1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2015 Huawei. 5 * Copyright (c) 2016 Linaro Limited 6 * Written by Shlomo Pongratz, Peter Maydell 7 * 8 * This code is licensed under the GPL, version 2 or (at your option) 9 * any later version. 10 */ 11 12 /* This file contains implementation code for an interrupt controller 13 * which implements the GICv3 architecture. Specifically this is where 14 * the device class itself and the functions for handling interrupts 15 * coming in and going out live. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qapi/error.h" 20 #include "qemu/module.h" 21 #include "hw/intc/arm_gicv3.h" 22 #include "gicv3_internal.h" 23 24 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio) 25 { 26 /* Return true if this IRQ at this priority should take 27 * precedence over the current recorded highest priority 28 * pending interrupt for this CPU. We also return true if 29 * the current recorded highest priority pending interrupt 30 * is the same as this one (a property which the calling code 31 * relies on). 32 */ 33 if (prio < cs->hppi.prio) { 34 return true; 35 } 36 /* If multiple pending interrupts have the same priority then it is an 37 * IMPDEF choice which of them to signal to the CPU. We choose to 38 * signal the one with the lowest interrupt number. 39 */ 40 if (prio == cs->hppi.prio && irq <= cs->hppi.irq) { 41 return true; 42 } 43 return false; 44 } 45 46 static uint32_t gicd_int_pending(GICv3State *s, int irq) 47 { 48 /* Recalculate which distributor interrupts are actually pending 49 * in the group of 32 interrupts starting at irq (which should be a multiple 50 * of 32), and return a 32-bit integer which has a bit set for each 51 * interrupt that is eligible to be signaled to the CPU interface. 52 * 53 * An interrupt is pending if: 54 * + the PENDING latch is set OR it is level triggered and the input is 1 55 * + its ENABLE bit is set 56 * + the GICD enable bit for its group is set 57 * + its ACTIVE bit is not set (otherwise it would be Active+Pending) 58 * Conveniently we can bulk-calculate this with bitwise operations. 59 */ 60 uint32_t pend, grpmask; 61 uint32_t pending = *gic_bmp_ptr32(s->pending, irq); 62 uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq); 63 uint32_t level = *gic_bmp_ptr32(s->level, irq); 64 uint32_t group = *gic_bmp_ptr32(s->group, irq); 65 uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq); 66 uint32_t enable = *gic_bmp_ptr32(s->enabled, irq); 67 uint32_t active = *gic_bmp_ptr32(s->active, irq); 68 69 pend = pending | (~edge_trigger & level); 70 pend &= enable; 71 pend &= ~active; 72 73 if (s->gicd_ctlr & GICD_CTLR_DS) { 74 grpmod = 0; 75 } 76 77 grpmask = 0; 78 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 79 grpmask |= group; 80 } 81 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 82 grpmask |= (~group & grpmod); 83 } 84 if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) { 85 grpmask |= (~group & ~grpmod); 86 } 87 pend &= grpmask; 88 89 return pend; 90 } 91 92 static uint32_t gicr_int_pending(GICv3CPUState *cs) 93 { 94 /* Recalculate which redistributor interrupts are actually pending, 95 * and return a 32-bit integer which has a bit set for each interrupt 96 * that is eligible to be signaled to the CPU interface. 97 * 98 * An interrupt is pending if: 99 * + the PENDING latch is set OR it is level triggered and the input is 1 100 * + its ENABLE bit is set 101 * + the GICD enable bit for its group is set 102 * + its ACTIVE bit is not set (otherwise it would be Active+Pending) 103 * Conveniently we can bulk-calculate this with bitwise operations. 104 */ 105 uint32_t pend, grpmask, grpmod; 106 107 pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); 108 pend &= cs->gicr_ienabler0; 109 pend &= ~cs->gicr_iactiver0; 110 111 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) { 112 grpmod = 0; 113 } else { 114 grpmod = cs->gicr_igrpmodr0; 115 } 116 117 grpmask = 0; 118 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 119 grpmask |= cs->gicr_igroupr0; 120 } 121 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 122 grpmask |= (~cs->gicr_igroupr0 & grpmod); 123 } 124 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) { 125 grpmask |= (~cs->gicr_igroupr0 & ~grpmod); 126 } 127 pend &= grpmask; 128 129 return pend; 130 } 131 132 /* Update the interrupt status after state in a redistributor 133 * or CPU interface has changed, but don't tell the CPU i/f. 134 */ 135 static void gicv3_redist_update_noirqset(GICv3CPUState *cs) 136 { 137 /* Find the highest priority pending interrupt among the 138 * redistributor interrupts (SGIs and PPIs). 