xref: /openbmc/qemu/hw/intc/arm_gicv3.c (revision 8f0a3716)
1 /*
2  * ARM Generic Interrupt Controller v3
3  *
4  * Copyright (c) 2015 Huawei.
5  * Copyright (c) 2016 Linaro Limited
6  * Written by Shlomo Pongratz, Peter Maydell
7  *
8  * This code is licensed under the GPL, version 2 or (at your option)
9  * any later version.
10  */
11 
12 /* This file contains implementation code for an interrupt controller
13  * which implements the GICv3 architecture. Specifically this is where
14  * the device class itself and the functions for handling interrupts
15  * coming in and going out live.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "qapi/error.h"
20 #include "hw/sysbus.h"
21 #include "hw/intc/arm_gicv3.h"
22 #include "gicv3_internal.h"
23 
24 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio)
25 {
26     /* Return true if this IRQ at this priority should take
27      * precedence over the current recorded highest priority
28      * pending interrupt for this CPU. We also return true if
29      * the current recorded highest priority pending interrupt
30      * is the same as this one (a property which the calling code
31      * relies on).
32      */
33     if (prio < cs->hppi.prio) {
34         return true;
35     }
36     /* If multiple pending interrupts have the same priority then it is an
37      * IMPDEF choice which of them to signal to the CPU. We choose to
38      * signal the one with the lowest interrupt number.
39      */
40     if (prio == cs->hppi.prio && irq <= cs->hppi.irq) {
41         return true;
42     }
43     return false;
44 }
45 
46 static uint32_t gicd_int_pending(GICv3State *s, int irq)
47 {
48     /* Recalculate which distributor interrupts are actually pending
49      * in the group of 32 interrupts starting at irq (which should be a multiple
50      * of 32), and return a 32-bit integer which has a bit set for each
51      * interrupt that is eligible to be signaled to the CPU interface.
52      *
53      * An interrupt is pending if:
54      *  + the PENDING latch is set OR it is level triggered and the input is 1
55      *  + its ENABLE bit is set
56      *  + the GICD enable bit for its group is set
57      *  + its ACTIVE bit is not set (otherwise it would be Active+Pending)
58      * Conveniently we can bulk-calculate this with bitwise operations.
59      */
60     uint32_t pend, grpmask;
61     uint32_t pending = *gic_bmp_ptr32(s->pending, irq);
62     uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq);
63     uint32_t level = *gic_bmp_ptr32(s->level, irq);
64     uint32_t group = *gic_bmp_ptr32(s->group, irq);
65     uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq);
66     uint32_t enable = *gic_bmp_ptr32(s->enabled, irq);
67     uint32_t active = *gic_bmp_ptr32(s->active, irq);
68 
69     pend = pending | (~edge_trigger & level);
70     pend &= enable;
71     pend &= ~active;
72 
73     if (s->gicd_ctlr & GICD_CTLR_DS) {
74         grpmod = 0;
75     }
76 
77     grpmask = 0;
78     if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
79         grpmask |= group;
80     }
81     if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
82         grpmask |= (~group & grpmod);
83     }
84     if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) {
85         grpmask |= (~group & ~grpmod);
86     }
87     pend &= grpmask;
88 
89     return pend;
90 }
91 
92 static uint32_t gicr_int_pending(GICv3CPUState *cs)
93 {
94     /* Recalculate which redistributor interrupts are actually pending,
95      * and return a 32-bit integer which has a bit set for each interrupt
96      * that is eligible to be signaled to the CPU interface.
97      *
98      * An interrupt is pending if:
99      *  + the PENDING latch is set OR it is level triggered and the input is 1
100      *  + its ENABLE bit is set
101      *  + the GICD enable bit for its group is set
102      *  + its ACTIVE bit is not set (otherwise it would be Active+Pending)
103      * Conveniently we can bulk-calculate this with bitwise operations.
104      */
105     uint32_t pend, grpmask, grpmod;
106 
107     pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
108     pend &= cs->gicr_ienabler0;
109     pend &= ~cs->gicr_iactiver0;
110 
111     if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
112         grpmod = 0;
113     } else {
114         grpmod = cs->gicr_igrpmodr0;
115     }
116 
117     grpmask = 0;
118     if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
119         grpmask |= cs->gicr_igroupr0;
120     }
121     if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
122         grpmask |= (~cs->gicr_igroupr0 & grpmod);
123     }
124     if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) {
125         grpmask |= (~cs->gicr_igroupr0 & ~grpmod);
126     }
127     pend &= grpmask;
128 
129     return pend;
130 }
131 
132 /* Update the interrupt status after state in a redistributor
133  * or CPU interface has changed, but don't tell the CPU i/f.
