1 /* 2 * ARM Generic Interrupt Controller using KVM in-kernel support 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Written by Peter Maydell 6 * Save/Restore logic added by Christoffer Dall. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "hw/sysbus.h" 24 #include "migration/migration.h" 25 #include "sysemu/kvm.h" 26 #include "kvm_arm.h" 27 #include "gic_internal.h" 28 #include "vgic_common.h" 29 30 //#define DEBUG_GIC_KVM 31 32 #ifdef DEBUG_GIC_KVM 33 static const int debug_gic_kvm = 1; 34 #else 35 static const int debug_gic_kvm = 0; 36 #endif 37 38 #define DPRINTF(fmt, ...) do { \ 39 if (debug_gic_kvm) { \ 40 printf("arm_gic: " fmt , ## __VA_ARGS__); \ 41 } \ 42 } while (0) 43 44 #define TYPE_KVM_ARM_GIC "kvm-arm-gic" 45 #define KVM_ARM_GIC(obj) \ 46 OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC) 47 #define KVM_ARM_GIC_CLASS(klass) \ 48 OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC) 49 #define KVM_ARM_GIC_GET_CLASS(obj) \ 50 OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC) 51 52 typedef struct KVMARMGICClass { 53 ARMGICCommonClass parent_class; 54 DeviceRealize parent_realize; 55 void (*parent_reset)(DeviceState *dev); 56 } KVMARMGICClass; 57 58 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level) 59 { 60 /* Meaning of the 'irq' parameter: 61 * [0..N-1] : external interrupts 62 * [N..N+31] : PPI (internal) interrupts for CPU 0 63 * [N+32..N+63] : PPI (internal interrupts for CPU 1 64 * ... 65 * Convert this to the kernel's desired encoding, which 66 * has separate fields in the irq number for type, 67 * CPU number and interrupt number. 68 */ 69 int kvm_irq, irqtype, cpu; 70 71 if (irq < (num_irq - GIC_INTERNAL)) { 72 /* External interrupt. The kernel numbers these like the GIC 73 * hardware, with external interrupt IDs starting after the 74 * internal ones. 75 */ 76 irqtype = KVM_ARM_IRQ_TYPE_SPI; 77 cpu = 0; 78 irq += GIC_INTERNAL; 79 } else { 80 /* Internal interrupt: decode into (cpu, interrupt id) */ 81 irqtype = KVM_ARM_IRQ_TYPE_PPI; 82 irq -= (num_irq - GIC_INTERNAL); 83 cpu = irq / GIC_INTERNAL; 84 irq %= GIC_INTERNAL; 85 } 86 kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) 87 | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq; 88 89 kvm_set_irq(kvm_state, kvm_irq, !!level); 90 } 91 92 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level) 93 { 94 GICState *s = (GICState *)opaque; 95 96 kvm_arm_gic_set_irq(s->num_irq, irq, level); 97 } 98 99 static bool kvm_arm_gic_can_save_restore(GICState *s) 100 { 101 return s->dev_fd >= 0; 102 } 103 104 #define KVM_VGIC_ATTR(offset, cpu) \ 105 ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \ 106 KVM_DEV_ARM_VGIC_CPUID_MASK) | \ 107 (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \ 108 KVM_DEV_ARM_VGIC_OFFSET_MASK)) 109 110 static void kvm_gicd_access(GICState *s, int offset, int cpu, 111 uint32_t *val, bool write) 112 { 113 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 114 KVM_VGIC_ATTR(offset, cpu), val, write); 115 } 116 117 static void kvm_gicc_access(GICState *s, int offset, int cpu, 118 uint32_t *val, bool write) 119 { 120 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS, 121 KVM_VGIC_ATTR(offset, cpu), val, write); 122 } 123 124 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \ 125 for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++) 126 127 /* 128 * Translate from the in-kernel field for an IRQ value to/from the qemu 129 * representation. 130 */ 131 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu, 132 uint32_t *field, bool to_kernel); 133 134 /* synthetic translate function used for clear/set registers to completely 135 * clear a setting using a clear-register before setting the remaining bits 136 * using a set-register */ 137 static void translate_clear(GICState *s, int irq, int cpu, 138 uint32_t *field, bool to_kernel) 139 { 140 if (to_kernel) { 141 *field = ~0; 142 } else { 143 /* does not make sense: qemu model doesn't use set/clear regs */ 144 abort(); 145 } 146 } 147 148 static void translate_group(GICState *s, int irq, int cpu, 149 uint32_t *field, bool to_kernel) 150 { 151 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 152 153 if (to_kernel) { 154 *field = GIC_TEST_GROUP(irq, cm); 155 } else { 156 if (*field & 1) { 157 GIC_SET_GROUP(irq, cm); 158 } 159 } 160 } 161 162 static void