1 /* 2 * ARM Generic Interrupt Controller using KVM in-kernel support 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Written by Peter Maydell 6 * Save/Restore logic added by Christoffer Dall. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "hw/sysbus.h" 23 #include "sysemu/kvm.h" 24 #include "kvm_arm.h" 25 #include "gic_internal.h" 26 27 //#define DEBUG_GIC_KVM 28 29 #ifdef DEBUG_GIC_KVM 30 static const int debug_gic_kvm = 1; 31 #else 32 static const int debug_gic_kvm = 0; 33 #endif 34 35 #define DPRINTF(fmt, ...) do { \ 36 if (debug_gic_kvm) { \ 37 printf("arm_gic: " fmt , ## __VA_ARGS__); \ 38 } \ 39 } while (0) 40 41 #define TYPE_KVM_ARM_GIC "kvm-arm-gic" 42 #define KVM_ARM_GIC(obj) \ 43 OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC) 44 #define KVM_ARM_GIC_CLASS(klass) \ 45 OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC) 46 #define KVM_ARM_GIC_GET_CLASS(obj) \ 47 OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC) 48 49 typedef struct KVMARMGICClass { 50 ARMGICCommonClass parent_class; 51 DeviceRealize parent_realize; 52 void (*parent_reset)(DeviceState *dev); 53 } KVMARMGICClass; 54 55 static void kvm_arm_gic_set_irq(void *opaque, int irq, int level) 56 { 57 /* Meaning of the 'irq' parameter: 58 * [0..N-1] : external interrupts 59 * [N..N+31] : PPI (internal) interrupts for CPU 0 60 * [N+32..N+63] : PPI (internal interrupts for CPU 1 61 * ... 62 * Convert this to the kernel's desired encoding, which 63 * has separate fields in the irq number for type, 64 * CPU number and interrupt number. 65 */ 66 GICState *s = (GICState *)opaque; 67 int kvm_irq, irqtype, cpu; 68 69 if (irq < (s->num_irq - GIC_INTERNAL)) { 70 /* External interrupt. The kernel numbers these like the GIC 71 * hardware, with external interrupt IDs starting after the 72 * internal ones. 73 */ 74 irqtype = KVM_ARM_IRQ_TYPE_SPI; 75 cpu = 0; 76 irq += GIC_INTERNAL; 77 } else { 78 /* Internal interrupt: decode into (cpu, interrupt id) */ 79 irqtype = KVM_ARM_IRQ_TYPE_PPI; 80 irq -= (s->num_irq - GIC_INTERNAL); 81 cpu = irq / GIC_INTERNAL; 82 irq %= GIC_INTERNAL; 83 } 84 kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) 85 | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq; 86 87 kvm_set_irq(kvm_state, kvm_irq, !!level); 88 } 89 90 static bool kvm_arm_gic_can_save_restore(GICState *s) 91 { 92 return s->dev_fd >= 0; 93 } 94 95 static void kvm_gic_access(GICState *s, int group, int offset, 96 int cpu, uint32_t *val, bool write) 97 { 98 struct kvm_device_attr attr; 99 int type; 100 int err; 101 102 cpu = cpu & 0xff; 103 104 attr.flags = 0; 105 attr.group = group; 106 attr.attr = (((uint64_t)cpu << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & 107 KVM_DEV_ARM_VGIC_CPUID_MASK) | 108 (((uint64_t)offset << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & 109 KVM_DEV_ARM_VGIC_OFFSET_MASK); 110 attr.addr = (uintptr_t)val; 111 112 if (write) { 113 type = KVM_SET_DEVICE_ATTR; 114 } else { 115 type = KVM_GET_DEVICE_ATTR; 116 } 117 118 err = kvm_device_ioctl(s->dev_fd, type, &attr); 119 if (err < 0) { 120 fprintf(stderr, "KVM_{SET/GET}_DEVICE_ATTR failed: %s\n", 121 strerror(-err)); 122 abort(); 123 } 124 } 125 126 static void kvm_gicd_access(GICState *s, int offset, int cpu, 127 uint32_t *val, bool write) 128 { 129 kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 130 offset, cpu, val, write); 131 } 132 133 static void kvm_gicc_access(GICState *s, int offset, int cpu, 134 uint32_t *val, bool write) 135 { 136 kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_CPU_REGS, 137 offset, cpu, val, write); 138 } 139 140 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \ 141 for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++) 142 143 /* 144 * Translate from the in-kernel field for an IRQ value to/from the qemu 145 * representation. 