1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2015 Huawei. 5 * Copyright (c) 2016 Linaro Limited 6 * Written by Shlomo Pongratz, Peter Maydell 7 * 8 * This code is licensed under the GPL, version 2 or (at your option) 9 * any later version. 10 */ 11 12 /* This file contains implementation code for an interrupt controller 13 * which implements the GICv3 architecture. Specifically this is where 14 * the device class itself and the functions for handling interrupts 15 * coming in and going out live. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qapi/error.h" 20 #include "qemu/module.h" 21 #include "hw/intc/arm_gicv3.h" 22 #include "gicv3_internal.h" 23 24 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio) 25 { 26 /* Return true if this IRQ at this priority should take 27 * precedence over the current recorded highest priority 28 * pending interrupt for this CPU. We also return true if 29 * the current recorded highest priority pending interrupt 30 * is the same as this one (a property which the calling code 31 * relies on). 32 */ 33 if (prio < cs->hppi.prio) { 34 return true; 35 } 36 /* If multiple pending interrupts have the same priority then it is an 37 * IMPDEF choice which of them to signal to the CPU. We choose to 38 * signal the one with the lowest interrupt number. 39 */ 40 if (prio == cs->hppi.prio && irq <= cs->hppi.irq) { 41 return true; 42 } 43 return false; 44 } 45 46 static uint32_t gicd_int_pending(GICv3State *s, int irq) 47 { 48 /* Recalculate which distributor interrupts are actually pending 49 * in the group of 32 interrupts starting at irq (which should be a multiple 50 * of 32), and return a 32-bit integer which has a bit set for each 51 * interrupt that is eligible to be signaled to the CPU interface. 52 * 53 * An interrupt is pending if: 54 * + the PENDING latch is set OR it is level triggered and the input is 1 55 * + its ENABLE bit is set 56 * + the GICD enable bit for its group is set 57 * + its ACTIVE bit is not set (otherwise it would be Active+Pending) 58 * Conveniently we can bulk-calculate this with bitwise operations. 59 */ 60 uint32_t pend, grpmask; 61 uint32_t pending = *gic_bmp_ptr32(s->pending, irq); 62 uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq); 63 uint32_t level = *gic_bmp_ptr32(s->level, irq); 64 uint32_t group = *gic_bmp_ptr32(s->group, irq); 65 uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq); 66 uint32_t enable = *gic_bmp_ptr32(s->enabled, irq); 67 uint32_t active = *gic_bmp_ptr32(s->active, irq); 68 69 pend = pending | (~edge_trigger & level); 70 pend &= enable; 71 pend &= ~active; 72 73 if (s->gicd_ctlr & GICD_CTLR_DS) { 74 grpmod = 0; 75 } 76 77 grpmask = 0; 78 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 79 grpmask |= group; 80 } 81 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 82 grpmask |= (~group & grpmod); 83 } 84 if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) { 85 grpmask |= (~group & ~grpmod); 86 } 87 pend &= grpmask; 88 89 return pend; 90 } 91 92 static uint32_t gicr_int_pending(GICv3CPUState *cs) 93 { 94 /* Recalculate which redistributor interrupts are actually pending, 95 * and return a 32-bit integer which has a bit set for each interrupt 96 * that is eligible to be signaled to the CPU interface. 97 * 98 * An interrupt is pending if: 99 * + the PENDING latch is set OR it is level triggered and the input is 1 100 * + its ENABLE bit is set 101 * + the GICD enable bit for its group is set 102 * + its ACTIVE bit is not set (otherwise it would be Active+Pending) 103 * Conveniently we can bulk-calculate this with bitwise operations. 104 */ 105 uint32_t pend, grpmask, grpmod; 106 107 pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); 108 pend &= cs->gicr_ienabler0; 109 pend &= ~cs->gicr_iactiver0; 110 111 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) { 112 grpmod = 0; 113 } else { 114 grpmod = cs->gicr_igrpmodr0; 115 } 116 117 grpmask = 0; 118 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 119 grpmask |= cs->gicr_igroupr0; 120 } 121 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 122 grpmask |= (~cs->gicr_igroupr0 & grpmod); 123 } 124 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) { 125 grpmask |= (~cs->gicr_igroupr0 & ~grpmod); 126 } 127 pend &= grpmask; 128 129 return pend; 130 } 131 132 /* Update the interrupt status after state in a redistributor 133 * or CPU interface has changed, but don't tell the CPU i/f. 134 */ 135 static void gicv3_redist_update_noirqset(GICv3CPUState *cs) 136 { 137 /* Find the highest priority pending interrupt among the 138 * redistributor interrupts (SGIs and PPIs). 