xref: /openbmc/qemu/hw/intc/arm_gic_kvm.c (revision 61d9f32b)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Written by Peter Maydell
6  * Save/Restore logic added by Christoffer Dall.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "hw/sysbus.h"
24 #include "migration/migration.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_arm.h"
27 #include "gic_internal.h"
28 #include "vgic_common.h"
29 
30 //#define DEBUG_GIC_KVM
31 
32 #ifdef DEBUG_GIC_KVM
33 static const int debug_gic_kvm = 1;
34 #else
35 static const int debug_gic_kvm = 0;
36 #endif
37 
38 #define DPRINTF(fmt, ...) do { \
39         if (debug_gic_kvm) { \
40             printf("arm_gic: " fmt , ## __VA_ARGS__); \
41         } \
42     } while (0)
43 
44 #define TYPE_KVM_ARM_GIC "kvm-arm-gic"
45 #define KVM_ARM_GIC(obj) \
46      OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC)
47 #define KVM_ARM_GIC_CLASS(klass) \
48      OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC)
49 #define KVM_ARM_GIC_GET_CLASS(obj) \
50      OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC)
51 
52 typedef struct KVMARMGICClass {
53     ARMGICCommonClass parent_class;
54     DeviceRealize parent_realize;
55     void (*parent_reset)(DeviceState *dev);
56 } KVMARMGICClass;
57 
58 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level)
59 {
60     /* Meaning of the 'irq' parameter:
61      *  [0..N-1] : external interrupts
62      *  [N..N+31] : PPI (internal) interrupts for CPU 0
63      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
64      *  ...
65      * Convert this to the kernel's desired encoding, which
66      * has separate fields in the irq number for type,
67      * CPU number and interrupt number.
68      */
69     int kvm_irq, irqtype, cpu;
70 
71     if (irq < (num_irq - GIC_INTERNAL)) {
72         /* External interrupt. The kernel numbers these like the GIC
73          * hardware, with external interrupt IDs starting after the
74          * internal ones.
75          */
76         irqtype = KVM_ARM_IRQ_TYPE_SPI;
77         cpu = 0;
78         irq += GIC_INTERNAL;
79     } else {
80         /* Internal interrupt: decode into (cpu, interrupt id) */
81         irqtype = KVM_ARM_IRQ_TYPE_PPI;
82         irq -= (num_irq - GIC_INTERNAL);
83         cpu = irq / GIC_INTERNAL;
84         irq %= GIC_INTERNAL;
85     }
86     kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT)
87         | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq;
88 
89     kvm_set_irq(kvm_state, kvm_irq, !!level);
90 }
91 
92 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level)
93 {
94     GICState *s = (GICState *)opaque;
95 
96     kvm_arm_gic_set_irq(s->num_irq, irq, level);
97 }
98 
99 static bool kvm_arm_gic_can_save_restore(GICState *s)
100 {
101     return s->dev_fd >= 0;
102 }
103 
104 #define KVM_VGIC_ATTR(offset, cpu) \
105     ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \
106       KVM_DEV_ARM_VGIC_CPUID_MASK) | \
107      (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \
108       KVM_DEV_ARM_VGIC_OFFSET_MASK))
109 
110 static void kvm_gicd_access(GICState *s, int offset, int cpu,
111                             uint32_t *val, bool write)
112 {
113     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
114                       KVM_VGIC_ATTR(offset, cpu), val, write);
115 }
116 
117 static void kvm_gicc_access(GICState *s, int offset, int cpu,
118                             uint32_t *val, bool write)
119 {
120     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
121                       KVM_VGIC_ATTR(offset, cpu), val, write);
122 }
123 
124 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \
125     for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
126 
127 /*
128  * Translate from the in-kernel field for an IRQ value to/from the qemu
129  * representation.
