1 /* 2 * ARM Generic Interrupt Controller using KVM in-kernel support 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Written by Peter Maydell 6 * Save/Restore logic added by Christoffer Dall. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "hw/sysbus.h" 23 #include "sysemu/kvm.h" 24 #include "kvm_arm.h" 25 #include "gic_internal.h" 26 27 //#define DEBUG_GIC_KVM 28 29 #ifdef DEBUG_GIC_KVM 30 static const int debug_gic_kvm = 1; 31 #else 32 static const int debug_gic_kvm = 0; 33 #endif 34 35 #define DPRINTF(fmt, ...) do { \ 36 if (debug_gic_kvm) { \ 37 printf("arm_gic: " fmt , ## __VA_ARGS__); \ 38 } \ 39 } while (0) 40 41 #define TYPE_KVM_ARM_GIC "kvm-arm-gic" 42 #define KVM_ARM_GIC(obj) \ 43 OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC) 44 #define KVM_ARM_GIC_CLASS(klass) \ 45 OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC) 46 #define KVM_ARM_GIC_GET_CLASS(obj) \ 47 OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC) 48 49 typedef struct KVMARMGICClass { 50 ARMGICCommonClass parent_class; 51 DeviceRealize parent_realize; 52 void (*parent_reset)(DeviceState *dev); 53 } KVMARMGICClass; 54 55 static void kvm_arm_gic_set_irq(void *opaque, int irq, int level) 56 { 57 /* Meaning of the 'irq' parameter: 58 * [0..N-1] : external interrupts 59 * [N..N+31] : PPI (internal) interrupts for CPU 0 60 * [N+32..N+63] : PPI (internal interrupts for CPU 1 61 * ... 62 * Convert this to the kernel's desired encoding, which 63 * has separate fields in the irq number for type, 64 * CPU number and interrupt number. 65 */ 66 GICState *s = (GICState *)opaque; 67 int kvm_irq, irqtype, cpu; 68 69 if (irq < (s->num_irq - GIC_INTERNAL)) { 70 /* External interrupt. The kernel numbers these like the GIC 71 * hardware, with external interrupt IDs starting after the 72 * internal ones. 73 */ 74 irqtype = KVM_ARM_IRQ_TYPE_SPI; 75 cpu = 0; 76 irq += GIC_INTERNAL; 77 } else { 78 /* Internal interrupt: decode into (cpu, interrupt id) */ 79 irqtype = KVM_ARM_IRQ_TYPE_PPI; 80 irq -= (s->num_irq - GIC_INTERNAL); 81 cpu = irq / GIC_INTERNAL; 82 irq %= GIC_INTERNAL; 83 } 84 kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) 85 | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq; 86 87 kvm_set_irq(kvm_state, kvm_irq, !!level); 88 } 89 90 static bool kvm_arm_gic_can_save_restore(GICState *s) 91 { 92 return s->dev_fd >= 0; 93 } 94 95 static bool kvm_gic_supports_attr(GICState *s, int group, int attrnum) 96 { 97 struct kvm_device_attr attr = { 98 .group = group, 99 .attr = attrnum, 100 .flags = 0, 101 }; 102 103 if (s->dev_fd == -1) { 104 return false; 105 } 106 107 return kvm_device_ioctl(s->dev_fd, KVM_HAS_DEVICE_ATTR, &attr) == 0; 108 } 109 110 static void kvm_gic_access(GICState *s, int group, int offset, 111 int cpu, uint32_t *val, bool write) 112 { 113 struct kvm_device_attr attr; 114 int type; 115 int err; 116 117 cpu = cpu & 0xff; 118 119 attr.flags = 0; 120 attr.group = group; 121 attr.attr = (((uint64_t)cpu << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & 122 KVM_DEV_ARM_VGIC_CPUID_MASK) | 123 (((uint64_t)offset << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & 124 KVM_DEV_ARM_VGIC_OFFSET_MASK); 125 attr.addr = (uintptr_t)val; 126 127 if (write) { 128 type = KVM_SET_DEVICE_ATTR; 129 } else { 130 type = KVM_GET_DEVICE_ATTR; 131 } 132 133 err = kvm_device_ioctl(s->dev_fd, type, &attr); 134 if (err < 0) { 135 fprintf(stderr, "KVM_{SET/GET}_DEVICE_ATTR failed: %s\n", 136 strerror(-err)); 137 abort(); 138 } 139 } 140 141 static void kvm_gicd_access(GICState *s, int offset, int cpu, 142 uint32_t *val, bool write) 143 { 144 kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 145 offset, cpu, val, write); 146 } 147 148 static void kvm_gicc_access(GICState *s, int offset, int cpu, 149 uint32_t *val, bool write) 150 { 151 kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_CPU_REGS, 152 offset, cpu, val, write); 153 } 154 155 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \ 156 for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++) 157 158 /* 159 * Translate from the in-kernel field for an IRQ value to/from the qemu 160 * representation. 