139 */ 140 bool seenbetter = false; 141 uint8_t prio; 142 int i; 143 uint32_t pend; 144 145 /* Find out which redistributor interrupts are eligible to be 146 * signaled to the CPU interface. 147 */ 148 pend = gicr_int_pending(cs); 149 150 if (pend) { 151 for (i = 0; i < GIC_INTERNAL; i++) { 152 if (!(pend & (1 << i))) { 153 continue; 154 } 155 prio = cs->gicr_ipriorityr[i]; 156 if (irqbetter(cs, i, prio)) { 157 cs->hppi.irq = i; 158 cs->hppi.prio = prio; 159 seenbetter = true; 160 } 161 } 162 } 163 164 if (seenbetter) { 165 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 166 } 167 168 /* If the best interrupt we just found would preempt whatever 169 * was the previous best interrupt before this update, then 170 * we know it's definitely the best one now. 171 * If we didn't find an interrupt that would preempt the previous 172 * best, and the previous best is outside our range (or there was no 173 * previous pending interrupt at all), then that is still valid, and 174 * we leave it as the best. 175 * Otherwise, we need to do a full update (because the previous best 176 * interrupt has reduced in priority and any other interrupt could 177 * now be the new best one). 178 */ 179 if (!seenbetter && cs->hppi.prio != 0xff && cs->hppi.irq < GIC_INTERNAL) { 180 gicv3_full_update_noirqset(cs->gic); 181 } 182 } 183 184 /* Update the GIC status after state in a redistributor or 185 * CPU interface has changed, and inform the CPU i/f of 186 * its new highest priority pending interrupt. 187 */ 188 void gicv3_redist_update(GICv3CPUState *cs) 189 { 190 gicv3_redist_update_noirqset(cs); 191 gicv3_cpuif_update(cs); 192 } 193 194 /* Update the GIC status after state in the distributor has 195 * changed affecting @len interrupts starting at @start, 196 * but don't tell the CPU i/f. 197 */ 198 static void gicv3_update_noirqset(GICv3State *s, int start, int len) 199 { 200 int i; 201 uint8_t prio; 202 uint32_t pend = 0; 203 204 assert(start >= GIC_INTERNAL); 205 assert(len > 0); 206 207 for (i = 0; i < s->num_cpu; i++) { 208 s->cpu[i].seenbetter = false; 209 } 210 211 /* Find the highest priority pending interrupt in this range. */ 212 for (i = start; i < start + len; i++) { 213 GICv3CPUState *cs; 214 215 if (i == start || (i & 0x1f) == 0) { 216 /* Calculate the next 32 bits worth of pending status */ 217 pend = gicd_int_pending(s, i & ~0x1f); 218 } 219 220 if (!(pend & (1 << (i & 0x1f)))) { 221 continue; 222 } 223 cs = s->gicd_irouter_target[i]; 224 if (!cs) { 225 /* Interrupts targeting no implemented CPU should remain pending 226 * and not be forwarded to any CPU. 227 */ 228 continue; 229 } 230 prio = s->gicd_ipriority[i]; 231 if (irqbetter(cs, i, prio)) { 232 cs->hppi.irq = i; 233 cs->hppi.prio = prio; 234 cs->seenbetter = true; 235 } 236 } 237 238 /* If the best interrupt we just found would preempt whatever 239 * was the previous best interrupt before this update, then 240 * we know it's definitely the best one now. 241 * If we didn't find an interrupt that would preempt the previous 242 * best, and the previous best is outside our range (or there was 243 * no previous pending interrupt at all), then that 244 * is still valid, and we leave it as the best. 245 * Otherwise, we need to do a full update (because the previous best 246 * interrupt has reduced in priority and any other interrupt could 247 * now be the new best one). 248 */ 249 for (i = 0; i < s->num_cpu; i++) { 250 GICv3CPUState *cs = &s->cpu[i]; 251 252 if (cs->seenbetter) { 253 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 254 } 255 256 if (!cs->seenbetter && cs->hppi.prio != 0xff && 257 cs->hppi.irq >= start && cs->hppi.irq < start + len) { 258 gicv3_full_update_noirqset(s); 259 break; 260 } 261 } 262 } 263 264 void gicv3_update(GICv3State *s, int start, int len) 265 { 266 int i; 267 268 gicv3_update_noirqset(s, start, len); 269 for (i = 0; i < s->num_cpu; i++) { 270 gicv3_cpuif_update(&s->cpu[i]); 271 } 272 } 273 274 void gicv3_full_update_noirqset(GICv3State *s) 275 { 276 /* Completely recalculate the GIC status from scratch, but 277 * don't update any outbound IRQ lines. 