1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2015 Huawei. 5 * Copyright (c) 2016 Linaro Limited 6 * Written by Shlomo Pongratz, Peter Maydell 7 * 8 * This code is licensed under the GPL, version 2 or (at your option) 9 * any later version. 10 */ 11 12 /* This file contains implementation code for an interrupt controller 13 * which implements the GICv3 architecture. Specifically this is where 14 * the device class itself and the functions for handling interrupts 15 * coming in and going out live. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qapi/error.h" 20 #include "hw/sysbus.h" 21 #include "hw/intc/arm_gicv3.h" 22 #include "gicv3_internal.h" 23 24 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio) 25 { 26 /* Return true if this IRQ at this priority should take 27 * precedence over the current recorded highest priority 28 * pending interrupt for this CPU. We also return true if 29 * the current recorded highest priority pending interrupt 30 * is the same as this one (a property which the calling code 31 * relies on). 32 */ 33 if (prio < cs->hppi.prio) { 34 return true; 35 } 36 /* If multiple pending interrupts have the same priority then it is an 37 * IMPDEF choice which of them to signal to the CPU. We choose to 38 * signal the one with the lowest interrupt number. 39 */ 40 if (prio == cs->hppi.prio && irq <= cs->hppi.irq) { 41 return true; 42 } 43 return false; 44 } 45 46 static uint32_t gicd_int_pending(GICv3State *s, int irq) 47 { 48 /* Recalculate which distributor interrupts are actually pending 49 * in the group of 32 interrupts starting at irq (which should be a multiple 50 * of 32), and return a 32-bit integer which has a bit set for each 51 * interrupt that is eligible to be signaled to the CPU interface. 52 * 53 * An interrupt is pending if: 54 * + the PENDING latch is set OR it is level triggered and the input is 1 55 * + its ENABLE bit is set 56 * + the GICD enable bit for its group is set 57 * Conveniently we can bulk-calculate this with bitwise operations. 58 */ 59 uint32_t pend, grpmask; 60 uint32_t pending = *gic_bmp_ptr32(s->pending, irq); 61 uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq); 62 uint32_t level = *gic_bmp_ptr32(s->level, irq); 63 uint32_t group = *gic_bmp_ptr32(s->group, irq); 64 uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq); 65 uint32_t enable = *gic_bmp_ptr32(s->enabled, irq); 66 67 pend = pending | (~edge_trigger & level); 68 pend &= enable; 69 70 if (s->gicd_ctlr & GICD_CTLR_DS) { 71 grpmod = 0; 72 } 73 74 grpmask = 0; 75 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 76 grpmask |= group; 77 } 78 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 79 grpmask |= (~group & grpmod); 80 } 81 if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) { 82 grpmask |= (~group & ~grpmod); 83 } 84 pend &= grpmask; 85 86 return pend; 87 } 88 89 static uint32_t gicr_int_pending(GICv3CPUState *cs) 90 { 91 /* Recalculate which redistributor interrupts are actually pending, 92 * and return a 32-bit integer which has a bit set for each interrupt 93 * that is eligible to be signaled to the CPU interface. 94 * 95 * An interrupt is pending if: 96 * + the PENDING latch is set OR it is level triggered and the input is 1 97 * + its ENABLE bit is set 98 * + the GICD enable bit for its group is set 99 * Conveniently we can bulk-calculate this with bitwise operations. 100 */ 101 uint32_t pend, grpmask, grpmod; 102 103 pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); 104 pend &= cs->gicr_ienabler0; 105 106 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) { 107 grpmod = 0; 108 } else { 109 grpmod = cs->gicr_igrpmodr0; 110 } 111 112 grpmask = 0; 113 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 114 grpmask |= cs->gicr_igroupr0; 115 } 116 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 117 grpmask |= (~cs->gicr_igroupr0 & grpmod); 118 } 119 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) { 120 grpmask |= (~cs->gicr_igroupr0 & ~grpmod); 121 } 122 pend &= grpmask; 123 124 return pend; 125 } 126 127 /* Update the interrupt status after state in a redistributor 128 * or CPU interface has changed, but don't tell the CPU i/f. 129 */ 130 static void gicv3_redist_update_noirqset(GICv3CPUState *cs) 131 { 132 /* Find the highest priority pending interrupt among the 133 * redistributor interrupts (SGIs and PPIs). 