146 */ 147 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu, 148 uint32_t *field, bool to_kernel); 149 150 /* synthetic translate function used for clear/set registers to completely 151 * clear a setting using a clear-register before setting the remaing bits 152 * using a set-register */ 153 static void translate_clear(GICState *s, int irq, int cpu, 154 uint32_t *field, bool to_kernel) 155 { 156 if (to_kernel) { 157 *field = ~0; 158 } else { 159 /* does not make sense: qemu model doesn't use set/clear regs */ 160 abort(); 161 } 162 } 163 164 static void translate_enabled(GICState *s, int irq, int cpu, 165 uint32_t *field, bool to_kernel) 166 { 167 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 168 169 if (to_kernel) { 170 *field = GIC_TEST_ENABLED(irq, cm); 171 } else { 172 if (*field & 1) { 173 GIC_SET_ENABLED(irq, cm); 174 } 175 } 176 } 177 178 static void translate_pending(GICState *s, int irq, int cpu, 179 uint32_t *field, bool to_kernel) 180 { 181 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 182 183 if (to_kernel) { 184 *field = gic_test_pending(s, irq, cm); 185 } else { 186 if (*field & 1) { 187 GIC_SET_PENDING(irq, cm); 188 /* TODO: Capture is level-line is held high in the kernel */ 189 } 190 } 191 } 192 193 static void translate_active(GICState *s, int irq, int cpu, 194 uint32_t *field, bool to_kernel) 195 { 196 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 197 198 if (to_kernel) { 199 *field = GIC_TEST_ACTIVE(irq, cm); 200 } else { 201 if (*field & 1) { 202 GIC_SET_ACTIVE(irq, cm); 203 } 204 } 205 } 206 207 static void translate_trigger(GICState *s, int irq, int cpu, 208 uint32_t *field, bool to_kernel) 209 { 210 if (to_kernel) { 211 *field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0; 212 } else { 213 if (*field & 0x2) { 214 GIC_SET_EDGE_TRIGGER(irq); 215 } 216 } 217 } 218 219 static void translate_priority(GICState *s, int irq, int cpu, 220 uint32_t *field, bool to_kernel) 221 { 222 if (to_kernel) { 223 *field = GIC_GET_PRIORITY(irq, cpu) & 0xff; 224 } else { 225 gic_set_priority(s, cpu, irq, *field & 0xff); 226 } 227 } 228 229 static void translate_targets(GICState *s, int irq, int cpu, 230 uint32_t *field, bool to_kernel) 231 { 232 if (to_kernel) { 233 *field = s->irq_target[irq] & 0xff; 234 } else { 235 s->irq_target[irq] = *field & 0xff; 236 } 237 } 238 239 static void translate_sgisource(GICState *s, int irq, int cpu, 240 uint32_t *field, bool to_kernel) 241 { 242 if (to_kernel) { 243 *field = s->sgi_pending[irq][cpu] & 0xff; 244 } else { 245 s->sgi_pending[irq][cpu] = *field & 0xff; 246 } 247 } 248 249 /* Read a register group from the kernel VGIC */ 250 static void kvm_dist_get(GICState *s, uint32_t offset, int width, 251 int maxirq, vgic_translate_fn translate_fn) 252 { 253 uint32_t reg; 254 int i; 255 int j; 256 int irq; 257 int cpu; 258 int regsz = 32 / width; /* irqs per kernel register */ 259 uint32_t field; 260 261 for_each_irq_reg(i, maxirq, width) { 262 irq = i * regsz; 263 cpu = 0; 264 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 265 