xref: /openbmc/qemu/hw/intc/arm_gic_kvm.c (revision 786a4ea8)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Written by Peter Maydell
6  * Save/Restore logic added by Christoffer Dall.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "hw/sysbus.h"
23 #include "sysemu/kvm.h"
24 #include "kvm_arm.h"
25 #include "gic_internal.h"
26 
27 //#define DEBUG_GIC_KVM
28 
29 #ifdef DEBUG_GIC_KVM
30 static const int debug_gic_kvm = 1;
31 #else
32 static const int debug_gic_kvm = 0;
33 #endif
34 
35 #define DPRINTF(fmt, ...) do { \
36         if (debug_gic_kvm) { \
37             printf("arm_gic: " fmt , ## __VA_ARGS__); \
38         } \
39     } while (0)
40 
41 #define TYPE_KVM_ARM_GIC "kvm-arm-gic"
42 #define KVM_ARM_GIC(obj) \
43      OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC)
44 #define KVM_ARM_GIC_CLASS(klass) \
45      OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC)
46 #define KVM_ARM_GIC_GET_CLASS(obj) \
47      OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC)
48 
49 typedef struct KVMARMGICClass {
50     ARMGICCommonClass parent_class;
51     DeviceRealize parent_realize;
52     void (*parent_reset)(DeviceState *dev);
53 } KVMARMGICClass;
54 
55 static void kvm_arm_gic_set_irq(void *opaque, int irq, int level)
56 {
57     /* Meaning of the 'irq' parameter:
58      *  [0..N-1] : external interrupts
59      *  [N..N+31] : PPI (internal) interrupts for CPU 0
60      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
61      *  ...
62      * Convert this to the kernel's desired encoding, which
63      * has separate fields in the irq number for type,
64      * CPU number and interrupt number.
65      */
66     GICState *s = (GICState *)opaque;
67     int kvm_irq, irqtype, cpu;
68 
69     if (irq < (s->num_irq - GIC_INTERNAL)) {
70         /* External interrupt. The kernel numbers these like the GIC
71          * hardware, with external interrupt IDs starting after the
72          * internal ones.
73          */
74         irqtype = KVM_ARM_IRQ_TYPE_SPI;
75         cpu = 0;
76         irq += GIC_INTERNAL;
77     } else {
78         /* Internal interrupt: decode into (cpu, interrupt id) */
79         irqtype = KVM_ARM_IRQ_TYPE_PPI;
80         irq -= (s->num_irq - GIC_INTERNAL);
81         cpu = irq / GIC_INTERNAL;
82         irq %= GIC_INTERNAL;
83     }
84     kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT)
85         | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq;
86 
87     kvm_set_irq(kvm_state, kvm_irq, !!level);
88 }
89 
90 static bool kvm_arm_gic_can_save_restore(GICState *s)
91 {
92     return s->dev_fd >= 0;
93 }
94 
95 static bool kvm_gic_supports_attr(GICState *s, int group, int attrnum)
96 {
97     struct kvm_device_attr attr = {
98         .group = group,
99         .attr = attrnum,
100         .flags = 0,
101     };
102 
103     if (s->dev_fd == -1) {
104         return false;
105     }
106 
107     return kvm_device_ioctl(s->dev_fd, KVM_HAS_DEVICE_ATTR, &attr) == 0;
108 }
109 
110 static void kvm_gic_access(GICState *s, int group, int offset,
111                                    int cpu, uint32_t *val, bool write)
112 {
113     struct kvm_device_attr attr;
114     int type;
115     int err;
116 
117     cpu = cpu & 0xff;
118 
119     attr.flags = 0;
120     attr.group = group;
121     attr.attr = (((uint64_t)cpu << KVM_DEV_ARM_VGIC_CPUID_SHIFT) &
122                  KVM_DEV_ARM_VGIC_CPUID_MASK) |
123                 (((uint64_t)offset << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) &
124                  KVM_DEV_ARM_VGIC_OFFSET_MASK);
125     attr.addr = (uintptr_t)val;
126 
127     if (write) {
128         type = KVM_SET_DEVICE_ATTR;
129     } else {
130         type = KVM_GET_DEVICE_ATTR;
131     }
132 
133     err = kvm_device_ioctl(s->dev_fd, type, &attr);
134     if (err < 0) {
135         fprintf(stderr, "KVM_{SET/GET}_DEVICE_ATTR failed: %s\n",
136                 strerror(-err));
137         abort();
138     }
139 }
140 
141 static void kvm_gicd_access(GICState *s, int offset, int cpu,
142                             uint32_t *val, bool write)
143 {
144     kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
145                    offset, cpu, val, write);
146 }
147 
148 static void kvm_gicc_access(GICState *s, int offset, int cpu,
149                             uint32_t *val, bool write)
150 {
151     kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
152                    offset, cpu, val, write);
153 }
154 
155 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \
156     for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
157 
158 /*
159  * Translate from the in-kernel field for an IRQ value to/from the qemu
160  * representation.