134 */ 135 bool seenbetter = false; 136 uint8_t prio; 137 int i; 138 uint32_t pend; 139 140 /* Find out which redistributor interrupts are eligible to be 141 * signaled to the CPU interface. 142 */ 143 pend = gicr_int_pending(cs); 144 145 if (pend) { 146 for (i = 0; i < GIC_INTERNAL; i++) { 147 if (!(pend & (1 << i))) { 148 continue; 149 } 150 prio = cs->gicr_ipriorityr[i]; 151 if (irqbetter(cs, i, prio)) { 152 cs->hppi.irq = i; 153 cs->hppi.prio = prio; 154 seenbetter = true; 155 } 156 } 157 } 158 159 if (seenbetter) { 160 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 161 } 162 163 /* If the best interrupt we just found would preempt whatever 164 * was the previous best interrupt before this update, then 165 * we know it's definitely the best one now. 166 * If we didn't find an interrupt that would preempt the previous 167 * best, and the previous best is outside our range (or there was no 168 * previous pending interrupt at all), then that is still valid, and 169 * we leave it as the best. 170 * Otherwise, we need to do a full update (because the previous best 171 * interrupt has reduced in priority and any other interrupt could 172 * now be the new best one). 173 */ 174 if (!seenbetter && cs->hppi.prio != 0xff && cs->hppi.irq < GIC_INTERNAL) { 175 gicv3_full_update_noirqset(cs->gic); 176 } 177 } 178 179 /* Update the GIC status after state in a redistributor or 180 * CPU interface has changed, and inform the CPU i/f of 181 * its new highest priority pending interrupt. 182 */ 183 void gicv3_redist_update(GICv3CPUState *cs) 184 { 185 gicv3_redist_update_noirqset(cs); 186 gicv3_cpuif_update(cs); 187 } 188 189 /* Update the GIC status after state in the distributor has 190 * changed affecting @len interrupts starting at @start, 191 * but don't tell the CPU i/f. 192 */ 193 static void gicv3_update_noirqset(GICv3State *s, int start, int len) 194 { 195 int i; 196 uint8_t prio; 197 uint32_t pend = 0; 198 199 assert(start >= GIC_INTERNAL); 200 assert(len > 0); 201 202 for (i = 0; i < s->num_cpu; i++) { 203 s->cpu[i].seenbetter = false; 204 } 205 206 /* Find the highest priority pending interrupt in this range. */ 207 for (i = start; i < start + len; i++) { 208 GICv3CPUState *cs; 209 210 if (i == start || (i & 0x1f) == 0) { 211 /* Calculate the next 32 bits worth of pending status */ 212 pend = gicd_int_pending(s, i & ~0x1f); 213 } 214 215 if (!(pend & (1 << (i & 0x1f)))) { 216 continue; 217 } 218 cs = s->gicd_irouter_target[i]; 219 if (!cs) { 220 /* Interrupts targeting no implemented CPU should remain pending 221 * and not be forwarded to any CPU. 222 */ 223 continue; 224 } 225 prio = s->gicd_ipriority[i]; 226 if (irqbetter(cs, i, prio)) { 227 cs->hppi.irq = i; 228 cs->hppi.prio = prio; 229 cs->seenbetter = true; 230 } 231 } 232 233 /* If the best interrupt we just found would preempt whatever 234 * was the previous best interrupt before this update, then 235 * we know it's definitely the best one now. 236 * If we didn't find an interrupt that would preempt the previous 237 * best, and the previous best is outside our range (or there was 238 * no previous pending interrupt at all), then that 239 * is still valid, and we leave it as the best. 240 * Otherwise, we need to do a full update (because the previous best 241 * interrupt has reduced in priority and any other interrupt could 242 * now be the new best one). 