1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2015 Huawei. 5 * Copyright (c) 2016 Linaro Limited 6 * Written by Shlomo Pongratz, Peter Maydell 7 * 8 * This code is licensed under the GPL, version 2 or (at your option) 9 * any later version. 10 */ 11 12 /* This file contains implementation code for an interrupt controller 13 * which implements the GICv3 architecture. Specifically this is where 14 * the device class itself and the functions for handling interrupts 15 * coming in and going out live. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qapi/error.h" 20 #include "qemu/module.h" 21 #include "hw/sysbus.h" 22 #include "hw/intc/arm_gicv3.h" 23 #include "gicv3_internal.h" 24 25 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio) 26 { 27 /* Return true if this IRQ at this priority should take 28 * precedence over the current recorded highest priority 29 * pending interrupt for this CPU. We also return true if 30 * the current recorded highest priority pending interrupt 31 * is the same as this one (a property which the calling code 32 * relies on). 33 */ 34 if (prio < cs->hppi.prio) { 35 return true; 36 } 37 /* If multiple pending interrupts have the same priority then it is an 38 * IMPDEF choice which of them to signal to the CPU. We choose to 39 * signal the one with the lowest interrupt number. 40 */ 41 if (prio == cs->hppi.prio && irq <= cs->hppi.irq) { 42 return true; 43 } 44 return false; 45 } 46 47 static uint32_t gicd_int_pending(GICv3State *s, int irq) 48 { 49 /* Recalculate which distributor interrupts are actually pending 50 * in the group of 32 interrupts starting at irq (which should be a multiple 51 * of 32), and return a 32-bit integer which has a bit set for each 52 * interrupt that is eligible to be signaled to the CPU interface. 53 * 54 * An interrupt is pending if: 55 * + the PENDING latch is set OR it is level triggered and the input is 1 56 * + its ENABLE bit is set 57 * + the GICD enable bit for its group is set 58 * + its ACTIVE bit is not set (otherwise it would be Active+Pending) 59 * Conveniently we can bulk-calculate this with bitwise operations. 60 */ 61 uint32_t pend, grpmask; 62 uint32_t pending = *gic_bmp_ptr32(s->pending, irq); 63 uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq); 64 uint32_t level = *gic_bmp_ptr32(s->level, irq); 65 uint32_t group = *gic_bmp_ptr32(s->group, irq); 66 uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq); 67 uint32_t enable = *gic_bmp_ptr32(s->enabled, irq); 68 uint32_t active = *gic_bmp_ptr32(s->active, irq); 69 70 pend = pending | (~edge_trigger & level); 71 pend &= enable; 72 pend &= ~active; 73 74 if (s->gicd_ctlr & GICD_CTLR_DS) { 75 grpmod = 0; 76 } 77 78 grpmask = 0; 79 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 80 grpmask |= group; 81 } 82 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 83 grpmask |= (~group & grpmod); 84 } 85 if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) { 86 grpmask |= (~group & ~grpmod); 87 } 88 pend &= grpmask; 89 90 return pend; 91 } 92 93 static uint32_t gicr_int_pending(GICv3CPUState *cs) 94 { 95 /* Recalculate which redistributor interrupts are actually pending, 96 * and return a 32-bit integer which has a bit set for each interrupt 97 * that is eligible to be signaled to the CPU interface. 98 * 99 * An interrupt is pending if: 100 * + the PENDING latch is set OR it is level triggered and the input is 1 101 * + its ENABLE bit is set 102 * + the GICD enable bit for its group is set 103 * + its ACTIVE bit is not set (otherwise it would be Active+Pending) 104 * Conveniently we can bulk-calculate this with bitwise operations. 105 */ 106 uint32_t pend, grpmask, grpmod; 107 108 pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); 109 pend &= cs->gicr_ienabler0; 110 pend &= ~cs->gicr_iactiver0; 111 112 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) { 113 grpmod = 0; 114 } else { 115 grpmod = cs->gicr_igrpmodr0; 116 } 117 118 grpmask = 0; 119 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 120 grpmask |= cs->gicr_igroupr0; 121 } 122 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 123 grpmask |= (~cs->gicr_igroupr0 & grpmod); 124 } 125 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) { 126 grpmask |= (~cs->gicr_igroupr0 & ~grpmod); 127 } 128 pend &= grpmask; 129 130 return pend; 131 } 132 133 /* Update the interrupt status after state in a redistributor 134 * or CPU interface has changed, but don't tell the CPU i/f. 135 */ 136 static void gicv3_redist_update_noirqset(GICv3CPUState *cs) 137 { 138 /* Find the highest priority pending interrupt among the 139 * redistributor interrupts (SGIs and PPIs). 