1 /* 2 * ARM GICv3 support - common bits of emulated and KVM kernel model 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Copyright (c) 2015 Huawei. 6 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 7 * Written by Peter Maydell 8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu/module.h" 27 #include "hw/core/cpu.h" 28 #include "hw/intc/arm_gicv3_common.h" 29 #include "hw/qdev-properties.h" 30 #include "migration/vmstate.h" 31 #include "gicv3_internal.h" 32 #include "hw/arm/linux-boot-if.h" 33 #include "sysemu/kvm.h" 34 35 36 static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs) 37 { 38 if (cs->gicd_no_migration_shift_bug) { 39 return; 40 } 41 42 /* Older versions of QEMU had a bug in the handling of state save/restore 43 * to the KVM GICv3: they got the offset in the bitmap arrays wrong, 44 * so that instead of the data for external interrupts 32 and up 45 * starting at bit position 32 in the bitmap, it started at bit 46 * position 64. If we're receiving data from a QEMU with that bug, 47 * we must move the data down into the right place. 48 */ 49 memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8, 50 sizeof(cs->group) - GIC_INTERNAL / 8); 51 memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8, 52 sizeof(cs->grpmod) - GIC_INTERNAL / 8); 53 memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8, 54 sizeof(cs->enabled) - GIC_INTERNAL / 8); 55 memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8, 56 sizeof(cs->pending) - GIC_INTERNAL / 8); 57 memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8, 58 sizeof(cs->active) - GIC_INTERNAL / 8); 59 memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8, 60 sizeof(cs->edge_trigger) - GIC_INTERNAL / 8); 61 62 /* 63 * While this new version QEMU doesn't have this kind of bug as we fix it, 64 * so it needs to set the flag to true to indicate that and it's necessary 65 * for next migration to work from this new version QEMU. 66 */ 67 cs->gicd_no_migration_shift_bug = true; 68 } 69 70 static int gicv3_pre_save(void *opaque) 71 { 72 GICv3State *s = (GICv3State *)opaque; 73 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 74 75 if (c->pre_save) { 76 c->pre_save(s); 77 } 78 79 return 0; 80 } 81 82 static int gicv3_post_load(void *opaque, int version_id) 83 { 84 GICv3State *s = (GICv3State *)opaque; 85 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 86 87 gicv3_gicd_no_migration_shift_bug_post_load(s); 88 89 if (c->post_load) { 90 c->post_load(s); 91 } 92 return 0; 93 } 94 95 static bool virt_state_needed(void *opaque) 96 { 97 GICv3CPUState *cs = opaque; 98 99 return cs->num_list_regs != 0; 100 } 101 102 static const VMStateDescription vmstate_gicv3_cpu_virt = { 103 .name = "arm_gicv3_cpu/virt", 104 .version_id = 1, 105 .minimum_version_id = 1, 106 .needed = virt_state_needed, 107 .fields = (VMStateField[]) { 108 VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), 109 VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), 110 VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), 111 VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), 112 VMSTATE_END_OF_LIST() 113 } 114 }; 115 116 static int vmstate_gicv3_cpu_pre_load(void *opaque) 117 { 118 GICv3CPUState *cs = opaque; 119 120 /* 121 * If the sre_el1 subsection is not transferred this 122 * means SRE_EL1 is 0x7 (which might not be the same as 123 * our reset value). 124 */ 125 cs->icc_sre_el1 = 0x7; 126 return 0; 127 } 128 129 static bool icc_sre_el1_reg_needed(void *opaque) 130 { 131 GICv3CPUState *cs = opaque; 132 133 return cs->icc_sre_el1 != 7; 134 } 135 136 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = { 137 .name = "arm_gicv3_cpu/sre_el1", 138 .version_id = 1, 139 .minimum_version_id = 1, 140 .needed = icc_sre_el1_reg_needed, 141 .fields = (VMStateField[]) { 142 VMSTATE_UINT64(icc_sre_el1, GICv3CPUState), 143 VMSTATE_END_OF_LIST() 144 } 145 }; 146 147 static const VMStateDescription vmstate_gicv3_cpu = { 148 .name = "arm_gicv3_cpu", 149 .version_id = 1, 150 .minimum_version_id = 1, 151 .pre_load = vmstate_gicv3_cpu_pre_load, 152 .fields = (VMStateField[]) { 153 VMSTATE_UINT32(level, GICv3CPUState), 154 VMSTATE_UINT32(gicr_ctlr, GICv3CPUState), 155 VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2), 156 VMSTATE_UINT32(gicr_waker, GICv3CPUState), 157 VMSTATE_UINT64(gicr_propbaser, GICv3CPUState), 