161  */
162 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
163                                   uint32_t *field, bool to_kernel);
164 
165 /* synthetic translate function used for clear/set registers to completely
166  * clear a setting using a clear-register before setting the remaining bits
167  * using a set-register */
168 static void translate_clear(GICState *s, int irq, int cpu,
169                             uint32_t *field, bool to_kernel)
170 {
171     if (to_kernel) {
172         *field = ~0;
173     } else {
174         /* does not make sense: qemu model doesn't use set/clear regs */
175         abort();
176     }
177 }
178 
179 static void translate_enabled(GICState *s, int irq, int cpu,
180                               uint32_t *field, bool to_kernel)
181 {
182     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
183 
184     if (to_kernel) {
185         *field = GIC_TEST_ENABLED(irq, cm);
186     } else {
187         if (*field & 1) {
188             GIC_SET_ENABLED(irq, cm);
189         }
190     }
191 }
192 
193 static void translate_pending(GICState *s, int irq, int cpu,
194                               uint32_t *field, bool to_kernel)
195 {
196     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
197 
198     if (to_kernel) {
199         *field = gic_test_pending(s, irq, cm);
200     } else {
201         if (*field & 1) {
202             GIC_SET_PENDING(irq, cm);
203             /* TODO: Capture is level-line is held high in the kernel */
204         }
205     }
206 }
207 
208 static void translate_active(GICState *s, int irq, int cpu,
209                              uint32_t *field, bool to_kernel)
210 {
211     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
212 
213     if (to_kernel) {
214         *field = GIC_TEST_ACTIVE(irq, cm);
215     } else {
216         if (*field & 1) {
217             GIC_SET_ACTIVE(irq, cm);
218         }
219     }
220 }
221 
222 static void translate_trigger(GICState *s, int irq, int cpu,
223                               uint32_t *field, bool to_kernel)
224 {
225     if (to_kernel) {
226         *field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
227     } else {
228         if (*field & 0x2) {
229             GIC_SET_EDGE_TRIGGER(irq);
230         }
231     }
232 }
233 
234 static void translate_priority(GICState *s, int irq, int cpu,
235                                uint32_t *field, bool to_kernel)
236 {
237     if (to_kernel) {
238         *field = GIC_GET_PRIORITY(irq, cpu) & 0xff;
239     } else {
240         gic_set_priority(s, cpu, irq, *field & 0xff);
241     }
242 }
243 
244 static void translate_targets(GICState *s, int irq, int cpu,
245                               uint32_t *field, bool to_kernel)
246 {
247     if (to_kernel) {
248         *field = s->irq_target[irq] & 0xff;
249     } else {
250         s->irq_target[irq] = *field & 0xff;
251     }
252 }
253 
254 static void translate_sgisource(GICState *s, int irq, int cpu,
255                                 uint32_t *field, bool to_kernel)
256 {
257     if (to_kernel) {
258         *field = s->sgi_pending[irq][cpu] & 0xff;
259     } else {
260         s->sgi_pending[irq][cpu] = *field & 0xff;
261     }
262 }
263 
264 /* Read a register group from the kernel VGIC */
265 static void kvm_dist_get(GICState *s, uint32_t offset, int width,
266                          int maxirq, vgic_translate_fn translate_fn)
267 {
268     uint32_t reg;
269     int i;
270     int j;
271     int irq;
272     int cpu;
273     int regsz = 32 / width; /* irqs per kernel register */
274     uint32_t field;
275 
276     for_each_irq_reg(i, maxirq, width) {
277         irq = i * regsz;
278         cpu = 0;
279         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
280             kvm_gicd_access(s, offset, cpu, &reg, false);
281             for (j = 0; j < regsz; j++) {
282                 field = extract32(reg, j * width, width);
283                 translate_fn(s, irq + j, cpu, &field, false);
284             }
285 
286             cpu++;
287         }
288         offset += 4;
289     }
290 }
291 
292 /* Write a register group to the kernel VGIC */
293 static void kvm_dist_put(GICState *s, uint32_t offset, int width,
294                          int maxirq, vgic_translate_fn translate_fn)
295 {
296     uint32_t reg;
297     int i;
298     int j;
299     int irq;
300     int cpu;
