1 /* 2 * ARM Generic Interrupt Controller using KVM in-kernel support 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Written by Peter Maydell 6 * Save/Restore logic added by Christoffer Dall. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qapi/error.h" 24 #include "qemu/module.h" 25 #include "migration/blocker.h" 26 #include "sysemu/kvm.h" 27 #include "kvm_arm.h" 28 #include "gic_internal.h" 29 #include "vgic_common.h" 30 #include "qom/object.h" 31 32 #define TYPE_KVM_ARM_GIC "kvm-arm-gic" 33 typedef struct KVMARMGICClass KVMARMGICClass; 34 /* This is reusing the GICState typedef from ARM_GIC_COMMON */ 35 DECLARE_OBJ_CHECKERS(GICState, KVMARMGICClass, 36 KVM_ARM_GIC, TYPE_KVM_ARM_GIC) 37 38 struct KVMARMGICClass { 39 ARMGICCommonClass parent_class; 40 DeviceRealize parent_realize; 41 ResettablePhases parent_phases; 42 }; 43 44 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level) 45 { 46 /* Meaning of the 'irq' parameter: 47 * [0..N-1] : external interrupts 48 * [N..N+31] : PPI (internal) interrupts for CPU 0 49 * [N+32..N+63] : PPI (internal interrupts for CPU 1 50 * ... 51 * Convert this to the kernel's desired encoding, which 52 * has separate fields in the irq number for type, 53 * CPU number and interrupt number. 54 */ 55 int irqtype, cpu; 56 57 if (irq < (num_irq - GIC_INTERNAL)) { 58 /* External interrupt. The kernel numbers these like the GIC 59 * hardware, with external interrupt IDs starting after the 60 * internal ones. 61 */ 62 irqtype = KVM_ARM_IRQ_TYPE_SPI; 63 cpu = 0; 64 irq += GIC_INTERNAL; 65 } else { 66 /* Internal interrupt: decode into (cpu, interrupt id) */ 67 irqtype = KVM_ARM_IRQ_TYPE_PPI; 68 irq -= (num_irq - GIC_INTERNAL); 69 cpu = irq / GIC_INTERNAL; 70 irq %= GIC_INTERNAL; 71 } 72 kvm_arm_set_irq(cpu, irqtype, irq, !!level); 73 } 74 75 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level) 76 { 77 GICState *s = (GICState *)opaque; 78 79 kvm_arm_gic_set_irq(s->num_irq, irq, level); 80 } 81 82 static bool kvm_arm_gic_can_save_restore(GICState *s) 83 { 84 return s->dev_fd >= 0; 85 } 86 87 #define KVM_VGIC_ATTR(offset, cpu) \ 88 ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \ 89 KVM_DEV_ARM_VGIC_CPUID_MASK) | \ 90 (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \ 91 KVM_DEV_ARM_VGIC_OFFSET_MASK)) 92 93 static void kvm_gicd_access(GICState *s, int offset, int cpu, 94 uint32_t *val, bool write) 95 { 96 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 97 KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort); 98 } 99 100 static void kvm_gicc_access(GICState *s, int offset, int cpu, 101 uint32_t *val, bool write) 102 { 103 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS, 104 KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort); 105 } 106 107 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \ 108 for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++) 109 110 /* 111 * Translate from the in-kernel field for an IRQ value to/from the qemu 112 * representation. 113 */ 114 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu, 115 uint32_t *field, bool to_kernel); 116 117 /* synthetic translate function used for clear/set registers to completely 118 * clear a setting using a clear-register before setting the remaining bits 119 * using a set-register */ 120 static void translate_clear(GICState *s, int irq, int cpu, 121 uint32_t *field, bool to_kernel) 122 { 123 if (to_kernel) { 124 *field = ~0; 125 } else { 126 /* does not make sense: qemu model doesn't use set/clear regs */ 127 abort(); 128 } 