140 */ 141 bool seenbetter = false; 142 uint8_t prio; 143 int i; 144 uint32_t pend; 145 146 /* Find out which redistributor interrupts are eligible to be 147 * signaled to the CPU interface. 148 */ 149 pend = gicr_int_pending(cs); 150 151 if (pend) { 152 for (i = 0; i < GIC_INTERNAL; i++) { 153 if (!(pend & (1 << i))) { 154 continue; 155 } 156 prio = cs->gicr_ipriorityr[i]; 157 if (irqbetter(cs, i, prio)) { 158 cs->hppi.irq = i; 159 cs->hppi.prio = prio; 160 seenbetter = true; 161 } 162 } 163 } 164 165 if (seenbetter) { 166 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 167 } 168 169 /* If the best interrupt we just found would preempt whatever 170 * was the previous best interrupt before this update, then 171 * we know it's definitely the best one now. 172 * If we didn't find an interrupt that would preempt the previous 173 * best, and the previous best is outside our range (or there was no 174 * previous pending interrupt at all), then that is still valid, and 175 * we leave it as the best. 176 * Otherwise, we need to do a full update (because the previous best 177 * interrupt has reduced in priority and any other interrupt could 178 * now be the new best one). 179 */ 180 if (!seenbetter && cs->hppi.prio != 0xff && cs->hppi.irq < GIC_INTERNAL) { 181 gicv3_full_update_noirqset(cs->gic); 182 } 183 } 184 185 /* Update the GIC status after state in a redistributor or 186 * CPU interface has changed, and inform the CPU i/f of 187 * its new highest priority pending interrupt. 188 */ 189 void gicv3_redist_update(GICv3CPUState *cs) 190 { 191 gicv3_redist_update_noirqset(cs); 192 gicv3_cpuif_update(cs); 193 } 194 195 /* Update the GIC status after state in the distributor has 196 * changed affecting @len interrupts starting at @start, 197 * but don't tell the CPU i/f. 198 */ 199 static void gicv3_update_noirqset(GICv3State *s, int start, int len) 200 { 201 int i; 202 uint8_t prio; 203 uint32_t pend = 0; 204 205 assert(start >= GIC_INTERNAL); 206 assert(len > 0); 207 208 for (i = 0; i < s->num_cpu; i++) { 209 s->cpu[i].seenbetter = false; 210 } 211 212 /* Find the highest priority pending interrupt in this range. */ 213 for (i = start; i < start + len; i++) { 214 GICv3CPUState *cs; 215 216 if (i == start || (i & 0x1f) == 0) { 217 /* Calculate the next 32 bits worth of pending status */ 218 pend = gicd_int_pending(s, i & ~0x1f); 219 } 220 221 if (!(pend & (1 << (i & 0x1f)))) { 222 continue; 223 } 224 cs = s->gicd_irouter_target[i]; 225 if (!cs) { 226 /* Interrupts targeting no implemented CPU should remain pending 227 * and not be forwarded to any CPU. 228 */ 229 continue; 230 } 231 prio = s->gicd_ipriority[i]; 232 if (irqbetter(cs, i, prio)) { 233 cs->hppi.irq = i; 234 cs->hppi.prio = prio; 235 cs->seenbetter = true; 236 } 237 } 238 239 /* If the best interrupt we just found would preempt whatever 240 * was the previous best interrupt before this update, then 241 * we know it's definitely the best one now. 242 * If we didn't find an interrupt that would preempt the previous 243 * best, and the previous best is outside our range (or there was 244 * no previous pending interrupt at all), then that 245 * is still valid, and we leave it as the best. 246 * Otherwise, we need to do a full update (because the previous best 247 * interrupt has reduced in priority and any other interrupt could 248 * now be the new best one). 249 */ 250 for (i = 0; i < s->num_cpu; i++) { 251 GICv3CPUState *cs = &s->cpu[i]; 252 253 if (cs->seenbetter) { 254 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 255 } 256 257 if (!cs->seenbetter && cs->hppi.prio != 0xff && 258 cs->hppi.irq >= start && cs->hppi.irq < start + len) { 259 gicv3_full_update_noirqset(s); 260 break; 261 } 262 } 263 } 264 265 void gicv3_update(GICv3State *s, int start, int len) 266 { 267 int i; 268 269 gicv3_update_noirqset(s, start, len); 270 for (i = 0; i < s->num_cpu; i++) { 271 gicv3_cpuif_update(&s->cpu[i]); 272 } 273 } 274 275 void gicv3_full_update_noirqset(GICv3State *s) 276 { 277 /* Completely recalculate the GIC status from scratch, but 278 * don't update any outbound IRQ lines. 