1 /* 2 * ARM Generic Interrupt Controller using KVM in-kernel support 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Written by Peter Maydell 6 * Save/Restore logic added by Christoffer Dall. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qapi/error.h" 24 #include "qemu/module.h" 25 #include "cpu.h" 26 #include "hw/sysbus.h" 27 #include "migration/blocker.h" 28 #include "sysemu/kvm.h" 29 #include "kvm_arm.h" 30 #include "gic_internal.h" 31 #include "vgic_common.h" 32 33 #define TYPE_KVM_ARM_GIC "kvm-arm-gic" 34 #define KVM_ARM_GIC(obj) \ 35 OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC) 36 #define KVM_ARM_GIC_CLASS(klass) \ 37 OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC) 38 #define KVM_ARM_GIC_GET_CLASS(obj) \ 39 OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC) 40 41 typedef struct KVMARMGICClass { 42 ARMGICCommonClass parent_class; 43 DeviceRealize parent_realize; 44 void (*parent_reset)(DeviceState *dev); 45 } KVMARMGICClass; 46 47 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level) 48 { 49 /* Meaning of the 'irq' parameter: 50 * [0..N-1] : external interrupts 51 * [N..N+31] : PPI (internal) interrupts for CPU 0 52 * [N+32..N+63] : PPI (internal interrupts for CPU 1 53 * ... 54 * Convert this to the kernel's desired encoding, which 55 * has separate fields in the irq number for type, 56 * CPU number and interrupt number. 57 */ 58 int irqtype, cpu; 59 60 if (irq < (num_irq - GIC_INTERNAL)) { 61 /* External interrupt. The kernel numbers these like the GIC 62 * hardware, with external interrupt IDs starting after the 63 * internal ones. 64 */ 65 irqtype = KVM_ARM_IRQ_TYPE_SPI; 66 cpu = 0; 67 irq += GIC_INTERNAL; 68 } else { 69 /* Internal interrupt: decode into (cpu, interrupt id) */ 70 irqtype = KVM_ARM_IRQ_TYPE_PPI; 71 irq -= (num_irq - GIC_INTERNAL); 72 cpu = irq / GIC_INTERNAL; 73 irq %= GIC_INTERNAL; 74 } 75 kvm_arm_set_irq(cpu, irqtype, irq, !!level); 76 } 77 78 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level) 79 { 80 GICState *s = (GICState *)opaque; 81 82 kvm_arm_gic_set_irq(s->num_irq, irq, level); 83 } 84 85 static bool kvm_arm_gic_can_save_restore(GICState *s) 86 { 87 return s->dev_fd >= 0; 88 } 89 90 #define KVM_VGIC_ATTR(offset, cpu) \ 91 ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \ 92 KVM_DEV_ARM_VGIC_CPUID_MASK) | \ 93 (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \ 94 KVM_DEV_ARM_VGIC_OFFSET_MASK)) 95 96 static void kvm_gicd_access(GICState *s, int offset, int cpu, 97 uint32_t *val, bool write) 98 { 99 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 100 KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort); 101 } 102 103 static void kvm_gicc_access(GICState *s, int offset, int cpu, 104 uint32_t *val, bool write) 105 { 106 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS, 107 KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort); 108 } 109 110 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \ 111 for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++) 112 113 /* 114 * Translate from the in-kernel field for an IRQ value to/from the qemu 115 * representation. 116 */ 117 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu, 118 uint32_t *field, bool to_kernel); 119 120 /* synthetic translate function used for clear/set registers to completely 121 * clear a setting using a clear-register before setting the remaining bits 122 * using a set-register */ 123 static void translate_clear(GICState *s, int irq, int cpu, 124 uint32_t *field, bool to_kernel) 125 { 126 if (to_kernel) { 127 *field = ~0; 128 } else { 129 /* does not make sense: qemu model doesn't use set/clear regs */ 130 abort(); 131 } 132 } 133 134 static void translate_group(GICState *s, int irq, int cpu, 135 uint32_t *field, bool to_kernel) 136 { 137 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 138 139 if (to_kernel) { 140 *field = GIC_DIST_TEST_GROUP(irq, cm); 141 } else { 142 if (*field & 1) { 143 GIC_DIST_SET_GROUP(irq, cm); 144 } 145 } 146 } 147 