130  */
131 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
132                                   uint32_t *field, bool to_kernel);
133 
134 /* synthetic translate function used for clear/set registers to completely
135  * clear a setting using a clear-register before setting the remaining bits
136  * using a set-register */
137 static void translate_clear(GICState *s, int irq, int cpu,
138                             uint32_t *field, bool to_kernel)
139 {
140     if (to_kernel) {
141         *field = ~0;
142     } else {
143         /* does not make sense: qemu model doesn't use set/clear regs */
144         abort();
145     }
146 }
147 
148 static void translate_group(GICState *s, int irq, int cpu,
149                             uint32_t *field, bool to_kernel)
150 {
151     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
152 
153     if (to_kernel) {
154         *field = GIC_TEST_GROUP(irq, cm);
155     } else {
156         if (*field & 1) {
157             GIC_SET_GROUP(irq, cm);
158         }
159     }
160 }
161 
162 static void translate_enabled(GICState *s, int irq, int cpu,
163                               uint32_t *field, bool to_kernel)
164 {
165     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
166 
167     if (to_kernel) {
168         *field = GIC_TEST_ENABLED(irq, cm);
169     } else {
170         if (*field & 1) {
171             GIC_SET_ENABLED(irq, cm);
172         }
173     }
174 }
175 
176 static void translate_pending(GICState *s, int irq, int cpu,
177                               uint32_t *field, bool to_kernel)
178 {
179     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
180 
181     if (to_kernel) {
182         *field = gic_test_pending(s, irq, cm);
183     } else {
184         if (*field & 1) {
185             GIC_SET_PENDING(irq, cm);
186             /* TODO: Capture is level-line is held high in the kernel */
187         }
188     }
189 }
190 
191 static void translate_active(GICState *s, int irq, int cpu,
192                              uint32_t *field, bool to_kernel)
193 {
194     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
195 
196     if (to_kernel) {
197         *field = GIC_TEST_ACTIVE(irq, cm);
198     } else {
199         if (*field & 1) {
200             GIC_SET_ACTIVE(irq, cm);
201         }
202     }
203 }
204 
205 static void translate_trigger(GICState *s, int irq, int cpu,
206                               uint32_t *field, bool to_kernel)
207 {
208     if (to_kernel) {
209         *field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
210     } else {
211         if (*field & 0x2) {
212             GIC_SET_EDGE_TRIGGER(irq);
213         }
214     }
215 }
216 
217 static void translate_priority(GICState *s, int irq, int cpu,
218                                uint32_t *field, bool to_kernel)
219 {
220     if (to_kernel) {
221         *field = GIC_GET_PRIORITY(irq, cpu) & 0xff;
222     } else {
223         gic_set_priority(s, cpu, irq, *field & 0xff, MEMTXATTRS_UNSPECIFIED);
224     }
225 }
226 
227 static void translate_targets(GICState *s, int irq, int cpu,
228                               uint32_t *field, bool to_kernel)
229 {
230     if (to_kernel) {
231         *field = s->irq_target[irq] & 0xff;
232     } else {
233         s->irq_target[irq] = *field & 0xff;
234     }
235 }
236 
237 static void translate_sgisource(GICState *s, int irq, int cpu,
238                                 uint32_t *field, bool to_kernel)
239 {
240     if (to_kernel) {
241         *field = s->sgi_pending[irq][cpu] & 0xff;
242     } else {
243         s->sgi_pending[irq][cpu] = *field & 0xff;
244     }
245 }
246 
247 /* Read a register group from the kernel VGIC */
248 static void kvm_dist_get(GICState *s, uint32_t offset, int width,
249                          int maxirq, vgic_translate_fn translate_fn)
250 {
251     uint32_t reg;
252     int i;
253     int j;
254     int irq;
255     int cpu;
256     int regsz = 32 / width; /* irqs per kernel register */
257     uint32_t field;
258 
259     for_each_irq_reg(i, maxirq, width) {
260         irq = i * regsz;
261         cpu = 0;
262         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
263             kvm_gicd_access(s, offset, cpu, &reg, false);
264             for (j = 0; j < regsz; j++) {
265                 field = extract32(reg, j * width, width);
266                 translate_fn(s, irq + j, cpu, &field, false);
267             }
268 
269             cpu++;
270         }
271         offset += 4;
272     }
273 }
274 
275 /* Write a register group to the kernel VGIC */
276 static void kvm_dist_put(GICState *s, uint32_t offset, int width,
277                          int maxirq, vgic_translate_fn translate_fn)
278 {
279     uint32_t reg;
280     int i;
281     int j;
282     int irq;
283     int cpu;
284     int regsz = 32 / width; /* irqs per kernel register */
285     uint32_t field;
286 
287     for_each_irq_reg(i, maxirq, width) {
288         irq = i * regsz;
289         cpu = 0;
290         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
291             reg = 0;
292             for (j = 0; j < regsz; j++) {
293                 translate_fn(s, irq + j, cpu, &field, true);
294                 reg = deposit32(reg, j * width, width, field);
295             }
296             kvm_gicd_access(s, offset, cpu, &reg, true);
297 
298             cpu++;
299         }
300         offset += 4;
301     }
302 }
303 
304 static void kvm_arm_gic_put(GICState *s)
305 {
306     uint32_t reg;
307     int i;
