1 /* 2 * ARM GICv3 support - common bits of emulated and KVM kernel model 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Copyright (c) 2015 Huawei. 6 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 7 * Written by Peter Maydell 8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qom/cpu.h" 27 #include "hw/intc/arm_gicv3_common.h" 28 #include "gicv3_internal.h" 29 #include "hw/arm/linux-boot-if.h" 30 #include "sysemu/kvm.h" 31 32 33 static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs) 34 { 35 if (cs->gicd_no_migration_shift_bug) { 36 return; 37 } 38 39 /* Older versions of QEMU had a bug in the handling of state save/restore 40 * to the KVM GICv3: they got the offset in the bitmap arrays wrong, 41 * so that instead of the data for external interrupts 32 and up 42 * starting at bit position 32 in the bitmap, it started at bit 43 * position 64. If we're receiving data from a QEMU with that bug, 44 * we must move the data down into the right place. 45 */ 46 memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8, 47 sizeof(cs->group) - GIC_INTERNAL / 8); 48 memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8, 49 sizeof(cs->grpmod) - GIC_INTERNAL / 8); 50 memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8, 51 sizeof(cs->enabled) - GIC_INTERNAL / 8); 52 memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8, 53 sizeof(cs->pending) - GIC_INTERNAL / 8); 54 memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8, 55 sizeof(cs->active) - GIC_INTERNAL / 8); 56 memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8, 57 sizeof(cs->edge_trigger) - GIC_INTERNAL / 8); 58 59 /* 60 * While this new version QEMU doesn't have this kind of bug as we fix it, 61 * so it needs to set the flag to true to indicate that and it's necessary 62 * for next migration to work from this new version QEMU. 63 */ 64 cs->gicd_no_migration_shift_bug = true; 65 } 66 67 static int gicv3_pre_save(void *opaque) 68 { 69 GICv3State *s = (GICv3State *)opaque; 70 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 71 72 if (c->pre_save) { 73 c->pre_save(s); 74 } 75 76 return 0; 77 } 78 79 static int gicv3_post_load(void *opaque, int version_id) 80 { 81 GICv3State *s = (GICv3State *)opaque; 82 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 83 84 gicv3_gicd_no_migration_shift_bug_post_load(s); 85 86 if (c->post_load) { 87 c->post_load(s); 88 } 89 return 0; 90 } 91 92 static bool virt_state_needed(void *opaque) 93 { 94 GICv3CPUState *cs = opaque; 95 96 return cs->num_list_regs != 0; 97 } 98 99 static const VMStateDescription vmstate_gicv3_cpu_virt = { 100 .name = "arm_gicv3_cpu/virt", 101 .version_id = 1, 102 .minimum_version_id = 1, 103 .needed = virt_state_needed, 104 .fields = (VMStateField[]) { 105 VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), 106 VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), 107 VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), 108 VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), 109 VMSTATE_END_OF_LIST() 110 } 111 }; 112 113 static int vmstate_gicv3_cpu_pre_load(void *opaque) 114 { 115 GICv3CPUState *cs = opaque; 116 117 /* 118 * If the sre_el1 subsection is not transferred this 119 * means SRE_EL1 is 0x7 (which might not be the same as 120 * our reset value). 121 */ 122 cs->icc_sre_el1 = 0x7; 123 return 0; 124 } 125 126 static bool icc_sre_el1_reg_needed(void *opaque) 127 { 128 GICv3CPUState *cs = opaque; 129 130 return cs->icc_sre_el1 != 7; 131 } 132 133 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = { 134 .name = "arm_gicv3_cpu/sre_el1", 135 .version_id = 1, 136 .minimum_version_id = 1, 137 .needed = icc_sre_el1_reg_needed, 138 .fields = (VMStateField[]) { 139 VMSTATE_UINT64(icc_sre_el1, GICv3CPUState), 140 VMSTATE_END_OF_LIST() 141 } 142 }; 143 144 static const VMStateDescription vmstate_gicv3_cpu = { 145 .name = "arm_gicv3_cpu", 146 .version_id = 1, 147 .minimum_version_id = 1, 148 .pre_load = vmstate_gicv3_cpu_pre_load, 149 .fields = (VMStateField[]) { 150 VMSTATE_UINT32(level, GICv3CPUState), 151 VMSTATE_UINT32(gicr_ctlr, GICv3CPUState), 152 VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2), 153 VMSTATE_UINT32(gicr_waker, GICv3CPUState), 154 VMSTATE_UINT64(gicr_propbaser, GICv3CPUState), 155 VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState), 