kvm_gicd_access(s, offset, cpu, ®, false); 266 for (j = 0; j < regsz; j++) { 267 field = extract32(reg, j * width, width); 268 translate_fn(s, irq + j, cpu, &field, false); 269 } 270 271 cpu++; 272 } 273 offset += 4; 274 } 275 } 276 277 /* Write a register group to the kernel VGIC */ 278 static void kvm_dist_put(GICState *s, uint32_t offset, int width, 279 int maxirq, vgic_translate_fn translate_fn) 280 { 281 uint32_t reg; 282 int i; 283 int j; 284 int irq; 285 int cpu; 286 int regsz = 32 / width; /* irqs per kernel register */ 287 uint32_t field; 288 289 for_each_irq_reg(i, maxirq, width) { 290 irq = i * regsz; 291 cpu = 0; 292 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 293 reg = 0; 294 for (j = 0; j < regsz; j++) { 295 translate_fn(s, irq + j, cpu, &field, true); 296 reg = deposit32(reg, j * width, width, field); 297 } 298 kvm_gicd_access(s, offset, cpu, ®, true); 299 300 cpu++; 301 } 302 offset += 4; 303 } 304 } 305 306 static void kvm_arm_gic_put(GICState *s) 307 { 308 uint32_t reg; 309 int i; 310 int cpu; 311 int num_cpu; 312 int num_irq; 313 314 if (!kvm_arm_gic_can_save_restore(s)) { 315 DPRINTF("Cannot put kernel gic state, no kernel interface"); 316 return; 317 } 318 319 /* Note: We do the restore in a slightly different order than the save 320 * (where the order doesn't matter and is simply ordered according to the 321 * register offset values */ 322 323 /***************************************************************** 324 * Distributor State 325 */ 326 327 /* s->enabled -> GICD_CTLR */ 328 reg = s->enabled; 329 kvm_gicd_access(s, 0x0, 0, ®, true); 330 331 /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */ 332 kvm_gicd_access(s, 0x4, 0, ®, false); 333 num_irq = ((reg & 0x1f) + 1) * 32; 334 num_cpu = ((reg & 0xe0) >> 5) + 1; 335 336 if (num_irq < s->num_irq) { 337 fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n", 338 s->num_irq, num_irq); 339 abort(); 340 } else if (num_cpu != s->num_cpu) { 341 fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n", 342 s->num_cpu, num_cpu); 343 /* Did we not create the VCPUs in the kernel yet? */ 344 abort(); 345 } 346 347 /* TODO: Consider checking compatibility with the IIDR ? */ 348 349 /* irq_state[n].enabled -> GICD_ISENABLERn */ 350 kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear); 351 kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled); 352 353 /* s->irq_target[irq] -> GICD_ITARGETSRn 354 * (restore targets before pending to ensure the pending state is set on 355 * the appropriate CPU interfaces in the kernel) */ 356 kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets); 357 358 /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */ 359 kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear); 360 kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending); 361 362 /* irq_state[n].active -> GICD_ISACTIVERn */ 363 kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear); 364 kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active); 365 366 /* irq_state[n].trigger -> GICD_ICFRn */ 367 kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger); 368 369 /* s->priorityX[irq] -> ICD_IPRIORITYRn */ 370 kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority); 371 372 /* s->sgi_pending -> ICD_CPENDSGIRn */ 373 kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear); 374 kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource); 375 376 377 /***************************************************************** 