translate_enabled(GICState *s, int irq, int cpu, 163 uint32_t *field, bool to_kernel) 164 { 165 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 166 167 if (to_kernel) { 168 *field = GIC_TEST_ENABLED(irq, cm); 169 } else { 170 if (*field & 1) { 171 GIC_SET_ENABLED(irq, cm); 172 } 173 } 174 } 175 176 static void translate_pending(GICState *s, int irq, int cpu, 177 uint32_t *field, bool to_kernel) 178 { 179 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 180 181 if (to_kernel) { 182 *field = gic_test_pending(s, irq, cm); 183 } else { 184 if (*field & 1) { 185 GIC_SET_PENDING(irq, cm); 186 /* TODO: Capture is level-line is held high in the kernel */ 187 } 188 } 189 } 190 191 static void translate_active(GICState *s, int irq, int cpu, 192 uint32_t *field, bool to_kernel) 193 { 194 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 195 196 if (to_kernel) { 197 *field = GIC_TEST_ACTIVE(irq, cm); 198 } else { 199 if (*field & 1) { 200 GIC_SET_ACTIVE(irq, cm); 201 } 202 } 203 } 204 205 static void translate_trigger(GICState *s, int irq, int cpu, 206 uint32_t *field, bool to_kernel) 207 { 208 if (to_kernel) { 209 *field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0; 210 } else { 211 if (*field & 0x2) { 212 GIC_SET_EDGE_TRIGGER(irq); 213 } 214 } 215 } 216 217 static void translate_priority(GICState *s, int irq, int cpu, 218 uint32_t *field, bool to_kernel) 219 { 220 if (to_kernel) { 221 *field = GIC_GET_PRIORITY(irq, cpu) & 0xff; 222 } else { 223 gic_set_priority(s, cpu, irq, *field & 0xff, MEMTXATTRS_UNSPECIFIED); 224 } 225 } 226 227 static void translate_targets(GICState *s, int irq, int cpu, 228 uint32_t *field, bool to_kernel) 229 { 230 if (to_kernel) { 231 *field = s->irq_target[irq] & 0xff; 232 } else { 233 s->irq_target[irq] = *field & 0xff; 234 } 235 } 236 237 static void translate_sgisource(GICState *s, int irq, int cpu, 238 uint32_t *field, bool to_kernel) 239 { 240 if (to_kernel) { 241 *field = s->sgi_pending[irq][cpu] & 0xff; 242 } else { 243 s->sgi_pending[irq][cpu] = *field & 0xff; 244 } 245 } 246 247 /* Read a register group from the kernel VGIC */ 248 static void kvm_dist_get(GICState *s, uint32_t offset, int width, 249 int maxirq, vgic_translate_fn translate_fn) 250 { 251 uint32_t reg; 252 int i; 253 int j; 254 int irq; 255 int cpu; 256 int regsz = 32 / width; /* irqs per kernel register */ 257 uint32_t field; 258 259 for_each_irq_reg(i, maxirq, width) { 260 irq = i * regsz; 261 cpu = 0; 262 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 263 kvm_gicd_access(s, offset, cpu, ®, false); 264 for (j = 0; j < regsz; j++) { 265 field = extract32(reg, j * width, width); 266 translate_fn(s, irq + j, cpu, &field, false); 267 } 268 269 cpu++; 270 } 271 offset += 4; 272 } 273 } 274 275 /* Write a register group to the kernel VGIC */ 276 static void kvm_dist_put(GICState *s, uint32_t offset, int width, 277 int maxirq, vgic_translate_fn translate_fn) 278 { 279 uint32_t reg; 280 int i; 281 int j; 282 int irq; 283 int cpu; 284 int regsz = 32 / width; /* irqs per kernel register */ 285 uint32_t field; 286 287 for_each_irq_reg(i, maxirq, width) { 288 irq = i * regsz; 289 cpu = 0; 290 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 291 reg = 0; 292 for (j = 0; j < regsz; j++) { 293 translate_fn(s, irq + j, cpu, &field, true); 294 reg = deposit32(reg, j * width, width, field); 295 } 296 kvm_gicd_access(s, offset, cpu, ®, true); 297 298 cpu++; 299 } 300 offset += 4; 301 } 302 } 303 304 static void kvm_arm_gic_put(GICState *s) 305 { 306 uint32_t reg; 307 int i; 308 int cpu; 309 int num_cpu; 310 int num_irq; 311 312 /* Note: We do the restore in a slightly different order than the save 313 * (where the order doesn't matter and is simply ordered according to the 314 * register offset values */ 315 316 /***************************************************************** 317 * Distributor State 318 */ 319 320 /* s->ctlr -> GICD_CTLR */ 321 reg = s->ctlr; 322 kvm_gicd_access(s, 0x0, 0, ®, true); 323 324 /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */ 325 kvm_gicd_access(s, 0x4, 0, ®, false); 326 num_irq = ((reg & 0x1f) + 1) * 32; 327 num_cpu = ((reg & 0xe0) >> 5) + 1; 328 329 if (num_irq < s->num_irq) { 330 fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n", 331 s->num_irq, num_irq); 332 abort(); 333 } else if (num_cpu != s->num_cpu) { 334 fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n", 335 s->num_cpu, num_cpu); 336 /* Did we not create the VCPUs in the kernel yet? */ 337 abort(); 338 } 339 340 /* TODO: Consider checking compatibility with the IIDR ? */ 341 342 /* irq_state[n].enabled -> GICD_ISENABLERn */ 343 kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear); 344 kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled); 345 346 /* irq_state[n].group -> GICD_IGROUPRn */ 347 kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group); 348 349 /* s->irq_target[irq] -> GICD_ITARGETSRn 350 * (restore targets before pending to ensure the pending state is set on 351 * the appropriate CPU interfaces in the kernel) */ 352 kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets); 353 354 /* irq_state[n].trigger -> GICD_ICFGRn 355 * (restore configuration registers before pending IRQs so we treat 356 * level/edge correctly) */ 357 kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger); 358 359 /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */ 360 kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear); 361 kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending); 362 363 /* irq_state[n].active -> GICD_ISACTIVERn */ 364 kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear); 365 kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active); 366 367 368 /* s->priorityX[irq] -> ICD_IPRIORITYRn */ 369 kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority); 370 371 /* s->sgi_pending -> ICD_CPENDSGIRn */ 372 kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear); 373 kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource); 374 375 376 /***************************************************************** 377 * CPU Interface(s) State 378 */ 379 380 for (cpu = 0; cpu < s->num_cpu; cpu++) { 381 /* s->cpu_ctlr[cpu] -> GICC_CTLR */ 382 reg = s->cpu_ctlr[cpu]; 383 kvm_gicc_access(s, 0x00, cpu, ®, true); 384 385 /* s->priority_mask[cpu] -> GICC_PMR */ 386 reg = (s->priority_mask[cpu] & 0xff); 387 kvm_gicc_access(s, 0x04, cpu, ®, true); 388 389 /* s->bpr[cpu] -> GICC_BPR */ 390 reg = (s->bpr[cpu] & 0x7); 391 kvm_gicc_access(s, 0x08, cpu, ®, true); 392 393 /* s->abpr[cpu] -> GICC_ABPR */ 394 reg = (s->abpr[cpu] & 0x7); 395 kvm_gicc_access(s, 0x1c, cpu, ®, true); 396 397 /* s->apr[n][cpu] -> GICC_APRn */ 398 for (i = 0; i < 4; i++) { 399 reg = s->apr[i][cpu]; 400 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, true); 401 } 402 } 403 } 404 405 static void kvm_arm_gic_get(GICState *s) 406 { 407 uint32_t reg; 408 int i; 409 int cpu; 410 411 /***************************************************************** 412 * Distributor State 413 */ 414 415 /* GICD_CTLR -> s->ctlr */ 416 kvm_gicd_access(s, 0x0, 0, ®, false); 417 s->ctlr = reg; 418 419 /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */ 420 kvm_gicd_access(s, 0x4, 0, ®, false); 421 s->num_irq = ((reg & 0x1f) + 1) * 32; 422 s->num_cpu = ((reg & 0xe0) >> 5) + 1; 423 424 if (s->num_irq > GIC_MAXIRQ) { 425 fprintf(stderr, "Too many IRQs reported from the kernel: %d\n", 426 s->num_irq); 427 abort(); 428 } 429 430 /* GICD_IIDR -> ? */ 431 kvm_gicd_access(s, 0x8, 0, ®, false); 432 433 /* Clear all the IRQ settings */ 434 for (i = 0; i < s->num_irq; i++) { 435 memset(&s->irq_state[i], 0, sizeof(s->irq_state[0])); 436 } 437 438 /* GICD_IGROUPRn -> irq_state[n].group */ 439 kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group); 440 441 /* GICD_ISENABLERn -> irq_state[n].enabled */ 442 kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled); 443 444 /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */ 445 kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending); 446 447 /* GICD_ISACTIVERn -> irq_state[n].active */ 448 kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active); 449 450 /* GICD_ICFRn -> irq_state[n].trigger */ 451 kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger); 452 453 /* GICD_IPRIORITYRn -> s->priorityX[irq] */ 454 kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority); 455 456 /* GICD_ITARGETSRn -> s->irq_target[irq] */ 457 kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets); 458 459 /* GICD_CPENDSGIRn -> s->sgi_pending */ 460 kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource); 461 462 463 /***************************************************************** 