xref: /openbmc/qemu/hw/intc/arm_gic_kvm.c (revision d73abd6d)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Written by Peter Maydell
6  * Save/Restore logic added by Christoffer Dall.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "hw/sysbus.h"
23 #include "migration/migration.h"
24 #include "sysemu/kvm.h"
25 #include "kvm_arm.h"
26 #include "gic_internal.h"
27 #include "vgic_common.h"
28 
29 //#define DEBUG_GIC_KVM
30 
31 #ifdef DEBUG_GIC_KVM
32 static const int debug_gic_kvm = 1;
33 #else
34 static const int debug_gic_kvm = 0;
35 #endif
36 
37 #define DPRINTF(fmt, ...) do { \
38         if (debug_gic_kvm) { \
39             printf("arm_gic: " fmt , ## __VA_ARGS__); \
40         } \
41     } while (0)
42 
43 #define TYPE_KVM_ARM_GIC "kvm-arm-gic"
44 #define KVM_ARM_GIC(obj) \
45      OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC)
46 #define KVM_ARM_GIC_CLASS(klass) \
47      OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC)
48 #define KVM_ARM_GIC_GET_CLASS(obj) \
49      OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC)
50 
51 typedef struct KVMARMGICClass {
52     ARMGICCommonClass parent_class;
53     DeviceRealize parent_realize;
54     void (*parent_reset)(DeviceState *dev);
55 } KVMARMGICClass;
56 
57 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level)
58 {
59     /* Meaning of the 'irq' parameter:
60      *  [0..N-1] : external interrupts
61      *  [N..N+31] : PPI (internal) interrupts for CPU 0
62      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
63      *  ...
64      * Convert this to the kernel's desired encoding, which
65      * has separate fields in the irq number for type,
66      * CPU number and interrupt number.
67      */
68     int kvm_irq, irqtype, cpu;
69 
70     if (irq < (num_irq - GIC_INTERNAL)) {
71         /* External interrupt. The kernel numbers these like the GIC
72          * hardware, with external interrupt IDs starting after the
73          * internal ones.
74          */
75         irqtype = KVM_ARM_IRQ_TYPE_SPI;
76         cpu = 0;
77         irq += GIC_INTERNAL;
78     } else {
79         /* Internal interrupt: decode into (cpu, interrupt id) */
80         irqtype = KVM_ARM_IRQ_TYPE_PPI;
81         irq -= (num_irq - GIC_INTERNAL);
82         cpu = irq / GIC_INTERNAL;
83         irq %= GIC_INTERNAL;
84     }
85     kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT)
86         | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq;
87 
88     kvm_set_irq(kvm_state, kvm_irq, !!level);
89 }
90 
91 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level)
92 {
93     GICState *s = (GICState *)opaque;
94 
95     kvm_arm_gic_set_irq(s->num_irq, irq, level);
96 }
97 
98 static bool kvm_arm_gic_can_save_restore(GICState *s)
99 {
100     return s->dev_fd >= 0;
101 }
102 
103 #define KVM_VGIC_ATTR(offset, cpu) \
104     ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \
105       KVM_DEV_ARM_VGIC_CPUID_MASK) | \
106      (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \
107       KVM_DEV_ARM_VGIC_OFFSET_MASK))
108 
109 static void kvm_gicd_access(GICState *s, int offset, int cpu,
110                             uint32_t *val, bool write)
111 {
112     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
113                       KVM_VGIC_ATTR(offset, cpu), val, write);
114 }
115 
116 static void kvm_gicc_access(GICState *s, int offset, int cpu,
117                             uint32_t *val, bool write)
118 {
119     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
120                       KVM_VGIC_ATTR(offset, cpu), val, write);
121 }
122 
123 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \
124     for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
125 
126 /*
127  * Translate from the in-kernel field for an IRQ value to/from the qemu
128  * representation.
