1 /* 2 * ARM Generic Interrupt Controller v3 (emulation) 3 * 4 * Copyright (c) 2015 Huawei. 5 * Copyright (c) 2016 Linaro Limited 6 * Written by Shlomo Pongratz, Peter Maydell 7 * 8 * This code is licensed under the GPL, version 2 or (at your option) 9 * any later version. 10 */ 11 12 /* This file contains implementation code for an interrupt controller 13 * which implements the GICv3 architecture. Specifically this is where 14 * the device class itself and the functions for handling interrupts 15 * coming in and going out live. 16 */ 17 18 #include "qemu/osdep.h" 19 #include "qapi/error.h" 20 #include "qemu/module.h" 21 #include "hw/intc/arm_gicv3.h" 22 #include "gicv3_internal.h" 23 24 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio, bool nmi) 25 { 26 /* Return true if this IRQ at this priority should take 27 * precedence over the current recorded highest priority 28 * pending interrupt for this CPU. We also return true if 29 * the current recorded highest priority pending interrupt 30 * is the same as this one (a property which the calling code 31 * relies on). 32 */ 33 if (prio != cs->hppi.prio) { 34 return prio < cs->hppi.prio; 35 } 36 37 /* 38 * The same priority IRQ with non-maskable property should signal to 39 * the CPU as it have the priority higher than the labelled 0x80 or 0x00. 40 */ 41 if (nmi != cs->hppi.nmi) { 42 return nmi; 43 } 44 45 /* If multiple pending interrupts have the same priority then it is an 46 * IMPDEF choice which of them to signal to the CPU. We choose to 47 * signal the one with the lowest interrupt number. 48 */ 49 if (irq <= cs->hppi.irq) { 50 return true; 51 } 52 return false; 53 } 54 55 static uint32_t gicd_int_pending(GICv3State *s, int irq) 56 { 57 /* Recalculate which distributor interrupts are actually pending 58 * in the group of 32 interrupts starting at irq (which should be a multiple 59 * of 32), and return a 32-bit integer which has a bit set for each 60 * interrupt that is eligible to be signaled to the CPU interface. 61 * 62 * An interrupt is pending if: 63 * + the PENDING latch is set OR it is level triggered and the input is 1 64 * + its ENABLE bit is set 65 * + the GICD enable bit for its group is set 66 * + its ACTIVE bit is not set (otherwise it would be Active+Pending) 67 * Conveniently we can bulk-calculate this with bitwise operations. 68 */ 69 uint32_t pend, grpmask; 70 uint32_t pending = *gic_bmp_ptr32(s->pending, irq); 71 uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq); 72 uint32_t level = *gic_bmp_ptr32(s->level, irq); 73 uint32_t group = *gic_bmp_ptr32(s->group, irq); 74 uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq); 75 uint32_t enable = *gic_bmp_ptr32(s->enabled, irq); 76 uint32_t active = *gic_bmp_ptr32(s->active, irq); 77 78 pend = pending | (~edge_trigger & level); 79 pend &= enable; 80 pend &= ~active; 81 82 if (s->gicd_ctlr & GICD_CTLR_DS) { 83 grpmod = 0; 84 } 85 86 grpmask = 0; 87 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 88 grpmask |= group; 89 } 90 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 91 grpmask |= (~group & grpmod); 92 } 93 if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) { 94 grpmask |= (~group & ~grpmod); 95 } 96 pend &= grpmask; 97 98 return pend; 99 } 100 101 static uint32_t gicr_int_pending(GICv3CPUState *cs) 102 { 103 /* Recalculate which redistributor interrupts are actually pending, 104 * and return a 32-bit integer which has a bit set for each interrupt 105 * that is eligible to be signaled to the CPU interface. 