arm_gicv3_common_properties); 636 dc->vmsd = &vmstate_gicv3; 637 albifc->arm_linux_init = arm_gic_common_linux_init; 638 } 639 640 static const TypeInfo arm_gicv3_common_type = { 641 .name = TYPE_ARM_GICV3_COMMON, 642 .parent = TYPE_SYS_BUS_DEVICE, 643 .instance_size = sizeof(GICv3State), 644 .class_size = sizeof(ARMGICv3CommonClass), 645 .class_init = arm_gicv3_common_class_init, 646 .instance_finalize = arm_gicv3_finalize, 647 .abstract = true, 648 .interfaces = (InterfaceInfo []) { 649 { TYPE_ARM_LINUX_BOOT_IF }, 650 { }, 651 }, 652 }; 653 654 static void register_types(void) 655 { 656 type_register_static(&arm_gicv3_common_type); 657 } 658 659 type_init(register_types) 660 661 const char *gicv3_class_name(void) 662 { 663 if (kvm_irqchip_in_kernel()) { 664 return "kvm-arm-gicv3"; 665 } else { 666 if (kvm_enabled()) { 667 error_report("Userspace GICv3 is not supported with KVM"); 668 exit(1); 669 } 670 return "arm-gicv3"; 671 } 672 } 673