156 VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState), 157 VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState), 158 VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState), 159 VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState), 160 VMSTATE_UINT32(edge_trigger, GICv3CPUState), 161 VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState), 162 VMSTATE_UINT32(gicr_nsacr, GICv3CPUState), 163 VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL), 164 VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2), 165 VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState), 166 VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3), 167 VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4), 168 VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), 169 VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), 170 VMSTATE_END_OF_LIST() 171 }, 172 .subsections = (const VMStateDescription * []) { 173 &vmstate_gicv3_cpu_virt, 174 &vmstate_gicv3_cpu_sre_el1, 175 NULL 176 } 177 }; 178 179 static int gicv3_pre_load(void *opaque) 180 { 181 GICv3State *cs = opaque; 182 183 /* 184 * The gicd_no_migration_shift_bug flag is used for migration compatibility 185 * for old version QEMU which may have the GICD bmp shift bug under KVM mode. 186 * Strictly, what we want to know is whether the migration source is using 187 * KVM. Since we don't have any way to determine that, we look at whether the 188 * destination is using KVM; this is close enough because for the older QEMU 189 * versions with this bug KVM -> TCG migration didn't work anyway. If the 190 * source is a newer QEMU without this bug it will transmit the migration 191 * subsection which sets the flag to true; otherwise it will remain set to 192 * the value we select here. 193 */ 194 if (kvm_enabled()) { 195 cs->gicd_no_migration_shift_bug = false; 196 } 197 198 return 0; 199 } 200 201 static bool needed_always(void *opaque) 202 { 203 return true; 204 } 205 206 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = { 207 .name = "arm_gicv3/gicd_no_migration_shift_bug", 208 .version_id = 1, 209 .minimum_version_id = 1, 210 .needed = needed_always, 211 .fields = (VMStateField[]) { 212 VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State), 213 VMSTATE_END_OF_LIST() 214 } 215 }; 216 217 static const VMStateDescription vmstate_gicv3 = { 218 .name = "arm_gicv3", 219 .version_id = 1, 220 .minimum_version_id = 1, 221 .pre_load = gicv3_pre_load, 222 .pre_save = gicv3_pre_save, 223 .post_load = gicv3_post_load, 224 .priority = MIG_PRI_GICV3, 225 .fields = (VMStateField[]) { 226 VMSTATE_UINT32(gicd_ctlr, GICv3State), 227 VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2), 228 VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE), 229 VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE), 230 VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE), 231 VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE), 232 VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE), 233 VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE), 234 VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE), 235 VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ), 236 VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ), 237 VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State, 238 DIV_ROUND_UP(GICV3_MAXIRQ, 16)), 239 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu, 240 vmstate_gicv3_cpu, GICv3CPUState), 241 VMSTATE_END_OF_LIST() 242 }, 243 .subsections = (const VMStateDescription * []) { 244 &vmstate_gicv3_gicd_no_migration_shift_bug, 245 NULL 246 } 247 }; 248 249 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, 250 const MemoryRegionOps *ops, Error **errp) 251 { 252 SysBusDevice *sbd = SYS_BUS_DEVICE(s); 253 int rdist_capacity = 0; 254 int i; 255 256 for (i = 0; i < s->nb_redist_regions; i++) { 257 rdist_capacity += s->redist_region_count[i]; 258 } 259 if (rdist_capacity < s->num_cpu) { 260 error_setg(errp, "Capacity of the redist regions(%d) " 261 "is less than number of vcpus(%d)", 262 rdist_capacity, s->num_cpu); 263 return; 264 } 265 266 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. 267 * GPIO array layout is thus: 268 * [0..N-1] spi 269 * [N..N+31] PPIs for CPU 0 270 * [N+32..N+63] PPIs for CPU 1 271 * ... 