278 */ 279 int i; 280 281 for (i = 0; i < s->num_cpu; i++) { 282 s->cpu[i].hppi.prio = 0xff; 283 } 284 285 /* Note that we can guarantee that these functions will not 286 * recursively call back into gicv3_full_update(), because 287 * at each point the "previous best" is always outside the 288 * range we ask them to update. 289 */ 290 gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL); 291 292 for (i = 0; i < s->num_cpu; i++) { 293 gicv3_redist_update_noirqset(&s->cpu[i]); 294 } 295 } 296 297 void gicv3_full_update(GICv3State *s) 298 { 299 /* Completely recalculate the GIC status from scratch, including 300 * updating outbound IRQ lines. 301 */ 302 int i; 303 304 gicv3_full_update_noirqset(s); 305 for (i = 0; i < s->num_cpu; i++) { 306 gicv3_cpuif_update(&s->cpu[i]); 307 } 308 } 309 310 /* Process a change in an external IRQ input. */ 311 static void gicv3_set_irq(void *opaque, int irq, int level) 312 { 313 /* Meaning of the 'irq' parameter: 314 * [0..N-1] : external interrupts 315 * [N..N+31] : PPI (internal) interrupts for CPU 0 316 * [N+32..N+63] : PPI (internal interrupts for CPU 1 317 * ... 318 */ 319 GICv3State *s = opaque; 320 321 if (irq < (s->num_irq - GIC_INTERNAL)) { 322 /* external interrupt (SPI) */ 323 gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level); 324 } else { 325 /* per-cpu interrupt (PPI) */ 326 int cpu; 327 328 irq -= (s->num_irq - GIC_INTERNAL); 329 cpu = irq / GIC_INTERNAL; 330 irq %= GIC_INTERNAL; 331 assert(cpu < s->num_cpu); 332 /* Raising SGIs via this function would be a bug in how the board 333 * model wires up interrupts. 334 */ 335 assert(irq >= GIC_NR_SGIS); 336 gicv3_redist_set_irq(&s->cpu[cpu], irq, level); 337 } 338 } 339 340 static void arm_gicv3_post_load(GICv3State *s) 341 { 342 /* Recalculate our cached idea of the current highest priority 343 * pending interrupt, but don't set IRQ or FIQ lines. 344 */ 345 gicv3_full_update_noirqset(s); 346 /* Repopulate the cache of GICv3CPUState pointers for target CPUs */ 347 gicv3_cache_all_target_cpustates(s); 348 } 349 350 static const MemoryRegionOps gic_ops[] = { 351 { 352 .read_with_attrs = gicv3_dist_read, 353 .write_with_attrs = gicv3_dist_write, 354 .endianness = DEVICE_NATIVE_ENDIAN, 355 }, 356 { 357 .read_with_attrs = gicv3_redist_read, 358 .write_with_attrs = gicv3_redist_write, 359 .endianness = DEVICE_NATIVE_ENDIAN, 360 } 361 }; 362 363 static void arm_gic_realize(DeviceState *dev, Error **errp) 364 { 365 /* Device instance realize function for the GIC sysbus device */ 366 GICv3State *s = ARM_GICV3(dev); 367 ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s); 368 Error *local_err = NULL; 369 370 agc->parent_realize(dev, &local_err); 371 if (local_err) { 372 error_propagate(errp, local_err); 373 return; 374 } 375 376 if (s->nb_redist_regions != 1) { 377 error_setg(errp, "VGICv3 redist region number(%d) not equal to 1", 378 s->nb_redist_regions); 379 return; 380 } 381 382 gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops, &local_err); 383 if (local_err) { 384 error_propagate(errp, local_err); 385 return; 386 } 387 388 gicv3_init_cpuif(s); 389 } 390 391 static void arm_gicv3_class_init(ObjectClass *klass, void *data) 392 { 393 DeviceClass *dc = DEVICE_CLASS(klass); 394 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass); 395 ARMGICv3Class *agc = ARM_GICV3_CLASS(klass); 396 397 agcc->post_load = arm_gicv3_post_load; 398 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize); 399 } 400 401 static const TypeInfo arm_gicv3_info = { 402 .name = TYPE_ARM_GICV3, 403 .parent = TYPE_ARM_GICV3_COMMON, 404 .instance_size = sizeof(GICv3State), 405 .class_init = arm_gicv3_class_init, 406 .class_size = sizeof(ARMGICv3Class), 407 }; 408 409 static void arm_gicv3_register_types(void) 410 { 411 type_register_static(&arm_gicv3_info); 412 } 413 414 type_init(arm_gicv3_register_types) 415