161 */ 162 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu, 163 uint32_t *field, bool to_kernel); 164 165 /* synthetic translate function used for clear/set registers to completely 166 * clear a setting using a clear-register before setting the remaining bits 167 * using a set-register */ 168 static void translate_clear(GICState *s, int irq, int cpu, 169 uint32_t *field, bool to_kernel) 170 { 171 if (to_kernel) { 172 *field = ~0; 173 } else { 174 /* does not make sense: qemu model doesn't use set/clear regs */ 175 abort(); 176 } 177 } 178 179 static void translate_enabled(GICState *s, int irq, int cpu, 180 uint32_t *field, bool to_kernel) 181 { 182 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 183 184 if (to_kernel) { 185 *field = GIC_TEST_ENABLED(irq, cm); 186 } else { 187 if (*field & 1) { 188 GIC_SET_ENABLED(irq, cm); 189 } 190 } 191 } 192 193 static void translate_pending(GICState *s, int irq, int cpu, 194 uint32_t *field, bool to_kernel) 195 { 196 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 197 198 if (to_kernel) { 199 *field = gic_test_pending(s, irq, cm); 200 } else { 201 if (*field & 1) { 202 GIC_SET_PENDING(irq, cm); 203 /* TODO: Capture is level-line is held high in the kernel */ 204 } 205 } 206 } 207 208 static void translate_active(GICState *s, int irq, int cpu, 209 uint32_t *field, bool to_kernel) 210 { 211 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 212 213 if (to_kernel) { 214 *field = GIC_TEST_ACTIVE(irq, cm); 215 } else { 216 if (*field & 1) { 217 GIC_SET_ACTIVE(irq, cm); 218 } 219 } 220 } 221 222 static void translate_trigger(GICState *s, int irq, int cpu, 223 uint32_t *field, bool to_kernel) 224 { 225 if (to_kernel) { 226 *field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0; 227 } else { 228 if (*field & 0x2) { 229 GIC_SET_EDGE_TRIGGER(irq); 230 } 231 } 232 } 233 234 static void translate_priority(GICState *s, int irq, int cpu, 235 uint32_t *field, bool to_kernel) 236 { 237 if (to_kernel) { 238 *field = GIC_GET_PRIORITY(irq, cpu) & 0xff; 239 } else { 240 gic_set_priority(s, cpu, irq, *field & 0xff); 241 } 242 } 243 244 static void translate_targets(GICState *s, int irq, int cpu, 245 uint32_t *field, bool to_kernel) 246 { 247 if (to_kernel) { 248 *field = s->irq_target[irq] & 0xff; 249 } else { 250 s->irq_target[irq] = *field & 0xff; 251 } 252 } 253 254 static void translate_sgisource(GICState *s, int irq, int cpu, 255 uint32_t *field, bool to_kernel) 256 { 257 if (to_kernel) { 258 *field = s->sgi_pending[irq][cpu] & 0xff; 259 } else { 260 s->sgi_pending[irq][cpu] = *field & 0xff; 261 } 262 } 263 264 /* Read a register group from the kernel VGIC */ 265 static void kvm_dist_get(GICState *s, uint32_t offset, int width, 266 int maxirq, vgic_translate_fn translate_fn) 267 { 268 uint32_t reg; 269 int i; 270 int j; 271 int irq; 272 int cpu; 273 int regsz = 32 / width; /* irqs per kernel register */ 274 uint32_t field; 275 276 for_each_irq_reg(i, maxirq, width) { 277 irq = i * regsz; 278 cpu = 0; 279 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 280 kvm_gicd_access(s, offset, cpu, ®, false); 281 for (j = 0; j < regsz; j++) { 282 field = extract32(reg, j * width, width); 283 translate_fn(s, irq + j, cpu, &field, false); 284 } 285 286 cpu++; 287 } 288 offset += 4; 289 } 290 } 291 292 /* Write a register group to the kernel VGIC */ 293 static void kvm_dist_put(GICState *s, uint32_t offset, int width, 294 int maxirq, vgic_translate_fn translate_fn) 295 { 296 uint32_t reg; 297 int i; 298 int j; 299 int irq; 300 int cpu; 301 int regsz = 32 / width; /* irqs per kernel register */ 302 uint32_t field; 303 304 for_each_irq_reg(i, maxirq, width) { 305 irq = i * regsz; 306 cpu = 0; 307 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 308 reg = 0; 309 for (j = 0; j < regsz; j++) { 310 translate_fn(s, irq + j, cpu, &field, true); 311 reg = deposit32(reg, j * width, width, field); 312 } 313 kvm_gicd_access(s, offset, cpu, ®, true); 314 315 cpu++; 316 } 317 offset += 4; 318 } 319 } 320 321 static void kvm_arm_gic_put(GICState *s) 322 { 323 uint32_t reg; 324 int i; 325 int cpu; 326 int num_cpu; 327 int num_irq; 328 329 if (!kvm_arm_gic_can_save_restore(s)) { 330 DPRINTF("Cannot put kernel gic state, no kernel interface"); 331 return; 332 } 333 334 /* Note: We do the restore in a slightly different order than the save 335 * (where the order doesn't matter and is simply ordered according to the 336 * register offset values */ 337 338 /***************************************************************** 339 * Distributor State 340 */ 341 342 /* s->enabled -> GICD_CTLR */ 343 reg = s->enabled; 344 kvm_gicd_access(s, 0x0, 0, ®, true); 345 346 /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */ 347 kvm_gicd_access(s, 0x4, 0, ®, false); 348 num_irq = ((reg & 0x1f) + 1) * 32; 349 num_cpu = ((reg & 0xe0) >> 5) + 1; 350 351 if (num_irq < s->num_irq) { 352 fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n", 353 s->num_irq, num_irq); 354 abort(); 355 } else if (num_cpu != s->num_cpu) { 356 fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n", 357 s->num_cpu, num_cpu); 358 /* Did we not create the VCPUs in the kernel yet? */ 359 abort(); 360 } 361 362 /* TODO: Consider checking compatibility with the IIDR ? */ 363 364 /* irq_state[n].enabled -> GICD_ISENABLERn */ 365 kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear); 366 kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled); 367 368 /* s->irq_target[irq] -> GICD_ITARGETSRn 369 * (restore targets before pending to ensure the pending state is set on 370 * the appropriate CPU interfaces in the kernel) */ 371 kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets); 372 373 /* irq_state[n].trigger -> GICD_ICFGRn 374 * (restore configuration registers before pending IRQs so we treat 375 * level/edge correctly) */ 376 kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger); 377 378 /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */ 379 kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear); 380 kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending); 381 382 /* irq_state[n].active -> GICD_ISACTIVERn */ 383 kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear); 384 kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active); 385 386 387 /* s->priorityX[irq] -> ICD_IPRIORITYRn */ 388 kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority); 389 390 /* s->sgi_pending -> ICD_CPENDSGIRn */ 391 kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear); 392 kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource); 393 394 395 /***************************************************************** 396 * CPU Interface(s) State 397 */ 398 399 for (cpu = 0; cpu < s->num_cpu; cpu++) { 400 /* s->cpu_enabled[cpu] -> GICC_CTLR */ 401 reg = s->cpu_enabled[cpu]; 402 kvm_gicc_access(s, 0x00, cpu, ®, true); 403 404 /* s->priority_mask[cpu] -> GICC_PMR */ 405 reg = (s->priority_mask[cpu] & 0xff); 406 kvm_gicc_access(s, 0x04, cpu, ®, true); 407 408 /* s->bpr[cpu] -> GICC_BPR */ 409 reg = (s->bpr[cpu] & 0x7); 410 kvm_gicc_access(s, 0x08, cpu, ®, true); 411 412 /* s->abpr[cpu] -> GICC_ABPR */ 413 reg = (s->abpr[cpu] & 0x7); 414 kvm_gicc_access(s, 0x1c, cpu, ®, true); 415 416 /* s->apr[n][cpu] -> GICC_APRn */ 417 for (i = 0; i < 4; i++) { 418 reg = s->apr[i][cpu]; 419 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, true); 420 } 421 } 422 } 423 424 static void kvm_arm_gic_get(GICState *s) 425 { 426 uint32_t reg; 427 int i; 428 int cpu; 429 430 if (!kvm_arm_gic_can_save_restore(s)) { 431 DPRINTF("Cannot get kernel gic state, no kernel interface"); 432 return; 433 } 434 435 /***************************************************************** 436 * Distributor State 437 */ 438 439 /* GICD_CTLR -> s->enabled */ 440 kvm_gicd_access(s, 0x0, 0, ®, false); 441 s->enabled = reg & 1; 442 443 /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */ 444 kvm_gicd_access(s, 0x4, 0, ®, false); 445 s->num_irq = ((reg & 0x1f) + 1) * 32; 446 s->num_cpu = ((reg & 0xe0) >> 5) + 1; 447 448 if (s->num_irq > GIC_MAXIRQ) { 449 fprintf(stderr, "Too many IRQs reported from the kernel: %d\n", 450 s->num_irq); 451 abort(); 452 } 453 454 /* GICD_IIDR -> ? */ 455 kvm_gicd_access(s, 0x8, 0, ®, false); 456 457 /* Verify no GROUP 1 interrupts configured in the kernel */ 458 for_each_irq_reg(i, s->num_irq, 1) { 459 kvm_gicd_access(s, 0x80 + (i * 4), 0, ®, false); 460 if (reg != 0) { 461 fprintf(stderr, "Unsupported GICD_IGROUPRn value: %08x\n", 462 reg); 463 abort(); 464 } 465 } 466 467 /* Clear all the IRQ settings */ 468 for (i = 0; i < s->num_irq; i++) { 469 memset(&s->irq_state[i], 0, sizeof(s->irq_state[0])); 470 } 471 472 /* GICD_ISENABLERn -> irq_state[n].enabled */ 473 kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled); 474 475 /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */ 476 kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending); 477 478 /* GICD_ISACTIVERn -> irq_state[n].active */ 479 kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active); 480 481 /* GICD_ICFRn -> irq_state[n].trigger */ 482 kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger); 483 484 /* GICD_IPRIORITYRn -> s->priorityX[irq] */ 485 kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority); 486 487 /* GICD_ITARGETSRn -> s->irq_target[irq] */ 488 kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets); 489 490 /* GICD_CPENDSGIRn -> s->sgi_pending */ 491 kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource); 492 493 494 /***************************************************************** 495 * CPU Interface(s) State 496 */ 497 498 for (cpu = 0; cpu < s->num_cpu; cpu++) { 499 /* GICC_CTLR -> s->cpu_enabled[cpu] */ 500 kvm_gicc_access(s, 0x00, cpu, ®, false); 501 s->cpu_enabled[cpu] = (reg & 1); 502 503 /* GICC_PMR -> s->priority_mask[cpu] */ 504 kvm_gicc_access(s, 0x04, cpu, ®, false); 505 s->priority_mask[cpu] = (reg & 0xff); 506 507 /* GICC_BPR -> s->bpr[cpu] */ 508 kvm_gicc_access(s, 0x08, cpu, ®, false); 509 s->bpr[cpu] = (reg & 0x7); 510 511 /* GICC_ABPR -> s->abpr[cpu] */ 512 kvm_gicc_access(s, 0x1c, cpu, ®, false); 513 s->abpr[cpu] = (reg & 0x7); 514 515 /* GICC_APRn -> s->apr[n][cpu] */ 516 for (i = 0; i < 4; i++) { 517 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, false); 518 s->apr[i][cpu] = reg; 519 } 520 } 521 } 522 523 static void kvm_arm_gic_reset(DeviceState *dev) 524 { 525 GICState *s = ARM_GIC_COMMON(dev); 526 