134  */
135 static void gicv3_redist_update_noirqset(GICv3CPUState *cs)
136 {
137     /* Find the highest priority pending interrupt among the
138      * redistributor interrupts (SGIs and PPIs).
139      */
140     bool seenbetter = false;
141     uint8_t prio;
142     int i;
143     uint32_t pend;
144 
145     /* Find out which redistributor interrupts are eligible to be
146      * signaled to the CPU interface.
147      */
148     pend = gicr_int_pending(cs);
149 
150     if (pend) {
151         for (i = 0; i < GIC_INTERNAL; i++) {
152             if (!(pend & (1 << i))) {
153                 continue;
154             }
155             prio = cs->gicr_ipriorityr[i];
156             if (irqbetter(cs, i, prio)) {
157                 cs->hppi.irq = i;
158                 cs->hppi.prio = prio;
159                 seenbetter = true;
160             }
161         }
162     }
163 
164     if (seenbetter) {
165         cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
166     }
167 
168     /* If the best interrupt we just found would preempt whatever
169      * was the previous best interrupt before this update, then
170      * we know it's definitely the best one now.
171      * If we didn't find an interrupt that would preempt the previous
172      * best, and the previous best is outside our range (or there was no
173      * previous pending interrupt at all), then that is still valid, and
174      * we leave it as the best.
175      * Otherwise, we need to do a full update (because the previous best
176      * interrupt has reduced in priority and any other interrupt could
177      * now be the new best one).
178      */
179     if (!seenbetter && cs->hppi.prio != 0xff && cs->hppi.irq < GIC_INTERNAL) {
180         gicv3_full_update_noirqset(cs->gic);
181     }
182 }
183 
184 /* Update the GIC status after state in a redistributor or
185  * CPU interface has changed, and inform the CPU i/f of
186  * its new highest priority pending interrupt.
187  */
188 void gicv3_redist_update(GICv3CPUState *cs)
189 {
190     gicv3_redist_update_noirqset(cs);
191     gicv3_cpuif_update(cs);
192 }
193 
194 /* Update the GIC status after state in the distributor has
195  * changed affecting @len interrupts starting at @start,
196  * but don't tell the CPU i/f.
197  */
198 static void gicv3_update_noirqset(GICv3State *s, int start, int len)
199 {
200     int i;
201     uint8_t prio;
202     uint32_t pend = 0;
203 
204     assert(start >= GIC_INTERNAL);
205     assert(len > 0);
206 
207     for (i = 0; i < s->num_cpu; i++) {
208         s->cpu[i].seenbetter = false;
209     }
210 
211     /* Find the highest priority pending interrupt in this range. */
212     for (i = start; i < start + len; i++) {
213         GICv3CPUState *cs;
214 
215         if (i == start || (i & 0x1f) == 0) {
216             /* Calculate the next 32 bits worth of pending status */
217             pend = gicd_int_pending(s, i & ~0x1f);
218         }
219 
220         if (!(pend & (1 << (i & 0x1f)))) {
221             continue;
222         }
223         cs = s->gicd_irouter_target[i];
224         if (!cs) {
225             /* Interrupts targeting no implemented CPU should remain pending
226              * and not be forwarded to any CPU.
227              */
228             continue;
229         }
230         prio = s->gicd_ipriority[i];
231         if (irqbetter(cs, i, prio)) {
232             cs->hppi.irq = i;
233             cs->hppi.prio = prio;
234             cs->seenbetter = true;
235         }
236     }
237 
238     /* If the best interrupt we just found would preempt whatever
239      * was the previous best interrupt before this update, then
240      * we know it's definitely the best one now.
241      * If we didn't find an interrupt that would preempt the previous
242      * best, and the previous best is outside our range (or there was
243      * no previous pending interrupt at all), then that
244      * is still valid, and we leave it as the best.
245      * Otherwise, we need to do a full update (because the previous best
246      * interrupt has reduced in priority and any other interrupt could
247      * now be the new best one).
248      */
249     for (i = 0; i < s->num_cpu; i++) {
250         GICv3CPUState *cs = &s->cpu[i];
251 
252         if (cs->seenbetter) {
253             cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
254         }
255 
256         if (!cs->seenbetter && cs->hppi.prio != 0xff &&
257             cs->hppi.irq >= start && cs->hppi.irq < start + len) {
258             gicv3_full_update_noirqset(s);
259             break;
260         }
261     }
262 }
263 
264 void gicv3_update(GICv3State *s, int start, int len)
265 {
266     int i;
267 
268     gicv3_update_noirqset(s, start, len);
269     for (i = 0; i < s->num_cpu; i++) {
270         gicv3_cpuif_update(&s->cpu[i]);
271     }
272 }
273 
274 void gicv3_full_update_noirqset(GICv3State *s)
275 {
276     /* Completely recalculate the GIC status from scratch, but
277      * don't update any outbound IRQ lines.