301     int regsz = 32 / width; /* irqs per kernel register */
302     uint32_t field;
303 
304     for_each_irq_reg(i, maxirq, width) {
305         irq = i * regsz;
306         cpu = 0;
307         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
308             reg = 0;
309             for (j = 0; j < regsz; j++) {
310                 translate_fn(s, irq + j, cpu, &field, true);
311                 reg = deposit32(reg, j * width, width, field);
312             }
313             kvm_gicd_access(s, offset, cpu, &reg, true);
314 
315             cpu++;
316         }
317         offset += 4;
318     }
319 }
320 
321 static void kvm_arm_gic_put(GICState *s)
322 {
323     uint32_t reg;
324     int i;
325     int cpu;
326     int num_cpu;
327     int num_irq;
328 
329     if (!kvm_arm_gic_can_save_restore(s)) {
330             DPRINTF("Cannot put kernel gic state, no kernel interface");
331             return;
332     }
333 
334     /* Note: We do the restore in a slightly different order than the save
335      * (where the order doesn't matter and is simply ordered according to the
336      * register offset values */
337 
338     /*****************************************************************
339      * Distributor State
340      */
341 
342     /* s->enabled -> GICD_CTLR */
343     reg = s->enabled;
344     kvm_gicd_access(s, 0x0, 0, &reg, true);
345 
346     /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
347     kvm_gicd_access(s, 0x4, 0, &reg, false);
348     num_irq = ((reg & 0x1f) + 1) * 32;
349     num_cpu = ((reg & 0xe0) >> 5) + 1;
350 
351     if (num_irq < s->num_irq) {
352             fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
353                     s->num_irq, num_irq);
354             abort();
355     } else if (num_cpu != s->num_cpu) {
356             fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
357                     s->num_cpu, num_cpu);
358             /* Did we not create the VCPUs in the kernel yet? */
359             abort();
360     }
361 
362     /* TODO: Consider checking compatibility with the IIDR ? */
363 
364     /* irq_state[n].enabled -> GICD_ISENABLERn */
365     kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
366     kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
367 
368     /* s->irq_target[irq] -> GICD_ITARGETSRn
369      * (restore targets before pending to ensure the pending state is set on
370      * the appropriate CPU interfaces in the kernel) */
371     kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
372 
373     /* irq_state[n].trigger -> GICD_ICFGRn
374      * (restore configuration registers before pending IRQs so we treat
375      * level/edge correctly) */
376     kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
377 
378     /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
379     kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
380     kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
381 
382     /* irq_state[n].active -> GICD_ISACTIVERn */
383     kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
384     kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
385 
386 
387     /* s->priorityX[irq] -> ICD_IPRIORITYRn */
388     kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
389 
390     /* s->sgi_pending -> ICD_CPENDSGIRn */
391     kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
392     kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
393 
394 
395     /*****************************************************************
396      * CPU Interface(s) State
397      */
398 
399     for (cpu = 0; cpu < s->num_cpu; cpu++) {
400         /* s->cpu_enabled[cpu] -> GICC_CTLR */
401         reg = s->cpu_enabled[cpu];
402         kvm_gicc_access(s, 0x00, cpu, &reg, true);
403 
404         /* s->priority_mask[cpu] -> GICC_PMR */
405         reg = (s->priority_mask[cpu] & 0xff);
406         kvm_gicc_access(s, 0x04, cpu, &reg, true);
407 
408         /* s->bpr[cpu] -> GICC_BPR */
409         reg = (s->bpr[cpu] & 0x7);
410         kvm_gicc_access(s, 0x08, cpu, &reg, true);
411 
412         /* s->abpr[cpu] -> GICC_ABPR */
413         reg = (s->abpr[cpu] & 0x7);
414         kvm_gicc_access(s, 0x1c, cpu, &reg, true);
415 
416         /* s->apr[n][cpu] -> GICC_APRn */
417         for (i = 0; i < 4; i++) {
418             reg = s->apr[i][cpu];
419             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, true);