279 */ 280 int i; 281 282 for (i = 0; i < s->num_cpu; i++) { 283 s->cpu[i].hppi.prio = 0xff; 284 } 285 286 /* Note that we can guarantee that these functions will not 287 * recursively call back into gicv3_full_update(), because 288 * at each point the "previous best" is always outside the 289 * range we ask them to update. 290 */ 291 gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL); 292 293 for (i = 0; i < s->num_cpu; i++) { 294 gicv3_redist_update_noirqset(&s->cpu[i]); 295 } 296 } 297 298 void gicv3_full_update(GICv3State *s) 299 { 300 /* Completely recalculate the GIC status from scratch, including 301 * updating outbound IRQ lines. 302 */ 303 int i; 304 305 gicv3_full_update_noirqset(s); 306 for (i = 0; i < s->num_cpu; i++) { 307 gicv3_cpuif_update(&s->cpu[i]); 308 } 309 } 310 311 /* Process a change in an external IRQ input. */ 312 static void gicv3_set_irq(void *opaque, int irq, int level) 313 { 314 /* Meaning of the 'irq' parameter: 315 * [0..N-1] : external interrupts 316 * [N..N+31] : PPI (internal) interrupts for CPU 0 317 * [N+32..N+63] : PPI (internal interrupts for CPU 1 318 * ... 319 */ 320 GICv3State *s = opaque; 321 322 if (irq < (s->num_irq - GIC_INTERNAL)) { 323 /* external interrupt (SPI) */ 324 gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level); 325 } else { 326 /* per-cpu interrupt (PPI) */ 327 int cpu; 328 329 irq -= (s->num_irq - GIC_INTERNAL); 330 cpu = irq / GIC_INTERNAL; 331 irq %= GIC_INTERNAL; 332 assert(cpu < s->num_cpu); 333 /* Raising SGIs via this function would be a bug in how the board 334 * model wires up interrupts. 335 */ 336 assert(irq >= GIC_NR_SGIS); 337 gicv3_redist_set_irq(&s->cpu[cpu], irq, level); 338 } 339 } 340 341 static void arm_gicv3_post_load(GICv3State *s) 342 { 343 /* Recalculate our cached idea of the current highest priority 344 * pending interrupt, but don't set IRQ or FIQ lines. 345 */ 346 gicv3_full_update_noirqset(s); 347 /* Repopulate the cache of GICv3CPUState pointers for target CPUs */ 348 gicv3_cache_all_target_cpustates(s); 349 } 350 351 static const MemoryRegionOps gic_ops[] = { 352 { 353 .read_with_attrs = gicv3_dist_read, 354 .write_with_attrs = gicv3_dist_write, 355 .endianness = DEVICE_NATIVE_ENDIAN, 356 }, 357 { 358 .read_with_attrs = gicv3_redist_read, 359 .write_with_attrs = gicv3_redist_write, 360 .endianness = DEVICE_NATIVE_ENDIAN, 361 } 362 }; 363 364 static void arm_gic_realize(DeviceState *dev, Error **errp) 365 { 366 /* Device instance realize function for the GIC sysbus device */ 367 GICv3State *s = ARM_GICV3(dev); 368 ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s); 369 Error *local_err = NULL; 370 371 agc->parent_realize(dev, &local_err); 372 if (local_err) { 373 error_propagate(errp, local_err); 374 return; 375 } 376 377 if (s->nb_redist_regions != 1) { 378 error_setg(errp, "VGICv3 redist region number(%d) not equal to 1", 379 s->nb_redist_regions); 380 return; 381 } 382 383 gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops, &local_err); 384 if (local_err) { 385 error_propagate(errp, local_err); 386 return; 387 } 388 389 gicv3_init_cpuif(s); 390 } 391 392 static void arm_gicv3_class_init(ObjectClass *klass, void *data) 393 { 394 DeviceClass *dc = DEVICE_CLASS(klass); 395 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass); 396 ARMGICv3Class *agc = ARM_GICV3_CLASS(klass); 397 398 agcc->post_load = arm_gicv3_post_load; 399 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize); 400 } 401 402 static const TypeInfo arm_gicv3_info = { 403 .name = TYPE_ARM_GICV3, 404 .parent = TYPE_ARM_GICV3_COMMON, 405 .instance_size = sizeof(GICv3State), 406 .class_init = arm_gicv3_class_init, 407 .class_size = sizeof(ARMGICv3Class), 408 }; 409 410 static void arm_gicv3_register_types(void) 411 { 412 type_register_static(&arm_gicv3_info); 413 } 414 415 type_init(arm_gicv3_register_types) 416