106 * 107 * An interrupt is pending if: 108 * + the PENDING latch is set OR it is level triggered and the input is 1 109 * + its ENABLE bit is set 110 * + the GICD enable bit for its group is set 111 * + its ACTIVE bit is not set (otherwise it would be Active+Pending) 112 * Conveniently we can bulk-calculate this with bitwise operations. 113 */ 114 uint32_t pend, grpmask, grpmod; 115 116 pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); 117 pend &= cs->gicr_ienabler0; 118 pend &= ~cs->gicr_iactiver0; 119 120 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) { 121 grpmod = 0; 122 } else { 123 grpmod = cs->gicr_igrpmodr0; 124 } 125 126 grpmask = 0; 127 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) { 128 grpmask |= cs->gicr_igroupr0; 129 } 130 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) { 131 grpmask |= (~cs->gicr_igroupr0 & grpmod); 132 } 133 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) { 134 grpmask |= (~cs->gicr_igroupr0 & ~grpmod); 135 } 136 pend &= grpmask; 137 138 return pend; 139 } 140 141 static bool gicv3_get_priority(GICv3CPUState *cs, bool is_redist, int irq, 142 uint8_t *prio) 143 { 144 uint32_t nmi = 0x0; 145 146 if (is_redist) { 147 nmi = extract32(cs->gicr_inmir0, irq, 1); 148 } else { 149 nmi = *gic_bmp_ptr32(cs->gic->nmi, irq); 150 nmi = nmi & (1 << (irq & 0x1f)); 151 } 152 153 if (nmi) { 154 /* DS = 0 & Non-secure NMI */ 155 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 156 ((is_redist && extract32(cs->gicr_igroupr0, irq, 1)) || 157 (!is_redist && gicv3_gicd_group_test(cs->gic, irq)))) { 158 *prio = 0x80; 159 } else { 160 *prio = 0x0; 161 } 162 163 return true; 164 } 165 166 if (is_redist) { 167 *prio = cs->gicr_ipriorityr[irq]; 168 } else { 169 *prio = cs->gic->gicd_ipriority[irq]; 170 } 171 172 return false; 173 } 174 175 /* Update the interrupt status after state in a redistributor 176 * or CPU interface has changed, but don't tell the CPU i/f. 177 */ 178 static void gicv3_redist_update_noirqset(GICv3CPUState *cs) 179 { 180 /* Find the highest priority pending interrupt among the 181 * redistributor interrupts (SGIs and PPIs). 182 */ 183 bool seenbetter = false; 184 uint8_t prio; 185 int i; 186 uint32_t pend; 187 bool nmi = false; 188 189 /* Find out which redistributor interrupts are eligible to be 190 * signaled to the CPU interface. 191 */ 192 pend = gicr_int_pending(cs); 193 194 if (pend) { 195 for (i = 0; i < GIC_INTERNAL; i++) { 196 if (!(pend & (1 << i))) { 197 continue; 198 } 199 nmi = gicv3_get_priority(cs, true, i, &prio); 200 if (irqbetter(cs, i, prio, nmi)) { 201 cs->hppi.irq = i; 202 cs->hppi.prio = prio; 203 cs->hppi.nmi = nmi; 204 seenbetter = true; 205 } 206 } 207 } 208 209 if (seenbetter) { 210 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 211 } 212 213 if ((cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) && cs->gic->lpi_enable && 214 (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) && 215 (cs->hpplpi.prio != 0xff)) { 216 if (irqbetter(cs, cs->hpplpi.irq, cs->hpplpi.prio, cs->hpplpi.nmi)) { 217 cs->hppi.irq = cs->hpplpi.irq; 218 cs->hppi.prio = cs->hpplpi.prio; 219 cs->hppi.nmi = cs->hpplpi.nmi; 220 cs->hppi.grp = cs->hpplpi.grp; 221 seenbetter = true; 222 } 223 } 224 225 /* If the best interrupt we just found would preempt whatever 226 * was the previous best interrupt before this update, then 227 * we know it's definitely the best one now. 228 * If we didn't find an interrupt that would preempt the previous 229 * best, and the previous best is outside our range (or there was no 230 * previous pending interrupt at all), then that is still valid, and 231 * we leave it as the best. 232 * Otherwise, we need to do a full update (because the previous best 233 * interrupt has reduced in priority and any other interrupt could 234 * now be the new best one). 