420         }
421     }
422 }
423 
424 static void kvm_arm_gic_get(GICState *s)
425 {
426     uint32_t reg;
427     int i;
428     int cpu;
429 
430     if (!kvm_arm_gic_can_save_restore(s)) {
431             DPRINTF("Cannot get kernel gic state, no kernel interface");
432             return;
433     }
434 
435     /*****************************************************************
436      * Distributor State
437      */
438 
439     /* GICD_CTLR -> s->enabled */
440     kvm_gicd_access(s, 0x0, 0, &reg, false);
441     s->enabled = reg & 1;
442 
443     /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
444     kvm_gicd_access(s, 0x4, 0, &reg, false);
445     s->num_irq = ((reg & 0x1f) + 1) * 32;
446     s->num_cpu = ((reg & 0xe0) >> 5) + 1;
447 
448     if (s->num_irq > GIC_MAXIRQ) {
449             fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
450                     s->num_irq);
451             abort();
452     }
453 
454     /* GICD_IIDR -> ? */
455     kvm_gicd_access(s, 0x8, 0, &reg, false);
456 
457     /* Verify no GROUP 1 interrupts configured in the kernel */
458     for_each_irq_reg(i, s->num_irq, 1) {
459         kvm_gicd_access(s, 0x80 + (i * 4), 0, &reg, false);
460         if (reg != 0) {
461             fprintf(stderr, "Unsupported GICD_IGROUPRn value: %08x\n",
462                     reg);
463             abort();
464         }
465     }
466 
467     /* Clear all the IRQ settings */
468     for (i = 0; i < s->num_irq; i++) {
469         memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
470     }
471 
472     /* GICD_ISENABLERn -> irq_state[n].enabled */
473     kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
474 
475     /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
476     kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
477 
478     /* GICD_ISACTIVERn -> irq_state[n].active */
479     kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
480 
481     /* GICD_ICFRn -> irq_state[n].trigger */
482     kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
483 
484     /* GICD_IPRIORITYRn -> s->priorityX[irq] */
485     kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
486 
487     /* GICD_ITARGETSRn -> s->irq_target[irq] */
488     kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
489 
490     /* GICD_CPENDSGIRn -> s->sgi_pending */
491     kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
492 
493 
494     /*****************************************************************
495      * CPU Interface(s) State
496      */
497 
498     for (cpu = 0; cpu < s->num_cpu; cpu++) {
499         /* GICC_CTLR -> s->cpu_enabled[cpu] */
500         kvm_gicc_access(s, 0x00, cpu, &reg, false);
501         s->cpu_enabled[cpu] = (reg & 1);
502 
503         /* GICC_PMR -> s->priority_mask[cpu] */
504         kvm_gicc_access(s, 0x04, cpu, &reg, false);
505         s->priority_mask[cpu] = (reg & 0xff);
506 
507         /* GICC_BPR -> s->bpr[cpu] */
508         kvm_gicc_access(s, 0x08, cpu, &reg, false);
509         s->bpr[cpu] = (reg & 0x7);
510 
511         /* GICC_ABPR -> s->abpr[cpu] */
512         kvm_gicc_access(s, 0x1c, cpu, &reg, false);
513         s->abpr[cpu] = (reg & 0x7);
514 
515         /* GICC_APRn -> s->apr[n][cpu] */
516         for (i = 0; i < 4; i++) {
517             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, false);
518             s->apr[i][cpu] = reg;
519         }
520     }
521 }
522 
523 static void kvm_arm_gic_reset(DeviceState *dev)
524 {
525     GICState *s = ARM_GIC_COMMON(dev);
526     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
527 
528     kgc->parent_reset(dev);
529     kvm_arm_gic_put(s);
530 }
531 
532 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
533 {
534     int i;
535     GICState *s = KVM_ARM_GIC(dev);
536     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
537     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
538     Error *local_err = NULL;
539     int ret;
540 
541     kgc->parent_realize(dev, &local_err);
542     if (local_err) {
543         error_propagate(errp, local_err);
544         return;
545     }
546 
547     i = s->num_irq - GIC_INTERNAL;
548     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
549      * GPIO array layout is thus:
550      *  [0..N-1] SPIs
551      *  [N..N+31] PPIs for CPU 0
552      *  [N+32..N+63] PPIs for CPU 1
553      *   ...