272 */ 273 i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu; 274 qdev_init_gpio_in(DEVICE(s), handler, i); 275 276 for (i = 0; i < s->num_cpu; i++) { 277 sysbus_init_irq(sbd, &s->cpu[i].parent_irq); 278 } 279 for (i = 0; i < s->num_cpu; i++) { 280 sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); 281 } 282 for (i = 0; i < s->num_cpu; i++) { 283 sysbus_init_irq(sbd, &s->cpu[i].parent_virq); 284 } 285 for (i = 0; i < s->num_cpu; i++) { 286 sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); 287 } 288 289 memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, 290 "gicv3_dist", 0x10000); 291 sysbus_init_mmio(sbd, &s->iomem_dist); 292 293 s->iomem_redist = g_new0(MemoryRegion, s->nb_redist_regions); 294 for (i = 0; i < s->nb_redist_regions; i++) { 295 char *name = g_strdup_printf("gicv3_redist_region[%d]", i); 296 297 memory_region_init_io(&s->iomem_redist[i], OBJECT(s), 298 ops ? &ops[1] : NULL, s, name, 299 s->redist_region_count[i] * GICV3_REDIST_SIZE); 300 sysbus_init_mmio(sbd, &s->iomem_redist[i]); 301 g_free(name); 302 } 303 } 304 305 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) 306 { 307 GICv3State *s = ARM_GICV3_COMMON(dev); 308 int i; 309 310 /* revision property is actually reserved and currently used only in order 311 * to keep the interface compatible with GICv2 code, avoiding extra 312 * conditions. However, in future it could be used, for example, if we 313 * implement GICv4. 314 */ 315 if (s->revision != 3) { 316 error_setg(errp, "unsupported GIC revision %d", s->revision); 317 return; 318 } 319 320 if (s->num_irq > GICV3_MAXIRQ) { 321 error_setg(errp, 322 "requested %u interrupt lines exceeds GIC maximum %d", 323 s->num_irq, GICV3_MAXIRQ); 324 return; 325 } 326 if (s->num_irq < GIC_INTERNAL) { 327 error_setg(errp, 328 "requested %u interrupt lines is below GIC minimum %d", 329 s->num_irq, GIC_INTERNAL); 330 return; 331 } 332 333 /* ITLinesNumber is represented as (N / 32) - 1, so this is an 334 * implementation imposed restriction, not an architectural one, 335 * so we don't have to deal with bitfields where only some of the 336 * bits in a 32-bit word should be valid. 337 */ 338 if (s->num_irq % 32) { 339 error_setg(errp, 340 "%d interrupt lines unsupported: not divisible by 32", 341 s->num_irq); 342 return; 343 } 344 345 s->cpu = g_new0(GICv3CPUState, s->num_cpu); 346 347 for (i = 0; i < s->num_cpu; i++) { 348 CPUState *cpu = qemu_get_cpu(i); 349 uint64_t cpu_affid; 350 int last; 351 352 s->cpu[i].cpu = cpu; 353 s->cpu[i].gic = s; 354 /* Store GICv3CPUState in CPUARMState gicv3state pointer */ 355 gicv3_set_gicv3state(cpu, &s->cpu[i]); 356 357 /* Pre-construct the GICR_TYPER: 358 * For our implementation: 359 * Top 32 bits are the affinity value of the associated CPU 360 * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table) 361 * Processor_Number == CPU index starting from 0 362 * DPGS == 0 (GICR_CTLR.DPG* not supported) 363 * Last == 1 if this is the last redistributor in a series of 364 * contiguous redistributor pages 365 * DirectLPI == 0 (direct injection of LPIs not supported) 366 * VLPIS == 0 (virtual LPIs not supported) 367 * PLPIS == 0 (physical LPIs not supported) 368 */ 369 cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL); 370 last = (i == s->num_cpu - 1); 371 372 /* The CPU mp-affinity property is in MPIDR register format; squash 373 * the affinity bytes into 32 bits as the GICR_TYPER has them. 374 */ 375 cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) | 376 (cpu_affid & 0xFFFFFF); 377 s->cpu[i].gicr_typer = (cpu_affid << 32) | 378 (1 << 24) | 379 (i << 8) | 380 (last << 4); 381 } 382 } 383 384 static void arm_gicv3_finalize(Object *obj) 385 { 386 GICv3State *s = ARM_GICV3_COMMON(obj); 387 388 g_free(s->redist_region_count); 389 } 390 391 static void arm_gicv3_common_reset(DeviceState *dev) 392 { 393 GICv3State *s = ARM_GICV3_COMMON(dev); 394 int i; 395 396 for (i = 0; i < s->num_cpu; i++) { 397 GICv3CPUState *cs = &s->cpu[i]; 398 399 cs->level = 0; 400 cs->gicr_ctlr = 0; 401 cs->gicr_statusr[GICV3_S] = 0; 402 cs->gicr_statusr[GICV3_NS] = 0; 403 cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep; 404 cs->gicr_propbaser = 0; 405 cs->gicr_pendbaser = 0; 406 /* If we're resetting a TZ-aware GIC as if secure firmware 407 * had set it up ready to start a kernel in non-secure, we 408 * need to set interrupts to group 1 so the kernel can use them. 409 * Otherwise they reset to group 0 like the hardware. 