139 */ 140 bool seenbetter = false; 141 uint8_t prio; 142 int i; 143 uint32_t pend; 144 145 /* Find out which redistributor interrupts are eligible to be 146 * signaled to the CPU interface. 147 */ 148 pend = gicr_int_pending(cs); 149 150 if (pend) { 151 for (i = 0; i < GIC_INTERNAL; i++) { 152 if (!(pend & (1 << i))) { 153 continue; 154 } 155 prio = cs->gicr_ipriorityr[i]; 156 if (irqbetter(cs, i, prio)) { 157 cs->hppi.irq = i; 158 cs->hppi.prio = prio; 159 seenbetter = true; 160 } 161 } 162 } 163 164 if (seenbetter) { 165 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 166 } 167 168 if ((cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) && cs->gic->lpi_enable && 169 (cs->hpplpi.prio != 0xff)) { 170 if (irqbetter(cs, cs->hpplpi.irq, cs->hpplpi.prio)) { 171 cs->hppi.irq = cs->hpplpi.irq; 172 cs->hppi.prio = cs->hpplpi.prio; 173 cs->hppi.grp = cs->hpplpi.grp; 174 seenbetter = true; 175 } 176 } 177 178 /* If the best interrupt we just found would preempt whatever 179 * was the previous best interrupt before this update, then 180 * we know it's definitely the best one now. 181 * If we didn't find an interrupt that would preempt the previous 182 * best, and the previous best is outside our range (or there was no 183 * previous pending interrupt at all), then that is still valid, and 184 * we leave it as the best. 185 * Otherwise, we need to do a full update (because the previous best 186 * interrupt has reduced in priority and any other interrupt could 187 * now be the new best one). 188 */ 189 if (!seenbetter && cs->hppi.prio != 0xff && cs->hppi.irq < GIC_INTERNAL) { 190 gicv3_full_update_noirqset(cs->gic); 191 } 192 } 193 194 /* Update the GIC status after state in a redistributor or 195 * CPU interface has changed, and inform the CPU i/f of 196 * its new highest priority pending interrupt. 197 */ 198 void gicv3_redist_update(GICv3CPUState *cs) 199 { 200 gicv3_redist_update_noirqset(cs); 201 gicv3_cpuif_update(cs); 202 } 203 204 /* Update the GIC status after state in the distributor has 205 * changed affecting @len interrupts starting at @start, 206 * but don't tell the CPU i/f. 207 */ 208 static void gicv3_update_noirqset(GICv3State *s, int start, int len) 209 { 210 int i; 211 uint8_t prio; 212 uint32_t pend = 0; 213 214 assert(start >= GIC_INTERNAL); 215 assert(len > 0); 216 217 for (i = 0; i < s->num_cpu; i++) { 218 s->cpu[i].seenbetter = false; 219 } 220 221 /* Find the highest priority pending interrupt in this range. */ 222 for (i = start; i < start + len; i++) { 223 GICv3CPUState *cs; 224 225 if (i == start || (i & 0x1f) == 0) { 226 /* Calculate the next 32 bits worth of pending status */ 227 pend = gicd_int_pending(s, i & ~0x1f); 228 } 229 230 if (!(pend & (1 << (i & 0x1f)))) { 231 continue; 232 } 233 cs = s->gicd_irouter_target[i]; 234 if (!cs) { 235 /* Interrupts targeting no implemented CPU should remain pending 236 * and not be forwarded to any CPU. 237 */ 238 continue; 239 } 240 prio = s->gicd_ipriority[i]; 241 if (irqbetter(cs, i, prio)) { 242 cs->hppi.irq = i; 243 cs->hppi.prio = prio; 244 cs->seenbetter = true; 245 } 246 } 247 248 /* If the best interrupt we just found would preempt whatever 249 * was the previous best interrupt before this update, then 250 * we know it's definitely the best one now. 251 * If we didn't find an interrupt that would preempt the previous 252 * best, and the previous best is outside our range (or there was 253 * no previous pending interrupt at all), then that 254 * is still valid, and we leave it as the best. 255 * Otherwise, we need to do a full update (because the previous best 256 * interrupt has reduced in priority and any other interrupt could 257 * now be the new best one). 