129  */
130 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
131                                   uint32_t *field, bool to_kernel);
132 
133 /* synthetic translate function used for clear/set registers to completely
134  * clear a setting using a clear-register before setting the remaining bits
135  * using a set-register */
136 static void translate_clear(GICState *s, int irq, int cpu,
137                             uint32_t *field, bool to_kernel)
138 {
139     if (to_kernel) {
140         *field = ~0;
141     } else {
142         /* does not make sense: qemu model doesn't use set/clear regs */
143         abort();
144     }
145 }
146 
147 static void translate_group(GICState *s, int irq, int cpu,
148                             uint32_t *field, bool to_kernel)
149 {
150     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
151 
152     if (to_kernel) {
153         *field = GIC_TEST_GROUP(irq, cm);
154     } else {
155         if (*field & 1) {
156             GIC_SET_GROUP(irq, cm);
157         }
158     }
159 }
160 
161 static void translate_enabled(GICState *s, int irq, int cpu,
162                               uint32_t *field, bool to_kernel)
163 {
164     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
165 
166     if (to_kernel) {
167         *field = GIC_TEST_ENABLED(irq, cm);
168     } else {
169         if (*field & 1) {
170             GIC_SET_ENABLED(irq, cm);
171         }
172     }
173 }
174 
175 static void translate_pending(GICState *s, int irq, int cpu,
176                               uint32_t *field, bool to_kernel)
177 {
178     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
179 
180     if (to_kernel) {
181         *field = gic_test_pending(s, irq, cm);
182     } else {
183         if (*field & 1) {
184             GIC_SET_PENDING(irq, cm);
185             /* TODO: Capture is level-line is held high in the kernel */
186         }
187     }
188 }
189 
190 static void translate_active(GICState *s, int irq, int cpu,
191                              uint32_t *field, bool to_kernel)
192 {
193     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
194 
195     if (to_kernel) {
196         *field = GIC_TEST_ACTIVE(irq, cm);
197     } else {
198         if (*field & 1) {
199             GIC_SET_ACTIVE(irq, cm);
200         }
201     }
202 }
203 
204 static void translate_trigger(GICState *s, int irq, int cpu,
205                               uint32_t *field, bool to_kernel)
206 {
207     if (to_kernel) {
208         *field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
209     } else {
210         if (*field & 0x2) {
211             GIC_SET_EDGE_TRIGGER(irq);
212         }
213     }
214 }
215 
216 static void translate_priority(GICState *s, int irq, int cpu,
217                                uint32_t *field, bool to_kernel)
218 {
219     if (to_kernel) {
220         *field = GIC_GET_PRIORITY(irq, cpu) & 0xff;
221     } else {
222         gic_set_priority(s, cpu, irq, *field & 0xff, MEMTXATTRS_UNSPECIFIED);
223     }
224 }
225 
226 static void translate_targets(GICState *s, int irq, int cpu,
227                               uint32_t *field, bool to_kernel)
228 {
229     if (to_kernel) {
230         *field = s->irq_target[irq] & 0xff;
231     } else {
232         s->irq_target[irq] = *field & 0xff;
233     }
234 }
235 
236 static void translate_sgisource(GICState *s, int irq, int cpu,
237                                 uint32_t *field, bool to_kernel)
238 {
239     if (to_kernel) {
240         *field = s->sgi_pending[irq][cpu] & 0xff;
241     } else {
242         s->sgi_pending[irq][cpu] = *field & 0xff;
243     }
244 }
245 
246 /* Read a register group from the kernel VGIC */
247 static void kvm_dist_get(GICState *s, uint32_t offset, int width,
248                          int maxirq, vgic_translate_fn translate_fn)
249 {
250     uint32_t reg;
251     int i;
252     int j;
253     int irq;
254     int cpu;
255     int regsz = 32 / width; /* irqs per kernel register */
256     uint32_t field;
257 
258     for_each_irq_reg(i, maxirq, width) {
259         irq = i * regsz;
260         cpu = 0;
261         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
262             kvm_gicd_access(s, offset, cpu, &reg, false);
263             for (j = 0; j < regsz; j++) {
264                 field = extract32(reg, j * width, width);
265                 translate_fn(s, irq + j, cpu, &field, false);
266             }
267 
268             cpu++;
269         }
270         offset += 4;
271     }
272 }
273 
274 /* Write a register group to the kernel VGIC */
275 static void kvm_dist_put(GICState *s, uint32_t offset, int width,
276                          int maxirq, vgic_translate_fn translate_fn)
277 {
278     uint32_t reg;
279     int i;
280     int j;
281     int irq;
282     int cpu;
283     int regsz = 32 / width; /* irqs per kernel register */
284     uint32_t field;
285 
286     for_each_irq_reg(i, maxirq, width) {
287         irq = i * regsz;
288         cpu = 0;
289         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
290             reg = 0;
291             for (j = 0; j < regsz; j++) {
292                 translate_fn(s, irq + j, cpu, &field, true);
293                 reg = deposit32(reg, j * width, width, field);
294             }
295             kvm_gicd_access(s, offset, cpu, &reg, true);
296 
297             cpu++;
298         }
299         offset += 4;
300     }
301 }
302 
303 static void kvm_arm_gic_put(GICState *s)
304 {
305     uint32_t reg;
306     int i;