278      */
279     int i;
280 
281     for (i = 0; i < s->num_cpu; i++) {
282         s->cpu[i].hppi.prio = 0xff;
283     }
284 
285     /* Note that we can guarantee that these functions will not
286      * recursively call back into gicv3_full_update(), because
287      * at each point the "previous best" is always outside the
288      * range we ask them to update.
289      */
290     gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL);
291 
292     for (i = 0; i < s->num_cpu; i++) {
293         gicv3_redist_update_noirqset(&s->cpu[i]);
294     }
295 }
296 
297 void gicv3_full_update(GICv3State *s)
298 {
299     /* Completely recalculate the GIC status from scratch, including
300      * updating outbound IRQ lines.
301      */
302     int i;
303 
304     gicv3_full_update_noirqset(s);
305     for (i = 0; i < s->num_cpu; i++) {
306         gicv3_cpuif_update(&s->cpu[i]);
307     }
308 }
309 
310 /* Process a change in an external IRQ input. */
311 static void gicv3_set_irq(void *opaque, int irq, int level)
312 {
313     /* Meaning of the 'irq' parameter:
314      *  [0..N-1] : external interrupts
315      *  [N..N+31] : PPI (internal) interrupts for CPU 0
316      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
317      *  ...
318      */
319     GICv3State *s = opaque;
320 
321     if (irq < (s->num_irq - GIC_INTERNAL)) {
322         /* external interrupt (SPI) */
323         gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level);
324     } else {
325         /* per-cpu interrupt (PPI) */
326         int cpu;
327 
328         irq -= (s->num_irq - GIC_INTERNAL);
329         cpu = irq / GIC_INTERNAL;
330         irq %= GIC_INTERNAL;
331         assert(cpu < s->num_cpu);
332         /* Raising SGIs via this function would be a bug in how the board
333          * model wires up interrupts.
334          */
335         assert(irq >= GIC_NR_SGIS);
336         gicv3_redist_set_irq(&s->cpu[cpu], irq, level);
337     }
338 }
339 
340 static void arm_gicv3_post_load(GICv3State *s)
341 {
342     /* Recalculate our cached idea of the current highest priority
343      * pending interrupt, but don't set IRQ or FIQ lines.
344      */
345     gicv3_full_update_noirqset(s);
346     /* Repopulate the cache of GICv3CPUState pointers for target CPUs */
347     gicv3_cache_all_target_cpustates(s);
348 }
349 
350 static const MemoryRegionOps gic_ops[] = {
351     {
352         .read_with_attrs = gicv3_dist_read,
353         .write_with_attrs = gicv3_dist_write,
354         .endianness = DEVICE_NATIVE_ENDIAN,
355     },
356     {
357         .read_with_attrs = gicv3_redist_read,
358         .write_with_attrs = gicv3_redist_write,
359         .endianness = DEVICE_NATIVE_ENDIAN,
360     }
361 };
362 
363 static void arm_gic_realize(DeviceState *dev, Error **errp)
364 {
365     /* Device instance realize function for the GIC sysbus device */
366     GICv3State *s = ARM_GICV3(dev);
367     ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s);
368     Error *local_err = NULL;
369 
370     agc->parent_realize(dev, &local_err);
371     if (local_err) {
372         error_propagate(errp, local_err);
373         return;
374     }
375 
376     gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops);
377 
378     gicv3_init_cpuif(s);
379 }
380 
381 static void arm_gicv3_class_init(ObjectClass *klass, void *data)
382 {
383     DeviceClass *dc = DEVICE_CLASS(klass);
384     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
385     ARMGICv3Class *agc = ARM_GICV3_CLASS(klass);
386 
387     agcc->post_load = arm_gicv3_post_load;
388     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
389 }
390 
391 static const TypeInfo arm_gicv3_info = {
392     .name = TYPE_ARM_GICV3,
393     .parent = TYPE_ARM_GICV3_COMMON,
394     .instance_size = sizeof(GICv3State),
395     .class_init = arm_gicv3_class_init,
396     .class_size = sizeof(ARMGICv3Class),
397 };
398 
399 static void arm_gicv3_register_types(void)
400 {
401     type_register_static(&arm_gicv3_info);
402 }
403 
404 type_init(arm_gicv3_register_types)
405