464 * CPU Interface(s) State 465 */ 466 467 for (cpu = 0; cpu < s->num_cpu; cpu++) { 468 /* GICC_CTLR -> s->cpu_ctlr[cpu] */ 469 kvm_gicc_access(s, 0x00, cpu, ®, false); 470 s->cpu_ctlr[cpu] = reg; 471 472 /* GICC_PMR -> s->priority_mask[cpu] */ 473 kvm_gicc_access(s, 0x04, cpu, ®, false); 474 s->priority_mask[cpu] = (reg & 0xff); 475 476 /* GICC_BPR -> s->bpr[cpu] */ 477 kvm_gicc_access(s, 0x08, cpu, ®, false); 478 s->bpr[cpu] = (reg & 0x7); 479 480 /* GICC_ABPR -> s->abpr[cpu] */ 481 kvm_gicc_access(s, 0x1c, cpu, ®, false); 482 s->abpr[cpu] = (reg & 0x7); 483 484 /* GICC_APRn -> s->apr[n][cpu] */ 485 for (i = 0; i < 4; i++) { 486 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, false); 487 s->apr[i][cpu] = reg; 488 } 489 } 490 } 491 492 static void kvm_arm_gic_reset(DeviceState *dev) 493 { 494 GICState *s = ARM_GIC_COMMON(dev); 495 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 496 497 kgc->parent_reset(dev); 498 499 if (kvm_arm_gic_can_save_restore(s)) { 500 kvm_arm_gic_put(s); 501 } 502 } 503 504 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp) 505 { 506 int i; 507 GICState *s = KVM_ARM_GIC(dev); 508 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 509 Error *local_err = NULL; 510 int ret; 511 512 kgc->parent_realize(dev, &local_err); 513 if (local_err) { 514 error_propagate(errp, local_err); 515 return; 516 } 517 518 if (s->security_extn) { 519 error_setg(errp, "the in-kernel VGIC does not implement the " 520 "security extensions"); 521 return; 522 } 523 524 gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL); 525 526 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) { 527 qemu_irq irq = qdev_get_gpio_in(dev, i); 528 kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i); 529 } 530 531 /* Try to create the device via the device control API */ 532 s->dev_fd = -1; 533 ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false); 534 if (ret >= 0) { 535 s->dev_fd = ret; 536 537 /* Newstyle API is used, we may have attributes */ 538 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) { 539 uint32_t numirqs = s->num_irq; 540 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, 541 &numirqs, true); 542 } 543 /* Tell the kernel to complete VGIC initialization now */ 544 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 545 KVM_DEV_ARM_VGIC_CTRL_INIT)) { 546 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 547 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true); 548 } 549 } else if (ret != -ENODEV && ret != -ENOTSUP) { 550 error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); 551 return; 552 } 553 554 /* Distributor */ 555 kvm_arm_register_device(&s->iomem, 556 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 557 | KVM_VGIC_V2_ADDR_TYPE_DIST, 558 KVM_DEV_ARM_VGIC_GRP_ADDR, 559 KVM_VGIC_V2_ADDR_TYPE_DIST, 560 s->dev_fd); 561 /* CPU interface for current core. Unlike arm_gic, we don't 562 * provide the "interface for core #N" memory regions, because 563 * cores with a VGIC don't have those. 564 */ 565 kvm_arm_register_device(&s->cpuiomem[0], 566 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 567 | KVM_VGIC_V2_ADDR_TYPE_CPU, 568 KVM_DEV_ARM_VGIC_GRP_ADDR, 569 KVM_VGIC_V2_ADDR_TYPE_CPU, 570 s->dev_fd); 571 572 if (!kvm_arm_gic_can_save_restore(s)) { 573 error_setg(&s->migration_blocker, "This operating system kernel does " 574 "not support vGICv2 migration"); 575 migrate_add_blocker(s->migration_blocker); 576 } 577 } 578 579 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data) 580 { 581 DeviceClass *dc = DEVICE_CLASS(klass); 582 ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass); 583 KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass); 584 585 agcc->pre_save = kvm_arm_gic_get; 586 agcc->post_load = kvm_arm_gic_put; 587 kgc->parent_realize = dc->realize; 588 kgc->parent_reset = dc->reset; 589 dc->realize = kvm_arm_gic_realize; 590 dc->reset = kvm_arm_gic_reset; 591 } 592 593 static const TypeInfo kvm_arm_gic_info = { 594 .name = TYPE_KVM_ARM_GIC, 595 .parent = TYPE_ARM_GIC_COMMON, 596 .instance_size = sizeof(GICState), 597 .class_init = kvm_arm_gic_class_init, 598 .class_size = sizeof(KVMARMGICClass), 599 }; 600 601 static void kvm_arm_gic_register_types(void) 602 { 603 type_register_static(&kvm_arm_gic_info); 604 } 605 606 type_init(kvm_arm_gic_register_types) 607