158 VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState), 159 VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState), 160 VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState), 161 VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState), 162 VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState), 163 VMSTATE_UINT32(edge_trigger, GICv3CPUState), 164 VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState), 165 VMSTATE_UINT32(gicr_nsacr, GICv3CPUState), 166 VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL), 167 VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2), 168 VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState), 169 VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3), 170 VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4), 171 VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), 172 VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), 173 VMSTATE_END_OF_LIST() 174 }, 175 .subsections = (const VMStateDescription * []) { 176 &vmstate_gicv3_cpu_virt, 177 &vmstate_gicv3_cpu_sre_el1, 178 NULL 179 } 180 }; 181 182 static int gicv3_pre_load(void *opaque) 183 { 184 GICv3State *cs = opaque; 185 186 /* 187 * The gicd_no_migration_shift_bug flag is used for migration compatibility 188 * for old version QEMU which may have the GICD bmp shift bug under KVM mode. 189 * Strictly, what we want to know is whether the migration source is using 190 * KVM. Since we don't have any way to determine that, we look at whether the 191 * destination is using KVM; this is close enough because for the older QEMU 192 * versions with this bug KVM -> TCG migration didn't work anyway. If the 193 * source is a newer QEMU without this bug it will transmit the migration 194 * subsection which sets the flag to true; otherwise it will remain set to 195 * the value we select here. 196 */ 197 if (kvm_enabled()) { 198 cs->gicd_no_migration_shift_bug = false; 199 } 200 201 return 0; 202 } 203 204 static bool needed_always(void *opaque) 205 { 206 return true; 207 } 208 209 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = { 210 .name = "arm_gicv3/gicd_no_migration_shift_bug", 211 .version_id = 1, 212 .minimum_version_id = 1, 213 .needed = needed_always, 214 .fields = (VMStateField[]) { 215 VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State), 216 VMSTATE_END_OF_LIST() 217 } 218 }; 219 220 static const VMStateDescription vmstate_gicv3 = { 221 .name = "arm_gicv3", 222 .version_id = 1, 223 .minimum_version_id = 1, 224 .pre_load = gicv3_pre_load, 225 .pre_save = gicv3_pre_save, 226 .post_load = gicv3_post_load, 227 .priority = MIG_PRI_GICV3, 228 .fields = (VMStateField[]) { 229 VMSTATE_UINT32(gicd_ctlr, GICv3State), 230 VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2), 231 VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE), 232 VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE), 233 VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE), 234 VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE), 235 VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE), 236 VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE), 237 VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE), 238 VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ), 239 VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ), 240 VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State, 241 DIV_ROUND_UP(GICV3_MAXIRQ, 16)), 242 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu, 243 vmstate_gicv3_cpu, GICv3CPUState), 244 VMSTATE_END_OF_LIST() 245 }, 246 .subsections = (const VMStateDescription * []) { 247 &vmstate_gicv3_gicd_no_migration_shift_bug, 248 NULL 249 } 250 }; 251 252 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, 253 const MemoryRegionOps *ops, Error **errp) 254 { 255 SysBusDevice *sbd = SYS_BUS_DEVICE(s); 256 int rdist_capacity = 0; 257 int i; 258 259 for (i = 0; i < s->nb_redist_regions; i++) { 260 rdist_capacity += s->redist_region_count[i]; 261 } 262 if (rdist_capacity < s->num_cpu) { 263 error_setg(errp, "Capacity of the redist regions(%d) " 264 "is less than number of vcpus(%d)", 265 rdist_capacity, s->num_cpu); 266 return; 267 } 268 269 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. 270 * GPIO array layout is thus: 271 * [0..N-1] spi 272 * [N..N+31] PPIs for CPU 0 273 * [N+32..N+63] PPIs for CPU 1 274 * ... 