307     int cpu;
308     int num_cpu;
309     int num_irq;
310 
311     /* Note: We do the restore in a slightly different order than the save
312      * (where the order doesn't matter and is simply ordered according to the
313      * register offset values */
314 
315     /*****************************************************************
316      * Distributor State
317      */
318 
319     /* s->ctlr -> GICD_CTLR */
320     reg = s->ctlr;
321     kvm_gicd_access(s, 0x0, 0, &reg, true);
322 
323     /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
324     kvm_gicd_access(s, 0x4, 0, &reg, false);
325     num_irq = ((reg & 0x1f) + 1) * 32;
326     num_cpu = ((reg & 0xe0) >> 5) + 1;
327 
328     if (num_irq < s->num_irq) {
329             fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
330                     s->num_irq, num_irq);
331             abort();
332     } else if (num_cpu != s->num_cpu) {
333             fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
334                     s->num_cpu, num_cpu);
335             /* Did we not create the VCPUs in the kernel yet? */
336             abort();
337     }
338 
339     /* TODO: Consider checking compatibility with the IIDR ? */
340 
341     /* irq_state[n].enabled -> GICD_ISENABLERn */
342     kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
343     kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
344 
345     /* irq_state[n].group -> GICD_IGROUPRn */
346     kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group);
347 
348     /* s->irq_target[irq] -> GICD_ITARGETSRn
349      * (restore targets before pending to ensure the pending state is set on
350      * the appropriate CPU interfaces in the kernel) */
351     kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
352 
353     /* irq_state[n].trigger -> GICD_ICFGRn
354      * (restore configuration registers before pending IRQs so we treat
355      * level/edge correctly) */
356     kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
357 
358     /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
359     kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
360     kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
361 
362     /* irq_state[n].active -> GICD_ISACTIVERn */
363     kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
364     kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
365 
366 
367     /* s->priorityX[irq] -> ICD_IPRIORITYRn */
368     kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
369 
370     /* s->sgi_pending -> ICD_CPENDSGIRn */
371     kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
372     kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
373 
374 
375     /*****************************************************************
376      * CPU Interface(s) State
377      */
378 
379     for (cpu = 0; cpu < s->num_cpu; cpu++) {
380         /* s->cpu_ctlr[cpu] -> GICC_CTLR */
381         reg = s->cpu_ctlr[cpu];
382         kvm_gicc_access(s, 0x00, cpu, &reg, true);
383 
384         /* s->priority_mask[cpu] -> GICC_PMR */
385         reg = (s->priority_mask[cpu] & 0xff);
386         kvm_gicc_access(s, 0x04, cpu, &reg, true);
387 
388         /* s->bpr[cpu] -> GICC_BPR */
389         reg = (s->bpr[cpu] & 0x7);
390         kvm_gicc_access(s, 0x08, cpu, &reg, true);
391 
392         /* s->abpr[cpu] -> GICC_ABPR */
393         reg = (s->abpr[cpu] & 0x7);
394         kvm_gicc_access(s, 0x1c, cpu, &reg, true);
395 
396         /* s->apr[n][cpu] -> GICC_APRn */
397         for (i = 0; i < 4; i++) {
398             reg = s->apr[i][cpu];
399             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, true);
400         }
401     }
402 }
403 
404 static void kvm_arm_gic_get(GICState *s)
405 {
406     uint32_t reg;
407     int i;
408     int cpu;
409 
410     /*****************************************************************
411      * Distributor State
412      */
413 
414     /* GICD_CTLR -> s->ctlr */
415     kvm_gicd_access(s, 0x0, 0, &reg, false);
416     s->ctlr = reg;
417 
418     /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
419     kvm_gicd_access(s, 0x4, 0, &reg, false);
420     s->num_irq = ((reg & 0x1f) + 1) * 32;
421     s->num_cpu = ((reg & 0xe0) >> 5) + 1;
422 
423     if (s->num_irq > GIC_MAXIRQ) {
424             fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
425                     s->num_irq);
426             abort();
427     }
428 
429     /* GICD_IIDR -> ? */
430     kvm_gicd_access(s, 0x8, 0, &reg, false);
431 
432     /* Clear all the IRQ settings */
433     for (i = 0; i < s->num_irq; i++) {
434         memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
435     }
436 
437     /* GICD_IGROUPRn -> irq_state[n].group */
438     kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group);
439 
440     /* GICD_ISENABLERn -> irq_state[n].enabled */
441     kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
442 
443     /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
444     kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
445 
446     /* GICD_ISACTIVERn -> irq_state[n].active */
447     kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
448 
449     /* GICD_ICFRn -> irq_state[n].trigger */
450     kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
451 
452     /* GICD_IPRIORITYRn -> s->priorityX[irq] */
453     kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
454 
455     /* GICD_ITARGETSRn -> s->irq_target[irq] */
456     kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
