1 /* 2 * ARM Generic Interrupt Controller v3 (emulation) 3 * 4 * Copyright (c) 2015 Huawei. 5 * Copyright (c) 2016 Linaro Limited 6 * Written by Shlomo Pongratz, Peter Maydell 7 * 8 * This code is licensed under the GPL, version 2 or (at your option) 9 * any later version. 10 */ 11 12 /* This file contains implementation code for an interrupt controller 13 * which implements the GICv3 architecture. Specifically this is where 14 * the device class itself and the functions for handling interrupts 15 * coming in and going out live. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qapi/error.h" 20 #include "qemu/module.h" 21 #include "hw/intc/arm_gicv3.h" 22 #include "gicv3_internal.h" 23 24 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio) 25 { 26 /* Return true if this IRQ at this priority should take 27 * precedence over the current recorded highest priority 28 * pending interrupt for this CPU. We also return true if 29 * the current recorded highest priority pending interrupt 30 * is the same as this one (a property which the calling code 31 * relies on). 32 */ 33 if (prio < cs->hppi.prio) { 34 return true; 35 } 36 /* If multiple pending interrupts have the same priority then it is an 37 * IMPDEF choice which of them to signal to the CPU. We choose to 38 * signal the one with the lowest interrupt number. 39 */ 40 if (prio == cs->hppi.prio && irq <= cs->hppi.irq) { 41 return true; 42 } 43 return false; 44 } 45 46 static uint32_t gicd_int_pending(GICv3State *s, int irq) 47 { 48 /* Recalculate which distributor interrupts are actually pending 49 * in the group of 32 interrupts starting at irq (which should be a multiple 50 * of 32), and return a 32-bit integer which has a bit set for each 51 * interrupt that is eligible to be signaled to the CPU interface. 52 * 53 * An interrupt is pending if: 54 * + the PENDING latch is set OR it is level triggered and the input is 1 55 * + its ENABLE bit is set 56 * + the GICD enable bit for its group is set 57 * + its ACTIVE bit is not set (otherwise it would be Active+Pending) 58 * Conveniently we can bulk-calculate this with bitwise operations. 59 */ 60 uint32_t pend, grpmask; 61 uint32_t pending = *gic_bmp_ptr32(s->pending, irq); 62 uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq); 63 uint32_t level = *gic_bmp_ptr32(s->level, irq); 64 uint32_t group = *gic_bmp_ptr32(s->group, irq); 65 uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq); 66 uint32_t enable = *gic_bmp_ptr32(s->enabled, irq); 67 uint32_t active = *gic_bmp_ptr32(s->active, irq); 68 69 pend = pending | (~edge_trigger & level); 70 pend &= enable; 71 pend &= ~active; 72 73 if (s->gicd_ctlr & GICD_CTLR_DS) { 74 grpmod = 0; 75 } 76 77 grpmask = 0; 78 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 79 grpmask |= group; 80 } 81 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 82 grpmask |= (~group & grpmod); 83 } 84 if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) { 85 grpmask |= (~group & ~grpmod); 86 } 87 pend &= grpmask; 88 89 return pend; 90 } 91 92 static uint32_t gicr_int_pending(GICv3CPUState *cs) 93 { 94 /* Recalculate which redistributor interrupts are actually pending, 95 * and return a 32-bit integer which has a bit set for each interrupt 96 * that is eligible to be signaled to the CPU interface. 97 * 98 * An interrupt is pending if: 99 * + the PENDING latch is set OR it is level triggered and the input is 1 100 * + its ENABLE bit is set 101 * + the GICD enable bit for its group is set 102 * + its ACTIVE bit is not set (otherwise it would be Active+Pending) 103 * Conveniently we can bulk-calculate this with bitwise operations. 104 */ 105 uint32_t pend, grpmask, grpmod; 106 107 pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); 108 pend &= cs->gicr_ienabler0; 109 pend &= ~cs->gicr_iactiver0; 110 111 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) { 112 grpmod = 0; 113 } else { 114 grpmod = cs->gicr_igrpmodr0; 115 } 116 117 grpmask = 0; 118 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 119 grpmask |= cs->gicr_igroupr0; 120 } 121 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 122 grpmask |= (~cs->gicr_igroupr0 & grpmod); 123 } 124 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) { 125 grpmask |= (~cs->gicr_igroupr0 & ~grpmod); 126 } 127 pend &= grpmask; 128 129 return pend; 130 } 131 132 /* Update the interrupt status after state in a redistributor 133 * or CPU interface has changed, but don't tell the CPU i/f. 134 */ 135 static void gicv3_redist_update_noirqset(GICv3CPUState *cs) 136 { 137 /* Find the highest priority pending interrupt among the 138 * redistributor interrupts (SGIs and PPIs). 