554      */
555     i += (GIC_INTERNAL * s->num_cpu);
556     qdev_init_gpio_in(dev, kvm_arm_gic_set_irq, i);
557     /* We never use our outbound IRQ lines but provide them so that
558      * we maintain the same interface as the non-KVM GIC.
559      */
560     for (i = 0; i < s->num_cpu; i++) {
561         sysbus_init_irq(sbd, &s->parent_irq[i]);
562     }
563 
564     /* Try to create the device via the device control API */
565     s->dev_fd = -1;
566     ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
567     if (ret >= 0) {
568         s->dev_fd = ret;
569     } else if (ret != -ENODEV && ret != -ENOTSUP) {
570         error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
571         return;
572     }
573 
574     if (kvm_gic_supports_attr(s, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
575         uint32_t numirqs = s->num_irq;
576         kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, 0, &numirqs, 1);
577     }
578 
579     /* Tell the kernel to complete VGIC initialization now */
580     if (kvm_gic_supports_attr(s, KVM_DEV_ARM_VGIC_GRP_CTRL,
581                               KVM_DEV_ARM_VGIC_CTRL_INIT)) {
582         kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_CTRL,
583                           KVM_DEV_ARM_VGIC_CTRL_INIT, 0, 0, 1);
584     }
585 
586     /* Distributor */
587     memory_region_init_reservation(&s->iomem, OBJECT(s),
588                                    "kvm-gic_dist", 0x1000);
589     sysbus_init_mmio(sbd, &s->iomem);
590     kvm_arm_register_device(&s->iomem,
591                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
592                             | KVM_VGIC_V2_ADDR_TYPE_DIST,
593                             KVM_DEV_ARM_VGIC_GRP_ADDR,
594                             KVM_VGIC_V2_ADDR_TYPE_DIST,
595                             s->dev_fd);
596     /* CPU interface for current core. Unlike arm_gic, we don't
597      * provide the "interface for core #N" memory regions, because
598      * cores with a VGIC don't have those.
599      */
600     memory_region_init_reservation(&s->cpuiomem[0], OBJECT(s),
601                                    "kvm-gic_cpu", 0x1000);
602     sysbus_init_mmio(sbd, &s->cpuiomem[0]);
603     kvm_arm_register_device(&s->cpuiomem[0],
604                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
605                             | KVM_VGIC_V2_ADDR_TYPE_CPU,
606                             KVM_DEV_ARM_VGIC_GRP_ADDR,
607                             KVM_VGIC_V2_ADDR_TYPE_CPU,
608                             s->dev_fd);
609 }
610 
611 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
612 {
613     DeviceClass *dc = DEVICE_CLASS(klass);
614     ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
615     KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
616 
617     agcc->pre_save = kvm_arm_gic_get;
618     agcc->post_load = kvm_arm_gic_put;
619     kgc->parent_realize = dc->realize;
620     kgc->parent_reset = dc->reset;
621     dc->realize = kvm_arm_gic_realize;
622     dc->reset = kvm_arm_gic_reset;
623 }
624 
625 static const TypeInfo kvm_arm_gic_info = {
626     .name = TYPE_KVM_ARM_GIC,
627     .parent = TYPE_ARM_GIC_COMMON,
628     .instance_size = sizeof(GICState),
629     .class_init = kvm_arm_gic_class_init,
630     .class_size = sizeof(KVMARMGICClass),
631 };
632 
633 static void kvm_arm_gic_register_types(void)
634 {
635     type_register_static(&kvm_arm_gic_info);
636 }
637 
638 type_init(kvm_arm_gic_register_types)
639