129 } 130 131 static void translate_group(GICState *s, int irq, int cpu, 132 uint32_t *field, bool to_kernel) 133 { 134 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 135 136 if (to_kernel) { 137 *field = GIC_DIST_TEST_GROUP(irq, cm); 138 } else { 139 if (*field & 1) { 140 GIC_DIST_SET_GROUP(irq, cm); 141 } 142 } 143 } 144 145 static void translate_enabled(GICState *s, int irq, int cpu, 146 uint32_t *field, bool to_kernel) 147 { 148 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 149 150 if (to_kernel) { 151 *field = GIC_DIST_TEST_ENABLED(irq, cm); 152 } else { 153 if (*field & 1) { 154 GIC_DIST_SET_ENABLED(irq, cm); 155 } 156 } 157 } 158 159 static void translate_pending(GICState *s, int irq, int cpu, 160 uint32_t *field, bool to_kernel) 161 { 162 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 163 164 if (to_kernel) { 165 *field = gic_test_pending(s, irq, cm); 166 } else { 167 if (*field & 1) { 168 GIC_DIST_SET_PENDING(irq, cm); 169 /* TODO: Capture is level-line is held high in the kernel */ 170 } 171 } 172 } 173 174 static void translate_active(GICState *s, int irq, int cpu, 175 uint32_t *field, bool to_kernel) 176 { 177 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 178 179 if (to_kernel) { 180 *field = GIC_DIST_TEST_ACTIVE(irq, cm); 181 } else { 182 if (*field & 1) { 183 GIC_DIST_SET_ACTIVE(irq, cm); 184 } 185 } 186 } 187 188 static void translate_trigger(GICState *s, int irq, int cpu, 189 uint32_t *field, bool to_kernel) 190 { 191 if (to_kernel) { 192 *field = (GIC_DIST_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0; 193 } else { 194 if (*field & 0x2) { 195 GIC_DIST_SET_EDGE_TRIGGER(irq); 196 } 197 } 198 } 199 200 static void translate_priority(GICState *s, int irq, int cpu, 201 uint32_t *field, bool to_kernel) 202 { 203 if (to_kernel) { 204 *field = GIC_DIST_GET_PRIORITY(irq, cpu) & 0xff; 205 } else { 206 gic_dist_set_priority(s, cpu, irq, 207 *field & 0xff, MEMTXATTRS_UNSPECIFIED); 208 } 209 } 210 211 static void translate_targets(GICState *s, int irq, int cpu, 212 uint32_t *field, bool to_kernel) 213 { 214 if (to_kernel) { 215 *field = s->irq_target[irq] & 0xff; 216 } else { 217 s->irq_target[irq] = *field & 0xff; 218 } 219 } 220 221 static void translate_sgisource(GICState *s, int irq, int cpu, 222 uint32_t *field, bool to_kernel) 223 { 224 if (to_kernel) { 225 *field = s->sgi_pending[irq][cpu] & 0xff; 226 } else { 227 s->sgi_pending[irq][cpu] = *field & 0xff; 228 } 229 } 230 231 /* Read a register group from the kernel VGIC */ 232 static void kvm_dist_get(GICState *s, uint32_t offset, int width, 233 int maxirq, vgic_translate_fn translate_fn) 234 { 235 uint32_t reg; 236 int i; 237 int j; 238 int irq; 239 int cpu; 240 int regsz = 32 / width; /* irqs per kernel register */ 241 uint32_t field; 242 243 for_each_irq_reg(i, maxirq, width) { 244 irq = i * regsz; 245 cpu = 0; 246 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 247 kvm_gicd_access(s, offset, cpu, ®, false); 248 for (j = 0; j < regsz; j++) { 249 field = extract32(reg, j * width, width); 250 translate_fn(s, irq + j, cpu, &field, false); 251 } 252 253 cpu++; 254 } 255 offset += 4; 256 } 257 } 258 259 /* Write a register group to the kernel VGIC */ 260 static void kvm_dist_put(GICState *s, uint32_t offset, int width, 261 int maxirq, vgic_translate_fn translate_fn) 262 { 263 uint32_t reg; 264 int i; 265 int j; 266 int irq; 267 int cpu; 268 int regsz = 32 / width; /* irqs per kernel register */ 269 uint32_t field; 270 271 for_each_irq_reg(i, maxirq, width) { 272 irq = i * regsz; 273 cpu = 0; 274 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 275 reg = 0; 276 for (j = 0; j < regsz; j++) { 277 translate_fn(s, irq + j, cpu, &field, true); 278 reg = deposit32(reg, j * width, width, field); 279 } 280 kvm_gicd_access(s, offset, cpu, ®, true); 281 282 cpu++; 283 } 284 offset += 4; 285 } 286 } 287 288 static void kvm_arm_gic_put(GICState *s) 289 { 290 uint32_t reg; 291 int i; 292 int cpu; 293 int num_cpu; 294 int num_irq; 295 296 /* Note: We do the restore in a slightly different order than the save 297 * (where the order doesn't matter and is simply ordered according to the 298 * register offset values */ 299 300 /***************************************************************** 301 * Distributor State 302 */ 303 304 /* s->ctlr -> GICD_CTLR */ 305 reg = s->ctlr; 306 kvm_gicd_access(s, 0x0, 0, ®, true); 307 308 /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */ 309 kvm_gicd_access(s, 0x4, 0, ®, false); 310 num_irq = ((reg & 0x1f) + 1) * 32; 311 num_cpu = ((reg & 0xe0) >> 5) + 1; 312 313 if (num_irq < s->num_irq) { 314 fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n", 315 s->num_irq, num_irq); 316 abort(); 317 } else if (num_cpu != s->num_cpu) { 318 fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n", 319 s->num_cpu, num_cpu); 320 /* Did we not create the VCPUs in the kernel yet? */ 321 abort(); 322 } 323 324 /* TODO: Consider checking compatibility with the IIDR ? */ 325 326 /* irq_state[n].enabled -> GICD_ISENABLERn */ 327 kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear); 328 kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled); 329 330 /* irq_state[n].group -> GICD_IGROUPRn */ 331 kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group); 332 333 /* s->irq_target[irq] -> GICD_ITARGETSRn 334 * (restore targets before pending to ensure the pending state is set on 335 * the appropriate CPU interfaces in the kernel) */ 336 kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets); 337 338 /* irq_state[n].trigger -> GICD_ICFGRn 339 * (restore configuration registers before pending IRQs so we treat 340 * level/edge correctly) */ 341 kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger); 342 343 /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */ 344 kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear); 345 kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending); 346 347 /* irq_state[n].active -> GICD_ISACTIVERn */ 348 kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear); 349 kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active); 350 351 352 /* s->priorityX[irq] -> ICD_IPRIORITYRn */ 353 kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority); 354 355 /* s->sgi_pending -> ICD_CPENDSGIRn */ 356 kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear); 357 kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource); 358 359 360 /***************************************************************** 361 * CPU Interface(s) State 362 */ 363 364 for (cpu = 0; cpu < s->num_cpu; cpu++) { 365 /* s->cpu_ctlr[cpu] -> GICC_CTLR */ 366 reg = s->cpu_ctlr[cpu]; 367 kvm_gicc_access(s, 0x00, cpu, ®, true); 368 369 /* s->priority_mask[cpu] -> GICC_PMR */ 370 reg = (s->priority_mask[cpu] & 0xff); 371 kvm_gicc_access(s, 0x04, cpu, ®, true); 372 373 /* s->bpr[cpu] -> GICC_BPR */ 374 reg = (s->bpr[cpu] & 0x7); 375 kvm_gicc_access(s, 0x08, cpu, ®, true); 376 377 /* s->abpr[cpu] -> GICC_ABPR */ 378 reg = (s->abpr[cpu] & 0x7); 379 kvm_gicc_access(s, 0x1c, cpu, ®, true); 380 381 /* s->apr[n][cpu] -> GICC_APRn */ 382 for (i = 0; i < 4; i++) { 383 reg = s->apr[i][cpu]; 384 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, true); 385 } 386 } 387 } 388 389 static void kvm_arm_gic_get(GICState *s) 390 { 391 uint32_t reg; 392 int i; 393 int cpu; 394 395 /***************************************************************** 396 * Distributor State 397 */ 398 399 /* GICD_CTLR -> s->ctlr */ 400 kvm_gicd_access(s, 0x0, 0, ®, false); 401 s->ctlr = reg; 402 403 /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */ 404 kvm_gicd_access(s, 0x4, 0, ®, false); 405 s->num_irq = ((reg & 0x1f) + 1) * 32; 406 s->num_cpu = ((reg & 0xe0) >> 5) + 1; 407 408 if (s->num_irq > GIC_MAXIRQ) { 409 fprintf(stderr, "Too many IRQs reported from the kernel: %d\n", 410 s->num_irq); 411 abort(); 412 } 413 414 /* GICD_IIDR -> ? */ 415 kvm_gicd_access(s, 0x8, 0, ®, false); 416 417 /* Clear all the IRQ settings */ 418 for (i = 0; i < s->num_irq; i++) { 419 memset(&s->irq_state[i], 0, sizeof(s->irq_state[0])); 420 } 421 422 /* GICD_IGROUPRn -> irq_state[n].group */ 423 kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group); 424 425 /* GICD_ISENABLERn -> irq_state[n].enabled */ 426 kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled); 427 428 /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */ 429 kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending); 430 431 /* GICD_ISACTIVERn -> irq_state[n].active */ 432 kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active); 433 434 /* GICD_ICFRn -> irq_state[n].trigger */ 435 kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger); 436 437 /* GICD_IPRIORITYRn -> s->priorityX[irq] */ 438 kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority); 439 440 /* GICD_ITARGETSRn -> s->irq_target[irq] */ 441 kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets); 442 443 /* GICD_CPENDSGIRn -> s->sgi_pending */ 444 kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource); 445 446 447 /***************************************************************** 448 * CPU Interface(s) State 449 */ 450 451 for (cpu = 0; cpu < s->num_cpu; cpu++) { 452 /* GICC_CTLR -> s->cpu_ctlr[cpu] */ 453 kvm_gicc_access(s, 0x00, cpu, ®, false); 454 s->cpu_ctlr[cpu] = reg; 455 456 /* GICC_PMR -> s->priority_mask[cpu] */ 457 kvm_gicc_access(s, 0x04, cpu, ®, false); 458 s->priority_mask[cpu] = (reg & 0xff); 459 460 /* GICC_BPR -> s->bpr[cpu] */ 461 kvm_gicc_access(s, 0x08, cpu, ®, false); 462 s->bpr[cpu] = (reg & 0x7); 463 464 /* GICC_ABPR -> s->abpr[cpu] */ 465 kvm_gicc_access(s, 0x1c, cpu, ®, false); 466 s->abpr[cpu] = (reg & 0x7); 467 468 /* GICC_APRn -> s->apr[n][cpu] */ 469 for (i = 0; i < 4; i++) { 470 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, false); 471 s->apr[i][cpu] = reg; 472 } 473 } 474 } 475 476 static void kvm_arm_gic_reset_hold(Object *obj, ResetType type) 477 { 478 GICState *s = ARM_GIC_COMMON(obj); 479 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 480 481 if (kgc->parent_phases.hold) { 482 kgc->parent_phases.hold(obj, type); 483 } 484 485 if (kvm_arm_gic_can_save_restore(s)) { 486 kvm_arm_gic_put(s); 487 } 488 } 489 490 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp) 491 { 492 int i; 493 GICState *s = KVM_ARM_GIC(dev); 494 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 495 Error *local_err = NULL; 496 int ret; 497 498 kgc->parent_realize(dev, &local_err); 499 if (local_err) { 500 error_propagate(errp, local_err); 501 return; 502 } 503 504 if (s->security_extn) { 505 error_setg(errp, "the in-kernel VGIC