378 * CPU Interface(s) State 379 */ 380 381 for (cpu = 0; cpu < s->num_cpu; cpu++) { 382 /* s->cpu_enabled[cpu] -> GICC_CTLR */ 383 reg = s->cpu_enabled[cpu]; 384 kvm_gicc_access(s, 0x00, cpu, ®, true); 385 386 /* s->priority_mask[cpu] -> GICC_PMR */ 387 reg = (s->priority_mask[cpu] & 0xff); 388 kvm_gicc_access(s, 0x04, cpu, ®, true); 389 390 /* s->bpr[cpu] -> GICC_BPR */ 391 reg = (s->bpr[cpu] & 0x7); 392 kvm_gicc_access(s, 0x08, cpu, ®, true); 393 394 /* s->abpr[cpu] -> GICC_ABPR */ 395 reg = (s->abpr[cpu] & 0x7); 396 kvm_gicc_access(s, 0x1c, cpu, ®, true); 397 398 /* s->apr[n][cpu] -> GICC_APRn */ 399 for (i = 0; i < 4; i++) { 400 reg = s->apr[i][cpu]; 401 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, true); 402 } 403 } 404 } 405 406 static void kvm_arm_gic_get(GICState *s) 407 { 408 uint32_t reg; 409 int i; 410 int cpu; 411 412 if (!kvm_arm_gic_can_save_restore(s)) { 413 DPRINTF("Cannot get kernel gic state, no kernel interface"); 414 return; 415 } 416 417 /***************************************************************** 418 * Distributor State 419 */ 420 421 /* GICD_CTLR -> s->enabled */ 422 kvm_gicd_access(s, 0x0, 0, ®, false); 423 s->enabled = reg & 1; 424 425 /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */ 426 kvm_gicd_access(s, 0x4, 0, ®, false); 427 s->num_irq = ((reg & 0x1f) + 1) * 32; 428 s->num_cpu = ((reg & 0xe0) >> 5) + 1; 429 430 if (s->num_irq > GIC_MAXIRQ) { 431 fprintf(stderr, "Too many IRQs reported from the kernel: %d\n", 432 s->num_irq); 433 abort(); 434 } 435 436 /* GICD_IIDR -> ? */ 437 kvm_gicd_access(s, 0x8, 0, ®, false); 438 439 /* Verify no GROUP 1 interrupts configured in the kernel */ 440 for_each_irq_reg(i, s->num_irq, 1) { 441 kvm_gicd_access(s, 0x80 + (i * 4), 0, ®, false); 442 if (reg != 0) { 443 fprintf(stderr, "Unsupported GICD_IGROUPRn value: %08x\n", 444 reg); 445 abort(); 446 } 447 } 448 449 /* Clear all the IRQ settings */ 450 for (i = 0; i < s->num_irq; i++) { 451 memset(&s->irq_state[i], 0, sizeof(s->irq_state[0])); 452 } 453 454 /* GICD_ISENABLERn -> irq_state[n].enabled */ 455 kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled); 456 457 /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */ 458 kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending); 459 460 /* GICD_ISACTIVERn -> irq_state[n].active */ 461 kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active); 462 463 /* GICD_ICFRn -> irq_state[n].trigger */ 464 kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger); 465 466 /* GICD_IPRIORITYRn -> s->priorityX[irq] */ 467 kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority); 468 469 /* GICD_ITARGETSRn -> s->irq_target[irq] */ 470 kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets); 471 472 /* GICD_CPENDSGIRn -> s->sgi_pending */ 473 kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource); 474 475 476 /***************************************************************** 477 * CPU Interface(s) State 478 */ 479 480 for (cpu = 0; cpu < s->num_cpu; cpu++) { 481 /* GICC_CTLR -> s->cpu_enabled[cpu] */ 482 kvm_gicc_access(s, 0x00, cpu, ®, false); 483 s->cpu_enabled[cpu] = (reg & 1); 484 485 /* GICC_PMR -> s->priority_mask[cpu] */ 486 kvm_gicc_access(s, 0x04, cpu, ®, false); 487 s->priority_mask[cpu] = (reg & 0xff); 488 489 /* GICC_BPR -> s->bpr[cpu] */ 490 kvm_gicc_access(s, 0x08, cpu, ®, false); 491 s->bpr[cpu] = (reg & 0x7); 492 493 /* GICC_ABPR -> s->abpr[cpu] */ 494 