235 */ 236 if (!seenbetter && cs->hppi.prio != 0xff && 237 (cs->hppi.irq < GIC_INTERNAL || 238 cs->hppi.irq >= GICV3_LPI_INTID_START)) { 239 gicv3_full_update_noirqset(cs->gic); 240 } 241 } 242 243 /* Update the GIC status after state in a redistributor or 244 * CPU interface has changed, and inform the CPU i/f of 245 * its new highest priority pending interrupt. 246 */ 247 void gicv3_redist_update(GICv3CPUState *cs) 248 { 249 gicv3_redist_update_noirqset(cs); 250 gicv3_cpuif_update(cs); 251 } 252 253 /* Update the GIC status after state in the distributor has 254 * changed affecting @len interrupts starting at @start, 255 * but don't tell the CPU i/f. 256 */ 257 static void gicv3_update_noirqset(GICv3State *s, int start, int len) 258 { 259 int i; 260 uint8_t prio; 261 uint32_t pend = 0; 262 bool nmi = false; 263 264 assert(start >= GIC_INTERNAL); 265 assert(len > 0); 266 267 for (i = 0; i < s->num_cpu; i++) { 268 s->cpu[i].seenbetter = false; 269 } 270 271 /* Find the highest priority pending interrupt in this range. */ 272 for (i = start; i < start + len; i++) { 273 GICv3CPUState *cs; 274 275 if (i == start || (i & 0x1f) == 0) { 276 /* Calculate the next 32 bits worth of pending status */ 277 pend = gicd_int_pending(s, i & ~0x1f); 278 } 279 280 if (!(pend & (1 << (i & 0x1f)))) { 281 continue; 282 } 283 cs = s->gicd_irouter_target[i]; 284 if (!cs) { 285 /* Interrupts targeting no implemented CPU should remain pending 286 * and not be forwarded to any CPU. 287 */ 288 continue; 289 } 290 nmi = gicv3_get_priority(cs, false, i, &prio); 291 if (irqbetter(cs, i, prio, nmi)) { 292 cs->hppi.irq = i; 293 cs->hppi.prio = prio; 294 cs->hppi.nmi = nmi; 295 cs->seenbetter = true; 296 } 297 } 298 299 /* If the best interrupt we just found would preempt whatever 300 * was the previous best interrupt before this update, then 301 * we know it's definitely the best one now. 302 * If we didn't find an interrupt that would preempt the previous 303 * best, and the previous best is outside our range (or there was 304 * no previous pending interrupt at all), then that 305 * is still valid, and we leave it as the best. 306 * Otherwise, we need to do a full update (because the previous best 307 * interrupt has reduced in priority and any other interrupt could 308 * now be the new best one). 309 */ 310 for (i = 0; i < s->num_cpu; i++) { 311 GICv3CPUState *cs = &s->cpu[i]; 312 313 if (cs->seenbetter) { 314 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq); 315 } 316 317 if (!cs->seenbetter && cs->hppi.prio != 0xff && 318 cs->hppi.irq >= start && cs->hppi.irq < start + len) { 319 gicv3_full_update_noirqset(s); 320 break; 321 } 322 } 323 } 324 325 void gicv3_update(GICv3State *s, int start, int len) 326 { 327 int i; 328 329 gicv3_update_noirqset(s, start, len); 330 for (i = 0; i < s->num_cpu; i++) { 331 gicv3_cpuif_update(&s->cpu[i]); 332 } 333 } 334 335 void gicv3_full_update_noirqset(GICv3State *s) 336 { 337 /* Completely recalculate the GIC status from scratch, but 338 * don't update any outbound IRQ lines. 339 */ 340 int i; 341 342 for (i = 0; i < s->num_cpu; i++) { 343 s->cpu[i].hppi.prio = 0xff; 344 s->cpu[i].hppi.nmi = false; 345 } 346 347 /* Note that we can guarantee that these functions will not 348 * recursively call back into gicv3_full_update(), because 349 * at each point the "previous best" is always outside the 350 * range we ask them to update. 