275 */ 276 i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu; 277 qdev_init_gpio_in(DEVICE(s), handler, i); 278 279 for (i = 0; i < s->num_cpu; i++) { 280 sysbus_init_irq(sbd, &s->cpu[i].parent_irq); 281 } 282 for (i = 0; i < s->num_cpu; i++) { 283 sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); 284 } 285 for (i = 0; i < s->num_cpu; i++) { 286 sysbus_init_irq(sbd, &s->cpu[i].parent_virq); 287 } 288 for (i = 0; i < s->num_cpu; i++) { 289 sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); 290 } 291 292 memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, 293 "gicv3_dist", 0x10000); 294 sysbus_init_mmio(sbd, &s->iomem_dist); 295 296 s->iomem_redist = g_new0(MemoryRegion, s->nb_redist_regions); 297 for (i = 0; i < s->nb_redist_regions; i++) { 298 char *name = g_strdup_printf("gicv3_redist_region[%d]", i); 299 300 memory_region_init_io(&s->iomem_redist[i], OBJECT(s), 301 ops ? &ops[1] : NULL, s, name, 302 s->redist_region_count[i] * GICV3_REDIST_SIZE); 303 sysbus_init_mmio(sbd, &s->iomem_redist[i]); 304 g_free(name); 305 } 306 } 307 308 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) 309 { 310 GICv3State *s = ARM_GICV3_COMMON(dev); 311 int i; 312 313 /* revision property is actually reserved and currently used only in order 314 * to keep the interface compatible with GICv2 code, avoiding extra 315 * conditions. However, in future it could be used, for example, if we 316 * implement GICv4. 317 */ 318 if (s->revision != 3) { 319 error_setg(errp, "unsupported GIC revision %d", s->revision); 320 return; 321 } 322 323 if (s->num_irq > GICV3_MAXIRQ) { 324 error_setg(errp, 325 "requested %u interrupt lines exceeds GIC maximum %d", 326 s->num_irq, GICV3_MAXIRQ); 327 return; 328 } 329 if (s->num_irq < GIC_INTERNAL) { 330 error_setg(errp, 331 "requested %u interrupt lines is below GIC minimum %d", 332 s->num_irq, GIC_INTERNAL); 333 return; 334 } 335 336 /* ITLinesNumber is represented as (N / 32) - 1, so this is an 337 * implementation imposed restriction, not an architectural one, 338 * so we don't have to deal with bitfields where only some of the 339 * bits in a 32-bit word should be valid. 340 */ 341 if (s->num_irq % 32) { 342 error_setg(errp, 343 "%d interrupt lines unsupported: not divisible by 32", 344 s->num_irq); 345 return; 346 } 347 348 s->cpu = g_new0(GICv3CPUState, s->num_cpu); 349 350 for (i = 0; i < s->num_cpu; i++) { 351 CPUState *cpu = qemu_get_cpu(i); 352 uint64_t cpu_affid; 353 int last; 354 355 s->cpu[i].cpu = cpu; 356 s->cpu[i].gic = s; 357 /* Store GICv3CPUState in CPUARMState gicv3state pointer */ 358 gicv3_set_gicv3state(cpu, &s->cpu[i]); 359 360 /* Pre-construct the GICR_TYPER: 361 * For our implementation: 362 * Top 32 bits are the affinity value of the associated CPU 363 * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table) 364 * Processor_Number == CPU index starting from 0 365 * DPGS == 0 (GICR_CTLR.DPG* not supported) 366 * Last == 1 if this is the last redistributor in a series of 367 * contiguous redistributor pages 368 * DirectLPI == 0 (direct injection of LPIs not supported) 369 * VLPIS == 0 (virtual LPIs not supported) 370 * PLPIS == 0 (physical LPIs not supported) 371 */ 372 cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL); 373 last = (i == s->num_cpu - 1); 374 375 /* The CPU mp-affinity property is in MPIDR register format; squash 376 * the affinity bytes into 32 bits as the GICR_TYPER has them. 377 */ 378 cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) | 379 (cpu_affid & 0xFFFFFF); 380 s->cpu[i].gicr_typer = (cpu_affid << 32) | 381 (1 << 24) | 382 (i << 8) | 383 (last << 4); 384 } 385 } 386 387 static void arm_gicv3_finalize(Object *obj) 388 { 389 GICv3State *s = ARM_GICV3_COMMON(obj); 390 391 g_free(s->redist_region_count); 392 } 393 394 static void arm_gicv3_common_reset(DeviceState *dev) 395 { 396 GICv3State *s = ARM_GICV3_COMMON(dev); 397 int i; 398 399 for (i = 0; i < s->num_cpu; i++) { 400 GICv3CPUState *cs = &s->cpu[i]; 401 402 cs->level = 0; 403 cs->gicr_ctlr = 0; 404 cs->gicr_statusr[GICV3_S] = 0; 405 cs->gicr_statusr[GICV3_NS] = 0; 406 cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep; 407 cs->gicr_propbaser = 0; 408 cs->gicr_pendbaser = 0; 409 /* If we're resetting a TZ-aware GIC as if secure firmware 410 * had set it up ready to start a kernel in non-secure, we 411 * need to set interrupts to group 1 so the kernel can use them. 412 * Otherwise they reset to group 0 like the hardware. 