kvm_gicc_access(s, 0x1c, cpu, ®, false); 495 s->abpr[cpu] = (reg & 0x7); 496 497 /* GICC_APRn -> s->apr[n][cpu] */ 498 for (i = 0; i < 4; i++) { 499 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, false); 500 s->apr[i][cpu] = reg; 501 } 502 } 503 } 504 505 static void kvm_arm_gic_reset(DeviceState *dev) 506 { 507 GICState *s = ARM_GIC_COMMON(dev); 508 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 509 510 kgc->parent_reset(dev); 511 kvm_arm_gic_put(s); 512 } 513 514 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp) 515 { 516 int i; 517 GICState *s = KVM_ARM_GIC(dev); 518 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 519 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 520 int ret; 521 522 kgc->parent_realize(dev, errp); 523 if (error_is_set(errp)) { 524 return; 525 } 526 527 i = s->num_irq - GIC_INTERNAL; 528 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. 529 * GPIO array layout is thus: 530 * [0..N-1] SPIs 531 * [N..N+31] PPIs for CPU 0 532 * [N+32..N+63] PPIs for CPU 1 533 * ... 534 */ 535 i += (GIC_INTERNAL * s->num_cpu); 536 qdev_init_gpio_in(dev, kvm_arm_gic_set_irq, i); 537 /* We never use our outbound IRQ lines but provide them so that 538 * we maintain the same interface as the non-KVM GIC. 539 */ 540 for (i = 0; i < s->num_cpu; i++) { 541 sysbus_init_irq(sbd, &s->parent_irq[i]); 542 } 543 544 /* Try to create the device via the device control API */ 545 s->dev_fd = -1; 546 ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false); 547 if (ret >= 0) { 548 s->dev_fd = ret; 549 } else if (ret != -ENODEV && ret != -ENOTSUP) { 550 error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); 551 return; 552 } 553 554 /* Distributor */ 555 memory_region_init_reservation(&s->iomem, OBJECT(s), 556 "kvm-gic_dist", 0x1000); 557 sysbus_init_mmio(sbd, &s->iomem); 558 kvm_arm_register_device(&s->iomem, 559 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 560 | KVM_VGIC_V2_ADDR_TYPE_DIST, 561 KVM_DEV_ARM_VGIC_GRP_ADDR, 562 KVM_VGIC_V2_ADDR_TYPE_DIST, 563 s->dev_fd); 564 /* CPU interface for current core. Unlike arm_gic, we don't 565 * provide the "interface for core #N" memory regions, because 566 * cores with a VGIC don't have those. 567 */ 568 memory_region_init_reservation(&s->cpuiomem[0], OBJECT(s), 569 "kvm-gic_cpu", 0x1000); 570 sysbus_init_mmio(sbd, &s->cpuiomem[0]); 571 kvm_arm_register_device(&s->cpuiomem[0], 572 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 573 | KVM_VGIC_V2_ADDR_TYPE_CPU, 574 KVM_DEV_ARM_VGIC_GRP_ADDR, 575 KVM_VGIC_V2_ADDR_TYPE_CPU, 576 s->dev_fd); 577 } 578 579 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data) 580 { 581 DeviceClass *dc = DEVICE_CLASS(klass); 582 ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass); 583 KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass); 584 585 agcc->pre_save = kvm_arm_gic_get; 586 agcc->post_load = kvm_arm_gic_put; 587 kgc->parent_realize = dc->realize; 588 kgc->parent_reset = dc->reset; 589 dc->realize = kvm_arm_gic_realize; 590 dc->reset = kvm_arm_gic_reset; 591 } 592 593 static const TypeInfo kvm_arm_gic_info = { 594 .name = TYPE_KVM_ARM_GIC, 595 .parent = TYPE_ARM_GIC_COMMON, 596 .instance_size = sizeof(GICState), 597 .class_init = kvm_arm_gic_class_init, 598 .class_size = sizeof(KVMARMGICClass), 599 }; 600 601 static void kvm_arm_gic_register_types(void) 602 { 603 type_register_static(&kvm_arm_gic_info); 604 } 605 606 type_init(kvm_arm_gic_register_types) 607