308     int cpu;
309     int num_cpu;
310     int num_irq;
311 
312     /* Note: We do the restore in a slightly different order than the save
313      * (where the order doesn't matter and is simply ordered according to the
314      * register offset values */
315 
316     /*****************************************************************
317      * Distributor State
318      */
319 
320     /* s->ctlr -> GICD_CTLR */
321     reg = s->ctlr;
322     kvm_gicd_access(s, 0x0, 0, &reg, true);
323 
324     /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
325     kvm_gicd_access(s, 0x4, 0, &reg, false);
326     num_irq = ((reg & 0x1f) + 1) * 32;
327     num_cpu = ((reg & 0xe0) >> 5) + 1;
328 
329     if (num_irq < s->num_irq) {
330             fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
331                     s->num_irq, num_irq);
332             abort();
333     } else if (num_cpu != s->num_cpu) {
334             fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
335                     s->num_cpu, num_cpu);
336             /* Did we not create the VCPUs in the kernel yet? */
337             abort();
338     }
339 
340     /* TODO: Consider checking compatibility with the IIDR ? */
341 
342     /* irq_state[n].enabled -> GICD_ISENABLERn */
343     kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
344     kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
345 
346     /* irq_state[n].group -> GICD_IGROUPRn */
347     kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group);
348 
349     /* s->irq_target[irq] -> GICD_ITARGETSRn
350      * (restore targets before pending to ensure the pending state is set on
351      * the appropriate CPU interfaces in the kernel) */
352     kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
353 
354     /* irq_state[n].trigger -> GICD_ICFGRn
355      * (restore configuration registers before pending IRQs so we treat
356      * level/edge correctly) */
357     kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
358 
359     /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
360     kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
361     kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
362 
363     /* irq_state[n].active -> GICD_ISACTIVERn */
364     kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
365     kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
366 
367 
368     /* s->priorityX[irq] -> ICD_IPRIORITYRn */
369     kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
370 
371     /* s->sgi_pending -> ICD_CPENDSGIRn */
372     kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
373     kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
374 
375 
376     /*****************************************************************
377      * CPU Interface(s) State
378      */
379 
380     for (cpu = 0; cpu < s->num_cpu; cpu++) {
381         /* s->cpu_ctlr[cpu] -> GICC_CTLR */
382         reg = s->cpu_ctlr[cpu];
383         kvm_gicc_access(s, 0x00, cpu, &reg, true);
384 
385         /* s->priority_mask[cpu] -> GICC_PMR */
386         reg = (s->priority_mask[cpu] & 0xff);
387         kvm_gicc_access(s, 0x04, cpu, &reg, true);
388 
389         /* s->bpr[cpu] -> GICC_BPR */
390         reg = (s->bpr[cpu] & 0x7);
391         kvm_gicc_access(s, 0x08, cpu, &reg, true);
392 
393         /* s->abpr[cpu] -> GICC_ABPR */
394         reg = (s->abpr[cpu] & 0x7);
395         kvm_gicc_access(s, 0x1c, cpu, &reg, true);
396 
397         /* s->apr[n][cpu] -> GICC_APRn */
398         for (i = 0; i < 4; i++) {
399             reg = s->apr[i][cpu];
400             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, true);
401         }
402     }
403 }
404 
405 static void kvm_arm_gic_get(GICState *s)
406 {
407     uint32_t reg;
408     int i;
409     int cpu;
410 
411     /*****************************************************************
412      * Distributor State
413      */
414 
415     /* GICD_CTLR -> s->ctlr */
416     kvm_gicd_access(s, 0x0, 0, &reg, false);
417     s->ctlr = reg;
418 
419     /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
420     kvm_gicd_access(s, 0x4, 0, &reg, false);
421     s->num_irq = ((reg & 0x1f) + 1) * 32;
422     s->num_cpu = ((reg & 0xe0) >> 5) + 1;
423 
424     if (s->num_irq > GIC_MAXIRQ) {
425             fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
426                     s->num_irq);
427             abort();
428     }
429 
430     /* GICD_IIDR -> ? */
431     kvm_gicd_access(s, 0x8, 0, &reg, false);
432 
433     /* Clear all the IRQ settings */
434     for (i = 0; i < s->num_irq; i++) {
435         memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
436     }
437 
438     /* GICD_IGROUPRn -> irq_state[n].group */
439     kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group);
440 
441     /* GICD_ISENABLERn -> irq_state[n].enabled */
442     kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
443 
444     /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
445     kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
446 
447     /* GICD_ISACTIVERn -> irq_state[n].active */
448     kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
449 
450     /* GICD_ICFRn -> irq_state[n].trigger */
451     kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
452 
453     /* GICD_IPRIORITYRn -> s->priorityX[irq] */
454     kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
455 
456     /* GICD_ITARGETSRn -> s->irq_target[irq] */
457     kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