does not implement the " 506 "security extensions"); 507 return; 508 } 509 510 if (s->virt_extn) { 511 error_setg(errp, "the in-kernel VGIC does not implement the " 512 "virtualization extensions"); 513 return; 514 } 515 516 if (!kvm_arm_gic_can_save_restore(s)) { 517 error_setg(&s->migration_blocker, "This operating system kernel does " 518 "not support vGICv2 migration"); 519 if (migrate_add_blocker(&s->migration_blocker, errp) < 0) { 520 return; 521 } 522 } 523 524 gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL, NULL); 525 526 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) { 527 qemu_irq irq = qdev_get_gpio_in(dev, i); 528 kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i); 529 } 530 531 /* Try to create the device via the device control API */ 532 s->dev_fd = -1; 533 ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false); 534 if (ret >= 0) { 535 s->dev_fd = ret; 536 537 /* Newstyle API is used, we may have attributes */ 538 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) { 539 uint32_t numirqs = s->num_irq; 540 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, 541 &numirqs, true, &error_abort); 542 } 543 /* Tell the kernel to complete VGIC initialization now */ 544 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 545 KVM_DEV_ARM_VGIC_CTRL_INIT)) { 546 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 547 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, 548 &error_abort); 549 } 550 } else { 551 error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); 552 error_append_hint(errp, 553 "Perhaps the host CPU does not support GICv2?\n"); 554 return; 555 } 556 557 /* Distributor */ 558 kvm_arm_register_device(&s->iomem, 559 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 560 | KVM_VGIC_V2_ADDR_TYPE_DIST, 561 KVM_DEV_ARM_VGIC_GRP_ADDR, 562 KVM_VGIC_V2_ADDR_TYPE_DIST, 563 s->dev_fd, 0); 564 /* CPU interface for current core. Unlike arm_gic, we don't 565 * provide the "interface for core #N" memory regions, because 566 * cores with a VGIC don't have those. 567 */ 568 kvm_arm_register_device(&s->cpuiomem[0], 569 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 570 | KVM_VGIC_V2_ADDR_TYPE_CPU, 571 KVM_DEV_ARM_VGIC_GRP_ADDR, 572 KVM_VGIC_V2_ADDR_TYPE_CPU, 573 s->dev_fd, 0); 574 575 if (kvm_has_gsi_routing()) { 576 /* set up irq routing */ 577 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) { 578 kvm_irqchip_add_irq_route(kvm_state, i, 0, i); 579 } 580 581 kvm_gsi_routing_allowed = true; 582 583 kvm_irqchip_commit_routes(kvm_state); 584 } 585 } 586 587 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data) 588 { 589 DeviceClass *dc = DEVICE_CLASS(klass); 590 ResettableClass *rc = RESETTABLE_CLASS(klass); 591 ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass); 592 KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass); 593 594 agcc->pre_save = kvm_arm_gic_get; 595 agcc->post_load = kvm_arm_gic_put; 596 device_class_set_parent_realize(dc, kvm_arm_gic_realize, 597 &kgc->parent_realize); 598 resettable_class_set_parent_phases(rc, NULL, kvm_arm_gic_reset_hold, NULL, 599 &kgc->parent_phases); 600 } 601 602 static const TypeInfo kvm_arm_gic_info = { 603 .name = TYPE_KVM_ARM_GIC, 604 .parent = TYPE_ARM_GIC_COMMON, 605 .instance_size = sizeof(GICState), 606 .class_init = kvm_arm_gic_class_init, 607 .class_size = sizeof(KVMARMGICClass), 608 }; 609 610 static void kvm_arm_gic_register_types(void) 611 { 612 type_register_static(&kvm_arm_gic_info); 613 } 614 615 type_init(kvm_arm_gic_register_types) 616