413 */ 414 if (s->irq_reset_nonsecure) { 415 cs->gicr_igroupr0 = 0xffffffff; 416 } else { 417 cs->gicr_igroupr0 = 0; 418 } 419 420 cs->gicr_ienabler0 = 0; 421 cs->gicr_ipendr0 = 0; 422 cs->gicr_iactiver0 = 0; 423 cs->edge_trigger = 0xffff; 424 cs->gicr_igrpmodr0 = 0; 425 cs->gicr_nsacr = 0; 426 memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr)); 427 428 cs->hppi.prio = 0xff; 429 430 /* State in the CPU interface must *not* be reset here, because it 431 * is part of the CPU's reset domain, not the GIC device's. 432 */ 433 } 434 435 /* For our implementation affinity routing is always enabled */ 436 if (s->security_extn) { 437 s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS; 438 } else { 439 s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE; 440 } 441 442 s->gicd_statusr[GICV3_S] = 0; 443 s->gicd_statusr[GICV3_NS] = 0; 444 445 memset(s->group, 0, sizeof(s->group)); 446 memset(s->grpmod, 0, sizeof(s->grpmod)); 447 memset(s->enabled, 0, sizeof(s->enabled)); 448 memset(s->pending, 0, sizeof(s->pending)); 449 memset(s->active, 0, sizeof(s->active)); 450 memset(s->level, 0, sizeof(s->level)); 451 memset(s->edge_trigger, 0, sizeof(s->edge_trigger)); 452 memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority)); 453 memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter)); 454 memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr)); 455 /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must 456 * write these to get sane behaviour and we need not populate the 457 * pointer cache here; however having the cache be different for 458 * "happened to be 0 from reset" and "guest wrote 0" would be 459 * too confusing. 460 */ 461 gicv3_cache_all_target_cpustates(s); 462 463 if (s->irq_reset_nonsecure) { 464 /* If we're resetting a TZ-aware GIC as if secure firmware 465 * had set it up ready to start a kernel in non-secure, we 466 * need to set interrupts to group 1 so the kernel can use them. 467 * Otherwise they reset to group 0 like the hardware. 468 */ 469 for (i = GIC_INTERNAL; i < s->num_irq; i++) { 470 gicv3_gicd_group_set(s, i); 471 } 472 } 473 s->gicd_no_migration_shift_bug = true; 474 } 475 476 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, 477 bool secure_boot) 478 { 479 GICv3State *s = ARM_GICV3_COMMON(obj); 480 481 if (s->security_extn && !secure_boot) { 482 /* We're directly booting a kernel into NonSecure. If this GIC 483 * implements the security extensions then we must configure it 484 * to have all the interrupts be NonSecure (this is a job that 485 * is done by the Secure boot firmware in real hardware, and in 486 * this mode QEMU is acting as a minimalist firmware-and-bootloader 487 * equivalent). 488 */ 489 s->irq_reset_nonsecure = true; 490 } 491 } 492 493 static Property arm_gicv3_common_properties[] = { 494 DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1), 495 DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32), 496 DEFINE_PROP_UINT32("revision", GICv3State, revision, 3), 497 DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0), 498 DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions, 499 redist_region_count, qdev_prop_uint32, uint32_t), 500 DEFINE_PROP_END_OF_LIST(), 501 }; 502 503 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data) 504 { 505 DeviceClass *dc = DEVICE_CLASS(klass); 506 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); 507 508 dc->reset = arm_gicv3_common_reset; 509 dc->realize = arm_gicv3_common_realize; 510 device_class_set_props(dc, arm_gicv3_common_properties); 511 dc->vmsd = &vmstate_gicv3; 512 albifc->arm_linux_init = arm_gic_common_linux_init; 513 } 514 515 static const TypeInfo arm_gicv3_common_type = { 516 .name = TYPE_ARM_GICV3_COMMON, 517 .parent = TYPE_SYS_BUS_DEVICE, 518 .instance_size = sizeof(GICv3State), 519 .class_size = sizeof(ARMGICv3CommonClass), 520 .class_init = arm_gicv3_common_class_init, 521 .instance_finalize = arm_gicv3_finalize, 522 .abstract = true, 523 .interfaces = (InterfaceInfo []) { 524 { TYPE_ARM_LINUX_BOOT_IF }, 525 { }, 526 }, 527 }; 528 529 static void register_types(void) 530 { 531 type_register_static(&arm_gicv3_common_type); 532 } 533 534 type_init(register_types) 535