139 */ 140 bool seenbetter = false; 141 uint8_t prio; 142 int i; 143 uint32_t pend; 144 145 /* Find out which redistributor interrupts are eligible to be 146 * signaled to the CPU interface. 147 */ 148 pend = gicr_int_pending(cs); 149 150 if (pend) { 151 for (i = 0; i < GIC_INTERNAL; i++) { 152 if (!(pend & (1 << i))) { 153 continue; 154 } 155 prio = cs->gicr_ipriorityr[i]; 156 if (irqbetter(cs, i, prio)) { 157 cs->hppi.irq = i; 158 cs->hppi.prio = prio; 159 seenbetter = true; 160 } 161 } 162 } 163 164 if (seenbetter) { 165 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 166 } 167 168 if ((cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) && cs->gic->lpi_enable && 169 (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) && 170 (cs->hpplpi.prio != 0xff)) { 171 if (irqbetter(cs, cs->hpplpi.irq, cs->hpplpi.prio)) { 172 cs->hppi.irq = cs->hpplpi.irq; 173 cs->hppi.prio = cs->hpplpi.prio; 174 cs->hppi.grp = cs->hpplpi.grp; 175 seenbetter = true; 176 } 177 } 178 179 /* If the best interrupt we just found would preempt whatever 180 * was the previous best interrupt before this update, then 181 * we know it's definitely the best one now. 182 * If we didn't find an interrupt that would preempt the previous 183 * best, and the previous best is outside our range (or there was no 184 * previous pending interrupt at all), then that is still valid, and 185 * we leave it as the best. 186 * Otherwise, we need to do a full update (because the previous best 187 * interrupt has reduced in priority and any other interrupt could 188 * now be the new best one). 189 */ 190 if (!seenbetter && cs->hppi.prio != 0xff && 191 (cs->hppi.irq < GIC_INTERNAL || 192 cs->hppi.irq >= GICV3_LPI_INTID_START)) { 193 gicv3_full_update_noirqset(cs->gic); 194 } 195 } 196 197 /* Update the GIC status after state in a redistributor or 198 * CPU interface has changed, and inform the CPU i/f of 199 * its new highest priority pending interrupt. 200 */ 201 void gicv3_redist_update(GICv3CPUState *cs) 202 { 203 gicv3_redist_update_noirqset(cs); 204 gicv3_cpuif_update(cs); 205 } 206 207 /* Update the GIC status after state in the distributor has 208 * changed affecting @len interrupts starting at @start, 209 * but don't tell the CPU i/f. 210 */ 211 static void gicv3_update_noirqset(GICv3State *s, int start, int len) 212 { 213 int i; 214 uint8_t prio; 215 uint32_t pend = 0; 216 217 assert(start >= GIC_INTERNAL); 218 assert(len > 0); 219 220 for (i = 0; i < s->num_cpu; i++) { 221 s->cpu[i].seenbetter = false; 222 } 223 224 /* Find the highest priority pending interrupt in this range. */ 225 for (i = start; i < start + len; i++) { 226 GICv3CPUState *cs; 227 228 if (i == start || (i & 0x1f) == 0) { 229 /* Calculate the next 32 bits worth of pending status */ 230 pend = gicd_int_pending(s, i & ~0x1f); 231 } 232 233 if (!(pend & (1 << (i & 0x1f)))) { 234 continue; 235 } 236 cs = s->gicd_irouter_target[i]; 237 if (!cs) { 238 /* Interrupts targeting no implemented CPU should remain pending 239 * and not be forwarded to any CPU. 240 */ 241 continue; 242 } 243 prio = s->gicd_ipriority[i]; 244 if (irqbetter(cs, i, prio)) { 245 cs->hppi.irq = i; 246 cs->hppi.prio = prio; 247 cs->seenbetter = true; 248 } 249 } 250 251 /* If the best interrupt we just found would preempt whatever 252 * was the previous best interrupt before this update, then 253 * we know it's definitely the best one now. 254 * If we didn't find an interrupt that would preempt the previous 255 * best, and the previous best is outside our range (or there was 256 * no previous pending interrupt at all), then that 257 * is still valid, and we leave it as the best. 258 * Otherwise, we need to do a full update (because the previous best 259 * interrupt has reduced in priority and any other interrupt could 260 * now be the new best one). 