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 527 528 kgc->parent_reset(dev); 529 kvm_arm_gic_put(s); 530 } 531 532 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp) 533 { 534 int i; 535 GICState *s = KVM_ARM_GIC(dev); 536 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 537 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 538 Error *local_err = NULL; 539 int ret; 540 541 kgc->parent_realize(dev, &local_err); 542 if (local_err) { 543 error_propagate(errp, local_err); 544 return; 545 } 546 547 i = s->num_irq - GIC_INTERNAL; 548 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. 549 * GPIO array layout is thus: 550 * [0..N-1] SPIs 551 * [N..N+31] PPIs for CPU 0 552 * [N+32..N+63] PPIs for CPU 1 553 * ... 554 */ 555 i += (GIC_INTERNAL * s->num_cpu); 556 qdev_init_gpio_in(dev, kvm_arm_gic_set_irq, i); 557 /* We never use our outbound IRQ lines but provide them so that 558 * we maintain the same interface as the non-KVM GIC. 559 */ 560 for (i = 0; i < s->num_cpu; i++) { 561 sysbus_init_irq(sbd, &s->parent_irq[i]); 562 } 563 564 /* Try to create the device via the device control API */ 565 s->dev_fd = -1; 566 ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false); 567 if (ret >= 0) { 568 s->dev_fd = ret; 569 } else if (ret != -ENODEV && ret != -ENOTSUP) { 570 error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); 571 return; 572 } 573 574 if (kvm_gic_supports_attr(s, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) { 575 uint32_t numirqs = s->num_irq; 576 kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, 0, &numirqs, 1); 577 } 578 579 /* Tell the kernel to complete VGIC initialization now */ 580 if (kvm_gic_supports_attr(s, KVM_DEV_ARM_VGIC_GRP_CTRL, 581 KVM_DEV_ARM_VGIC_CTRL_INIT)) { 582 kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_CTRL, 583 KVM_DEV_ARM_VGIC_CTRL_INIT, 0, 0, 1); 584 } 585 586 /* Distributor */ 587 memory_region_init_reservation(&s->iomem, OBJECT(s), 588 "kvm-gic_dist", 0x1000); 589 sysbus_init_mmio(sbd, &s->iomem); 590 kvm_arm_register_device(&s->iomem, 591 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 592 | KVM_VGIC_V2_ADDR_TYPE_DIST, 593 KVM_DEV_ARM_VGIC_GRP_ADDR, 594 KVM_VGIC_V2_ADDR_TYPE_DIST, 595 s->dev_fd); 596 /* CPU interface for current core. Unlike arm_gic, we don't 597 * provide the "interface for core #N" memory regions, because 598 * cores with a VGIC don't have those. 599 */ 600 memory_region_init_reservation(&s->cpuiomem[0], OBJECT(s), 601 "kvm-gic_cpu", 0x1000); 602 sysbus_init_mmio(sbd, &s->cpuiomem[0]); 603 kvm_arm_register_device(&s->cpuiomem[0], 604 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 605 | KVM_VGIC_V2_ADDR_TYPE_CPU, 606 KVM_DEV_ARM_VGIC_GRP_ADDR, 607 KVM_VGIC_V2_ADDR_TYPE_CPU, 608 s->dev_fd); 609 } 610 611 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data) 612 { 613 DeviceClass *dc = DEVICE_CLASS(klass); 614 ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass); 615 KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass); 616 617 agcc->pre_save = kvm_arm_gic_get; 618 agcc->post_load = kvm_arm_gic_put; 619 kgc->parent_realize = dc->realize; 620 kgc->parent_reset = dc->reset; 621 dc->realize = kvm_arm_gic_realize; 622 dc->reset = kvm_arm_gic_reset; 623 } 624 625 static const TypeInfo kvm_arm_gic_info = { 626 .name = TYPE_KVM_ARM_GIC, 627 .parent = TYPE_ARM_GIC_COMMON, 628 .instance_size = sizeof(GICState), 629 .class_init = kvm_arm_gic_class_init, 630 .class_size = sizeof(KVMARMGICClass), 631 }; 632 633 static void kvm_arm_gic_register_types(void) 634 { 635 type_register_static(&kvm_arm_gic_info); 636 } 637 638 type_init(kvm_arm_gic_register_types) 639