351 */ 352 gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL); 353 354 for (i = 0; i < s->num_cpu; i++) { 355 gicv3_redist_update_noirqset(&s->cpu[i]); 356 } 357 } 358 359 void gicv3_full_update(GICv3State *s) 360 { 361 /* Completely recalculate the GIC status from scratch, including 362 * updating outbound IRQ lines. 363 */ 364 int i; 365 366 gicv3_full_update_noirqset(s); 367 for (i = 0; i < s->num_cpu; i++) { 368 gicv3_cpuif_update(&s->cpu[i]); 369 } 370 } 371 372 /* Process a change in an external IRQ input. */ 373 static void gicv3_set_irq(void *opaque, int irq, int level) 374 { 375 /* Meaning of the 'irq' parameter: 376 * [0..N-1] : external interrupts 377 * [N..N+31] : PPI (internal) interrupts for CPU 0 378 * [N+32..N+63] : PPI (internal interrupts for CPU 1 379 * ... 380 */ 381 GICv3State *s = opaque; 382 383 if (irq < (s->num_irq - GIC_INTERNAL)) { 384 /* external interrupt (SPI) */ 385 gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level); 386 } else { 387 /* per-cpu interrupt (PPI) */ 388 int cpu; 389 390 irq -= (s->num_irq - GIC_INTERNAL); 391 cpu = irq / GIC_INTERNAL; 392 irq %= GIC_INTERNAL; 393 assert(cpu < s->num_cpu); 394 /* Raising SGIs via this function would be a bug in how the board 395 * model wires up interrupts. 396 */ 397 assert(irq >= GIC_NR_SGIS); 398 gicv3_redist_set_irq(&s->cpu[cpu], irq, level); 399 } 400 } 401 402 static void arm_gicv3_post_load(GICv3State *s) 403 { 404 int i; 405 /* Recalculate our cached idea of the current highest priority 406 * pending interrupt, but don't set IRQ or FIQ lines. 407 */ 408 for (i = 0; i < s->num_cpu; i++) { 409 gicv3_redist_update_lpi_only(&s->cpu[i]); 410 } 411 gicv3_full_update_noirqset(s); 412 /* Repopulate the cache of GICv3CPUState pointers for target CPUs */ 413 gicv3_cache_all_target_cpustates(s); 414 } 415 416 static const MemoryRegionOps gic_ops[] = { 417 { 418 .read_with_attrs = gicv3_dist_read, 419 .write_with_attrs = gicv3_dist_write, 420 .endianness = DEVICE_NATIVE_ENDIAN, 421 .valid.min_access_size = 1, 422 .valid.max_access_size = 8, 423 .impl.min_access_size = 1, 424 .impl.max_access_size = 8, 425 }, 426 { 427 .read_with_attrs = gicv3_redist_read, 428 .write_with_attrs = gicv3_redist_write, 429 .endianness = DEVICE_NATIVE_ENDIAN, 430 .valid.min_access_size = 1, 431 .valid.max_access_size = 8, 432 .impl.min_access_size = 1, 433 .impl.max_access_size = 8, 434 } 435 }; 436 437 static void arm_gic_realize(DeviceState *dev, Error **errp) 438 { 439 /* Device instance realize function for the GIC sysbus device */ 440 GICv3State *s = ARM_GICV3(dev); 441 ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s); 442 Error *local_err = NULL; 443 444 agc->parent_realize(dev, &local_err); 445 if (local_err) { 446 error_propagate(errp, local_err); 447 return; 448 } 449 450 gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops); 451 452 gicv3_init_cpuif(s); 453 } 454 455 static void arm_gicv3_class_init(ObjectClass *klass, void *data) 456 { 457 DeviceClass *dc = DEVICE_CLASS(klass); 458 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass); 459 ARMGICv3Class *agc = ARM_GICV3_CLASS(klass); 460 461 agcc->post_load = arm_gicv3_post_load; 462 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize); 463 } 464 465 static const TypeInfo arm_gicv3_info = { 466 .name = TYPE_ARM_GICV3, 467 .parent = TYPE_ARM_GICV3_COMMON, 468 .instance_size = sizeof(GICv3State), 469 .class_init = arm_gicv3_class_init, 470 .class_size = sizeof(ARMGICv3Class), 471 }; 472 473 static void arm_gicv3_register_types(void) 474 { 475 type_register_static(&arm_gicv3_info); 476 } 477 478 type_init(arm_gicv3_register_types) 479