410 */ 411 if (s->irq_reset_nonsecure) { 412 cs->gicr_igroupr0 = 0xffffffff; 413 } else { 414 cs->gicr_igroupr0 = 0; 415 } 416 417 cs->gicr_ienabler0 = 0; 418 cs->gicr_ipendr0 = 0; 419 cs->gicr_iactiver0 = 0; 420 cs->edge_trigger = 0xffff; 421 cs->gicr_igrpmodr0 = 0; 422 cs->gicr_nsacr = 0; 423 memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr)); 424 425 cs->hppi.prio = 0xff; 426 427 /* State in the CPU interface must *not* be reset here, because it 428 * is part of the CPU's reset domain, not the GIC device's. 429 */ 430 } 431 432 /* For our implementation affinity routing is always enabled */ 433 if (s->security_extn) { 434 s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS; 435 } else { 436 s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE; 437 } 438 439 s->gicd_statusr[GICV3_S] = 0; 440 s->gicd_statusr[GICV3_NS] = 0; 441 442 memset(s->group, 0, sizeof(s->group)); 443 memset(s->grpmod, 0, sizeof(s->grpmod)); 444 memset(s->enabled, 0, sizeof(s->enabled)); 445 memset(s->pending, 0, sizeof(s->pending)); 446 memset(s->active, 0, sizeof(s->active)); 447 memset(s->level, 0, sizeof(s->level)); 448 memset(s->edge_trigger, 0, sizeof(s->edge_trigger)); 449 memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority)); 450 memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter)); 451 memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr)); 452 /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must 453 * write these to get sane behaviour and we need not populate the 454 * pointer cache here; however having the cache be different for 455 * "happened to be 0 from reset" and "guest wrote 0" would be 456 * too confusing. 457 */ 458 gicv3_cache_all_target_cpustates(s); 459 460 if (s->irq_reset_nonsecure) { 461 /* If we're resetting a TZ-aware GIC as if secure firmware 462 * had set it up ready to start a kernel in non-secure, we 463 * need to set interrupts to group 1 so the kernel can use them. 464 * Otherwise they reset to group 0 like the hardware. 465 */ 466 for (i = GIC_INTERNAL; i < s->num_irq; i++) { 467 gicv3_gicd_group_set(s, i); 468 } 469 } 470 s->gicd_no_migration_shift_bug = true; 471 } 472 473 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, 474 bool secure_boot) 475 { 476 GICv3State *s = ARM_GICV3_COMMON(obj); 477 478 if (s->security_extn && !secure_boot) { 479 /* We're directly booting a kernel into NonSecure. If this GIC 480 * implements the security extensions then we must configure it 481 * to have all the interrupts be NonSecure (this is a job that 482 * is done by the Secure boot firmware in real hardware, and in 483 * this mode QEMU is acting as a minimalist firmware-and-bootloader 484 * equivalent). 485 */ 486 s->irq_reset_nonsecure = true; 487 } 488 } 489 490 static Property arm_gicv3_common_properties[] = { 491 DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1), 492 DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32), 493 DEFINE_PROP_UINT32("revision", GICv3State, revision, 3), 494 DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0), 495 DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions, 496 redist_region_count, qdev_prop_uint32, uint32_t), 497 DEFINE_PROP_END_OF_LIST(), 498 }; 499 500 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data) 501 { 502 DeviceClass *dc = DEVICE_CLASS(klass); 503 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); 504 505 dc->reset = arm_gicv3_common_reset; 506 dc->realize = arm_gicv3_common_realize; 507 dc->props = arm_gicv3_common_properties; 508 dc->vmsd = &vmstate_gicv3; 509 albifc->arm_linux_init = arm_gic_common_linux_init; 510 } 511 512 static const TypeInfo arm_gicv3_common_type = { 513 .name = TYPE_ARM_GICV3_COMMON, 514 .parent = TYPE_SYS_BUS_DEVICE, 515 .instance_size = sizeof(GICv3State), 516 .class_size = sizeof(ARMGICv3CommonClass), 517 .class_init = arm_gicv3_common_class_init, 518 .instance_finalize = arm_gicv3_finalize, 519 .abstract = true, 520 .interfaces = (InterfaceInfo []) { 521 { TYPE_ARM_LINUX_BOOT_IF }, 522 { }, 523 }, 524 }; 525 526 static void register_types(void) 527 { 528 type_register_static(&arm_gicv3_common_type); 529 } 530 531 type_init(register_types) 532