261 */ 262 for (i = 0; i < s->num_cpu; i++) { 263 GICv3CPUState *cs = &s->cpu[i]; 264 265 if (cs->seenbetter) { 266 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 267 } 268 269 if (!cs->seenbetter && cs->hppi.prio != 0xff && 270 cs->hppi.irq >= start && cs->hppi.irq < start + len) { 271 gicv3_full_update_noirqset(s); 272 break; 273 } 274 } 275 } 276 277 void gicv3_update(GICv3State *s, int start, int len) 278 { 279 int i; 280 281 gicv3_update_noirqset(s, start, len); 282 for (i = 0; i < s->num_cpu; i++) { 283 gicv3_cpuif_update(&s->cpu[i]); 284 } 285 } 286 287 void gicv3_full_update_noirqset(GICv3State *s) 288 { 289 /* Completely recalculate the GIC status from scratch, but 290 * don't update any outbound IRQ lines. 291 */ 292 int i; 293 294 for (i = 0; i < s->num_cpu; i++) { 295 s->cpu[i].hppi.prio = 0xff; 296 } 297 298 /* Note that we can guarantee that these functions will not 299 * recursively call back into gicv3_full_update(), because 300 * at each point the "previous best" is always outside the 301 * range we ask them to update. 302 */ 303 gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL); 304 305 for (i = 0; i < s->num_cpu; i++) { 306 gicv3_redist_update_noirqset(&s->cpu[i]); 307 } 308 } 309 310 void gicv3_full_update(GICv3State *s) 311 { 312 /* Completely recalculate the GIC status from scratch, including 313 * updating outbound IRQ lines. 314 */ 315 int i; 316 317 gicv3_full_update_noirqset(s); 318 for (i = 0; i < s->num_cpu; i++) { 319 gicv3_cpuif_update(&s->cpu[i]); 320 } 321 } 322 323 /* Process a change in an external IRQ input. */ 324 static void gicv3_set_irq(void *opaque, int irq, int level) 325 { 326 /* Meaning of the 'irq' parameter: 327 * [0..N-1] : external interrupts 328 * [N..N+31] : PPI (internal) interrupts for CPU 0 329 * [N+32..N+63] : PPI (internal interrupts for CPU 1 330 * ... 331 */ 332 GICv3State *s = opaque; 333 334 if (irq < (s->num_irq - GIC_INTERNAL)) { 335 /* external interrupt (SPI) */ 336 gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level); 337 } else { 338 /* per-cpu interrupt (PPI) */ 339 int cpu; 340 341 irq -= (s->num_irq - GIC_INTERNAL); 342 cpu = irq / GIC_INTERNAL; 343 irq %= GIC_INTERNAL; 344 assert(cpu < s->num_cpu); 345 /* Raising SGIs via this function would be a bug in how the board 346 * model wires up interrupts. 347 */ 348 assert(irq >= GIC_NR_SGIS); 349 gicv3_redist_set_irq(&s->cpu[cpu], irq, level); 350 } 351 } 352 353 static void arm_gicv3_post_load(GICv3State *s) 354 { 355 int i; 356 /* Recalculate our cached idea of the current highest priority 357 * pending interrupt, but don't set IRQ or FIQ lines. 358 */ 359 for (i = 0; i < s->num_cpu; i++) { 360 gicv3_redist_update_lpi_only(&s->cpu[i]); 361 } 362 gicv3_full_update_noirqset(s); 363 /* Repopulate the cache of GICv3CPUState pointers for target CPUs */ 364 gicv3_cache_all_target_cpustates(s); 365 } 366 367 static const MemoryRegionOps gic_ops[] = { 368 { 369 .read_with_attrs = gicv3_dist_read, 370 .write_with_attrs = gicv3_dist_write, 371 .endianness = DEVICE_NATIVE_ENDIAN, 372 .valid.min_access_size = 1, 373 .valid.max_access_size = 8, 374 .impl.min_access_size = 1, 375 .impl.max_access_size = 8, 376 }, 377 { 378 .read_with_attrs = gicv3_redist_read, 379 .write_with_attrs = gicv3_redist_write, 380 .endianness = DEVICE_NATIVE_ENDIAN, 381 .valid.min_access_size = 1, 382 .valid.max_access_size = 8, 383 .impl.min_access_size = 1, 384 .impl.max_access_size = 8, 385 } 386 }; 387 388 static void arm_gic_realize(DeviceState *dev, Error **errp) 389 { 390 /* Device instance realize function for the GIC sysbus device */ 391 GICv3State *s = ARM_GICV3(dev); 392 ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s); 393 Error *local_err = NULL; 394 395 agc->parent_realize(dev, &local_err); 396 if (local_err) { 397 error_propagate(errp, local_err); 398 return; 399 } 400 401 gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops); 402 403 gicv3_init_cpuif(s); 404 } 405 406 static void arm_gicv3_class_init(ObjectClass *klass, void *data) 407 { 408 DeviceClass *dc = DEVICE_CLASS(klass); 409 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass); 410 ARMGICv3Class *agc = ARM_GICV3_CLASS(klass); 411 412 agcc->post_load = arm_gicv3_post_load; 413 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize); 414 } 415 416 static const TypeInfo arm_gicv3_info = { 417 .name = TYPE_ARM_GICV3, 418 .parent = TYPE_ARM_GICV3_COMMON, 419 .instance_size = sizeof(GICv3State), 420 .class_init = arm_gicv3_class_init, 421 .class_size = sizeof(ARMGICv3Class), 422 }; 423 424 static void arm_gicv3_register_types(void) 425 { 426 type_register_static(&arm_gicv3_info); 427 } 428 429 type_init(arm_gicv3_register_types) 430