458 
459     /* GICD_CPENDSGIRn -> s->sgi_pending */
460     kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
461 
462 
463     /*****************************************************************
464      * CPU Interface(s) State
465      */
466 
467     for (cpu = 0; cpu < s->num_cpu; cpu++) {
468         /* GICC_CTLR -> s->cpu_ctlr[cpu] */
469         kvm_gicc_access(s, 0x00, cpu, &reg, false);
470         s->cpu_ctlr[cpu] = reg;
471 
472         /* GICC_PMR -> s->priority_mask[cpu] */
473         kvm_gicc_access(s, 0x04, cpu, &reg, false);
474         s->priority_mask[cpu] = (reg & 0xff);
475 
476         /* GICC_BPR -> s->bpr[cpu] */
477         kvm_gicc_access(s, 0x08, cpu, &reg, false);
478         s->bpr[cpu] = (reg & 0x7);
479 
480         /* GICC_ABPR -> s->abpr[cpu] */
481         kvm_gicc_access(s, 0x1c, cpu, &reg, false);
482         s->abpr[cpu] = (reg & 0x7);
483 
484         /* GICC_APRn -> s->apr[n][cpu] */
485         for (i = 0; i < 4; i++) {
486             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, false);
487             s->apr[i][cpu] = reg;
488         }
489     }
490 }
491 
492 static void kvm_arm_gic_reset(DeviceState *dev)
493 {
494     GICState *s = ARM_GIC_COMMON(dev);
495     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
496 
497     kgc->parent_reset(dev);
498 
499     if (kvm_arm_gic_can_save_restore(s)) {
500         kvm_arm_gic_put(s);
501     }
502 }
503 
504 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
505 {
506     int i;
507     GICState *s = KVM_ARM_GIC(dev);
508     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
509     Error *local_err = NULL;
510     int ret;
511 
512     kgc->parent_realize(dev, &local_err);
513     if (local_err) {
514         error_propagate(errp, local_err);
515         return;
516     }
517 
518     if (s->security_extn) {
519         error_setg(errp, "the in-kernel VGIC does not implement the "
520                    "security extensions");
521         return;
522     }
523 
524     gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL);
525 
526     for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
527         qemu_irq irq = qdev_get_gpio_in(dev, i);
528         kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i);
529     }
530 
531     /* Try to create the device via the device control API */
532     s->dev_fd = -1;
533     ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
534     if (ret >= 0) {
535         s->dev_fd = ret;
536 
537         /* Newstyle API is used, we may have attributes */
538         if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
539             uint32_t numirqs = s->num_irq;
540             kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0,
541                               &numirqs, true);
542         }
543         /* Tell the kernel to complete VGIC initialization now */
544         if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
545                                   KVM_DEV_ARM_VGIC_CTRL_INIT)) {
546             kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
547                               KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true);
548         }
549     } else if (ret != -ENODEV && ret != -ENOTSUP) {
550         error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
551         return;
552     }
553 
554     /* Distributor */
555     kvm_arm_register_device(&s->iomem,
556                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
557                             | KVM_VGIC_V2_ADDR_TYPE_DIST,
558                             KVM_DEV_ARM_VGIC_GRP_ADDR,
559                             KVM_VGIC_V2_ADDR_TYPE_DIST,
560                             s->dev_fd);
561     /* CPU interface for current core. Unlike arm_gic, we don't
562      * provide the "interface for core #N" memory regions, because
563      * cores with a VGIC don't have those.
564      */
565     kvm_arm_register_device(&s->cpuiomem[0],
566                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
567                             | KVM_VGIC_V2_ADDR_TYPE_CPU,
568                             KVM_DEV_ARM_VGIC_GRP_ADDR,
569                             KVM_VGIC_V2_ADDR_TYPE_CPU,
570                             s->dev_fd);
571 
572     if (!kvm_arm_gic_can_save_restore(s)) {
573         error_setg(&s->migration_blocker, "This operating system kernel does "
574                                           "not support vGICv2 migration");
575         migrate_add_blocker(s->migration_blocker);
576     }
577 }
578 
579 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
580 {
581     DeviceClass *dc = DEVICE_CLASS(klass);
582     ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
583     KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
584 
585     agcc->pre_save = kvm_arm_gic_get;
586     agcc->post_load = kvm_arm_gic_put;
587     kgc->parent_realize = dc->realize;
588     kgc->parent_reset = dc->reset;
589     dc->realize = kvm_arm_gic_realize;
590     dc->reset = kvm_arm_gic_reset;
591 }
592 
593 static const TypeInfo kvm_arm_gic_info = {
594     .name = TYPE_KVM_ARM_GIC,
595     .parent = TYPE_ARM_GIC_COMMON,
596     .instance_size = sizeof(GICState),
597     .class_init = kvm_arm_gic_class_init,
598     .class_size = sizeof(KVMARMGICClass),
599 };
600 
601 static void kvm_arm_gic_register_types(void)
602 {
603     type_register_static(&kvm_arm_gic_info);
604 }
605 
606 type_init(kvm_arm_gic_register_types)
607