243 */ 244 for (i = 0; i < s->num_cpu; i++) { 245 GICv3CPUState *cs = &s->cpu[i]; 246 247 if (cs->seenbetter) { 248 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 249 } 250 251 if (!cs->seenbetter && cs->hppi.prio != 0xff && 252 cs->hppi.irq >= start && cs->hppi.irq < start + len) { 253 gicv3_full_update_noirqset(s); 254 break; 255 } 256 } 257 } 258 259 void gicv3_update(GICv3State *s, int start, int len) 260 { 261 int i; 262 263 gicv3_update_noirqset(s, start, len); 264 for (i = 0; i < s->num_cpu; i++) { 265 gicv3_cpuif_update(&s->cpu[i]); 266 } 267 } 268 269 void gicv3_full_update_noirqset(GICv3State *s) 270 { 271 /* Completely recalculate the GIC status from scratch, but 272 * don't update any outbound IRQ lines. 273 */ 274 int i; 275 276 for (i = 0; i < s->num_cpu; i++) { 277 s->cpu[i].hppi.prio = 0xff; 278 } 279 280 /* Note that we can guarantee that these functions will not 281 * recursively call back into gicv3_full_update(), because 282 * at each point the "previous best" is always outside the 283 * range we ask them to update. 284 */ 285 gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL); 286 287 for (i = 0; i < s->num_cpu; i++) { 288 gicv3_redist_update_noirqset(&s->cpu[i]); 289 } 290 } 291 292 void gicv3_full_update(GICv3State *s) 293 { 294 /* Completely recalculate the GIC status from scratch, including 295 * updating outbound IRQ lines. 296 */ 297 int i; 298 299 gicv3_full_update_noirqset(s); 300 for (i = 0; i < s->num_cpu; i++) { 301 gicv3_cpuif_update(&s->cpu[i]); 302 } 303 } 304 305 /* Process a change in an external IRQ input. */ 306 static void gicv3_set_irq(void *opaque, int irq, int level) 307 { 308 /* Meaning of the 'irq' parameter: 309 * [0..N-1] : external interrupts 310 * [N..N+31] : PPI (internal) interrupts for CPU 0 311 * [N+32..N+63] : PPI (internal interrupts for CPU 1 312 * ... 313 */ 314 GICv3State *s = opaque; 315 316 if (irq < (s->num_irq - GIC_INTERNAL)) { 317 /* external interrupt (SPI) */ 318 gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level); 319 } else { 320 /* per-cpu interrupt (PPI) */ 321 int cpu; 322 323 irq -= (s->num_irq - GIC_INTERNAL); 324 cpu = irq / GIC_INTERNAL; 325 irq %= GIC_INTERNAL; 326 assert(cpu < s->num_cpu); 327 /* Raising SGIs via this function would be a bug in how the board 328 * model wires up interrupts. 329 */ 330 assert(irq >= GIC_NR_SGIS); 331 gicv3_redist_set_irq(&s->cpu[cpu], irq, level); 332 } 333 } 334 335 static void arm_gicv3_post_load(GICv3State *s) 336 { 337 /* Recalculate our cached idea of the current highest priority 338 * pending interrupt, but don't set IRQ or FIQ lines. 339 */ 340 gicv3_full_update_noirqset(s); 341 /* Repopulate the cache of GICv3CPUState pointers for target CPUs */ 342 gicv3_cache_all_target_cpustates(s); 343 } 344 345 static const MemoryRegionOps gic_ops[] = { 346 { 347 .read_with_attrs = gicv3_dist_read, 348 .write_with_attrs = gicv3_dist_write, 349 .endianness = DEVICE_NATIVE_ENDIAN, 350 }, 351 { 352 .read_with_attrs = gicv3_redist_read, 353 .write_with_attrs = gicv3_redist_write, 354 .endianness = DEVICE_NATIVE_ENDIAN, 355 } 356 }; 357 358 static void arm_gic_realize(DeviceState *dev, Error **errp) 359 { 360 /* Device instance realize function for the GIC sysbus device */ 361 GICv3State *s = ARM_GICV3(dev); 362 ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s); 363 Error *local_err = NULL; 364 365 agc->parent_realize(dev, &local_err); 366 if (local_err) { 367 error_propagate(errp, local_err); 368 return; 369 } 370 371 gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops); 372 373 gicv3_init_cpuif(s); 374 } 375 376 static void arm_gicv3_class_init(ObjectClass *klass, void *data) 377 { 378 DeviceClass *dc = DEVICE_CLASS(klass); 379 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass); 380 ARMGICv3Class *agc = ARM_GICV3_CLASS(klass); 381 382 agcc->post_load = arm_gicv3_post_load; 383 agc->parent_realize = dc->realize; 384 dc->realize = arm_gic_realize; 385 } 386 387 static const TypeInfo arm_gicv3_info = { 388 .name = TYPE_ARM_GICV3, 389 .parent = TYPE_ARM_GICV3_COMMON, 390 .instance_size = sizeof(GICv3State), 391 .class_init = arm_gicv3_class_init, 392 .class_size = sizeof(ARMGICv3Class), 393 }; 394 395 static void arm_gicv3_register_types(void) 396 { 397 type_register_static(&arm_gicv3_info); 398 } 399 400 type_init(arm_gicv3_register_types) 401