258 */ 259 for (i = 0; i < s->num_cpu; i++) { 260 GICv3CPUState *cs = &s->cpu[i]; 261 262 if (cs->seenbetter) { 263 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 264 } 265 266 if (!cs->seenbetter && cs->hppi.prio != 0xff && 267 cs->hppi.irq >= start && cs->hppi.irq < start + len) { 268 gicv3_full_update_noirqset(s); 269 break; 270 } 271 } 272 } 273 274 void gicv3_update(GICv3State *s, int start, int len) 275 { 276 int i; 277 278 gicv3_update_noirqset(s, start, len); 279 for (i = 0; i < s->num_cpu; i++) { 280 gicv3_cpuif_update(&s->cpu[i]); 281 } 282 } 283 284 void gicv3_full_update_noirqset(GICv3State *s) 285 { 286 /* Completely recalculate the GIC status from scratch, but 287 * don't update any outbound IRQ lines. 288 */ 289 int i; 290 291 for (i = 0; i < s->num_cpu; i++) { 292 s->cpu[i].hppi.prio = 0xff; 293 } 294 295 /* Note that we can guarantee that these functions will not 296 * recursively call back into gicv3_full_update(), because 297 * at each point the "previous best" is always outside the 298 * range we ask them to update. 299 */ 300 gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL); 301 302 for (i = 0; i < s->num_cpu; i++) { 303 gicv3_redist_update_noirqset(&s->cpu[i]); 304 } 305 } 306 307 void gicv3_full_update(GICv3State *s) 308 { 309 /* Completely recalculate the GIC status from scratch, including 310 * updating outbound IRQ lines. 311 */ 312 int i; 313 314 gicv3_full_update_noirqset(s); 315 for (i = 0; i < s->num_cpu; i++) { 316 gicv3_cpuif_update(&s->cpu[i]); 317 } 318 } 319 320 /* Process a change in an external IRQ input. */ 321 static void gicv3_set_irq(void *opaque, int irq, int level) 322 { 323 /* Meaning of the 'irq' parameter: 324 * [0..N-1] : external interrupts 325 * [N..N+31] : PPI (internal) interrupts for CPU 0 326 * [N+32..N+63] : PPI (internal interrupts for CPU 1 327 * ... 328 */ 329 GICv3State *s = opaque; 330 331 if (irq < (s->num_irq - GIC_INTERNAL)) { 332 /* external interrupt (SPI) */ 333 gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level); 334 } else { 335 /* per-cpu interrupt (PPI) */ 336 int cpu; 337 338 irq -= (s->num_irq - GIC_INTERNAL); 339 cpu = irq / GIC_INTERNAL; 340 irq %= GIC_INTERNAL; 341 assert(cpu < s->num_cpu); 342 /* Raising SGIs via this function would be a bug in how the board 343 * model wires up interrupts. 344 */ 345 assert(irq >= GIC_NR_SGIS); 346 gicv3_redist_set_irq(&s->cpu[cpu], irq, level); 347 } 348 } 349 350 static void arm_gicv3_post_load(GICv3State *s) 351 { 352 int i; 353 /* Recalculate our cached idea of the current highest priority 354 * pending interrupt, but don't set IRQ or FIQ lines. 355 */ 356 for (i = 0; i < s->num_cpu; i++) { 357 gicv3_redist_update_lpi(&s->cpu[i]); 358 } 359 gicv3_full_update_noirqset(s); 360 /* Repopulate the cache of GICv3CPUState pointers for target CPUs */ 361 gicv3_cache_all_target_cpustates(s); 362 } 363 364 static const MemoryRegionOps gic_ops[] = { 365 { 366 .read_with_attrs = gicv3_dist_read, 367 .write_with_attrs = gicv3_dist_write, 368 .endianness = DEVICE_NATIVE_ENDIAN, 369 }, 370 { 371 .read_with_attrs = gicv3_redist_read, 372 .write_with_attrs = gicv3_redist_write, 373 .endianness = DEVICE_NATIVE_ENDIAN, 374 } 375 }; 376 377 static void arm_gic_realize(DeviceState *dev, Error **errp) 378 { 379 /* Device instance realize function for the GIC sysbus device */ 380 GICv3State *s = ARM_GICV3(dev); 381 ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s); 382 Error *local_err = NULL; 383 384 agc->parent_realize(dev, &local_err); 385 if (local_err) { 386 error_propagate(errp, local_err); 387 return; 388 } 389 390 if (s->nb_redist_regions != 1) { 391 error_setg(errp, "VGICv3 redist region number(%d) not equal to 1", 392 s->nb_redist_regions); 393 return; 394 } 395 396 gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops, &local_err); 397 if (local_err) { 398 error_propagate(errp, local_err); 399 return; 400 } 401 402 gicv3_init_cpuif(s); 403 } 404 405 static void arm_gicv3_class_init(ObjectClass *klass, void *data) 406 { 407 DeviceClass *dc = DEVICE_CLASS(klass); 408 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass); 409 ARMGICv3Class *agc = ARM_GICV3_CLASS(klass); 410 411 agcc->post_load = arm_gicv3_post_load; 412 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize); 413 } 414 415 static const TypeInfo arm_gicv3_info = { 416 .name = TYPE_ARM_GICV3, 417 .parent = TYPE_ARM_GICV3_COMMON, 418 .instance_size = sizeof(GICv3State), 419 .class_init = arm_gicv3_class_init, 420 .class_size = sizeof(ARMGICv3Class), 421 }; 422 423 static void arm_gicv3_register_types(void) 424 { 425 type_register_static(&arm_gicv3_info); 426 } 427 428 type_init(arm_gicv3_register_types) 429