457 
458     /* GICD_CPENDSGIRn -> s->sgi_pending */
459     kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
460 
461 
462     /*****************************************************************
463      * CPU Interface(s) State
464      */
465 
466     for (cpu = 0; cpu < s->num_cpu; cpu++) {
467         /* GICC_CTLR -> s->cpu_ctlr[cpu] */
468         kvm_gicc_access(s, 0x00, cpu, &reg, false);
469         s->cpu_ctlr[cpu] = reg;
470 
471         /* GICC_PMR -> s->priority_mask[cpu] */
472         kvm_gicc_access(s, 0x04, cpu, &reg, false);
473         s->priority_mask[cpu] = (reg & 0xff);
474 
475         /* GICC_BPR -> s->bpr[cpu] */
476         kvm_gicc_access(s, 0x08, cpu, &reg, false);
477         s->bpr[cpu] = (reg & 0x7);
478 
479         /* GICC_ABPR -> s->abpr[cpu] */
480         kvm_gicc_access(s, 0x1c, cpu, &reg, false);
481         s->abpr[cpu] = (reg & 0x7);
482 
483         /* GICC_APRn -> s->apr[n][cpu] */
484         for (i = 0; i < 4; i++) {
485             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, false);
486             s->apr[i][cpu] = reg;
487         }
488     }
489 }
490 
491 static void kvm_arm_gic_reset(DeviceState *dev)
492 {
493     GICState *s = ARM_GIC_COMMON(dev);
494     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
495 
496     kgc->parent_reset(dev);
497 
498     if (kvm_arm_gic_can_save_restore(s)) {
499         kvm_arm_gic_put(s);
500     }
501 }
502 
503 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
504 {
505     int i;
506     GICState *s = KVM_ARM_GIC(dev);
507     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
508     Error *local_err = NULL;
509     int ret;
510 
511     kgc->parent_realize(dev, &local_err);
512     if (local_err) {
513         error_propagate(errp, local_err);
514         return;
515     }
516 
517     if (s->security_extn) {
518         error_setg(errp, "the in-kernel VGIC does not implement the "
519                    "security extensions");
520         return;
521     }
522 
523     gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL);
524 
525     for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
526         qemu_irq irq = qdev_get_gpio_in(dev, i);
527         kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i);
528     }
529 
530     /* Try to create the device via the device control API */
531     s->dev_fd = -1;
532     ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
533     if (ret >= 0) {
534         s->dev_fd = ret;
535 
536         /* Newstyle API is used, we may have attributes */
537         if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
538             uint32_t numirqs = s->num_irq;
539             kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0,
540                               &numirqs, true);
541         }
542         /* Tell the kernel to complete VGIC initialization now */
543         if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
544                                   KVM_DEV_ARM_VGIC_CTRL_INIT)) {
545             kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
546                               KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true);
547         }
548     } else if (ret != -ENODEV && ret != -ENOTSUP) {
549         error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
550         return;
551     }
552 
553     /* Distributor */
554     kvm_arm_register_device(&s->iomem,
555                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
556                             | KVM_VGIC_V2_ADDR_TYPE_DIST,
557                             KVM_DEV_ARM_VGIC_GRP_ADDR,
558                             KVM_VGIC_V2_ADDR_TYPE_DIST,
559                             s->dev_fd);
560     /* CPU interface for current core. Unlike arm_gic, we don't
561      * provide the "interface for core #N" memory regions, because
562      * cores with a VGIC don't have those.
563      */
564     kvm_arm_register_device(&s->cpuiomem[0],
565                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
566                             | KVM_VGIC_V2_ADDR_TYPE_CPU,
567                             KVM_DEV_ARM_VGIC_GRP_ADDR,
568                             KVM_VGIC_V2_ADDR_TYPE_CPU,
569                             s->dev_fd);
570 
571     if (!kvm_arm_gic_can_save_restore(s)) {
572         error_setg(&s->migration_blocker, "This operating system kernel does "
573                                           "not support vGICv2 migration");
574         migrate_add_blocker(s->migration_blocker);
575     }
576 }
577 
578 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
579 {
580     DeviceClass *dc = DEVICE_CLASS(klass);
581     ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
582     KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
583 
584     agcc->pre_save = kvm_arm_gic_get;
585     agcc->post_load = kvm_arm_gic_put;
586     kgc->parent_realize = dc->realize;
587     kgc->parent_reset = dc->reset;
588     dc->realize = kvm_arm_gic_realize;
589     dc->reset = kvm_arm_gic_reset;
590 }
591 
592 static const TypeInfo kvm_arm_gic_info = {
593     .name = TYPE_KVM_ARM_GIC,
594     .parent = TYPE_ARM_GIC_COMMON,
595     .instance_size = sizeof(GICState),
596     .class_init = kvm_arm_gic_class_init,
597     .class_size = sizeof(KVMARMGICClass),
598 };
599 
600 static void kvm_arm_gic_register_types(void)
601 {
602     type_register_static(&kvm_arm_gic_info);
603 }
604 
605 type_init(kvm_arm_gic_register_types)
606