148 static void translate_enabled(GICState *s, int irq, int cpu, 149 uint32_t *field, bool to_kernel) 150 { 151 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 152 153 if (to_kernel) { 154 *field = GIC_DIST_TEST_ENABLED(irq, cm); 155 } else { 156 if (*field & 1) { 157 GIC_DIST_SET_ENABLED(irq, cm); 158 } 159 } 160 } 161 162 static void translate_pending(GICState *s, int irq, int cpu, 163 uint32_t *field, bool to_kernel) 164 { 165 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 166 167 if (to_kernel) { 168 *field = gic_test_pending(s, irq, cm); 169 } else { 170 if (*field & 1) { 171 GIC_DIST_SET_PENDING(irq, cm); 172 /* TODO: Capture is level-line is held high in the kernel */ 173 } 174 } 175 } 176 177 static void translate_active(GICState *s, int irq, int cpu, 178 uint32_t *field, bool to_kernel) 179 { 180 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 181 182 if (to_kernel) { 183 *field = GIC_DIST_TEST_ACTIVE(irq, cm); 184 } else { 185 if (*field & 1) { 186 GIC_DIST_SET_ACTIVE(irq, cm); 187 } 188 } 189 } 190 191 static void translate_trigger(GICState *s, int irq, int cpu, 192 uint32_t *field, bool to_kernel) 193 { 194 if (to_kernel) { 195 *field = (GIC_DIST_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0; 196 } else { 197 if (*field & 0x2) { 198 GIC_DIST_SET_EDGE_TRIGGER(irq); 199 } 200 } 201 } 202 203 static void translate_priority(GICState *s, int irq, int cpu, 204 uint32_t *field, bool to_kernel) 205 { 206 if (to_kernel) { 207 *field = GIC_DIST_GET_PRIORITY(irq, cpu) & 0xff; 208 } else { 209 gic_dist_set_priority(s, cpu, irq, 210 *field & 0xff, MEMTXATTRS_UNSPECIFIED); 211 } 212 } 213 214 static void translate_targets(GICState *s, int irq, int cpu, 215 uint32_t *field, bool to_kernel) 216 { 217 if (to_kernel) { 218 *field = s->irq_target[irq] & 0xff; 219 } else { 220 s->irq_target[irq] = *field & 0xff; 221 } 222 } 223 224 static void translate_sgisource(GICState *s, int irq, int cpu, 225 uint32_t *field, bool to_kernel) 226 { 227 if (to_kernel) { 228 *field = s->sgi_pending[irq][cpu] & 0xff; 229 } else { 230 s->sgi_pending[irq][cpu] = *field & 0xff; 231 } 232 } 233 234 /* Read a register group from the kernel VGIC */ 235 static void kvm_dist_get(GICState *s, uint32_t offset, int width, 236 int maxirq, vgic_translate_fn translate_fn) 237 { 238 uint32_t reg; 239 int i; 240 int j; 241 int irq; 242 int cpu; 243 int regsz = 32 / width; /* irqs per kernel register */ 244 uint32_t field; 245 246 for_each_irq_reg(i, maxirq, width) { 247 irq = i * regsz; 248 cpu = 0; 249 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 250 kvm_gicd_access(s, offset, cpu, ®, false); 251 for (j = 0; j < regsz; j++) { 252 field = extract32(reg, j * width, width); 253 translate_fn(s, irq + j, cpu, &field, false); 254 } 255 256 cpu++; 257 } 258 offset += 4; 259 } 260 } 261 262 /* Write a register group to the kernel VGIC */ 263 static void kvm_dist_put(GICState *s, uint32_t offset, int width, 264 int maxirq, vgic_translate_fn translate_fn) 265 { 266 uint32_t reg; 267 int i; 268 int j; 269 int irq; 270 int cpu; 271 int regsz = 32 / width; /* irqs per kernel register */ 272 uint32_t field; 273 274 for_each_irq_reg(i, maxirq, width) { 275 irq = i * regsz; 276 cpu = 0; 277 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 278 reg = 0; 279 for (j = 0; j < regsz; j++) { 280 translate_fn(s, irq + j, cpu, &field, true); 281 reg = deposit32(reg, j * width, width, field); 282 } 283 kvm_gicd_access(s, offset, cpu, ®, true); 284 285 cpu++; 286 } 287 offset += 4; 288 } 289 } 290 291 static void kvm_arm_gic_put(GICState *s) 292 { 293 uint32_t reg; 294 int i; 295 int cpu; 296 int num_cpu; 297 int num_irq; 298 299 /* Note: We do the restore in a slightly different order than the save 300 * (where the order doesn't matter and is simply ordered according to the 301 * register offset values */ 302 303 /***************************************************************** 304 * Distributor State 305 */ 306 307 /* s->ctlr -> GICD_CTLR */ 308 reg = s->ctlr; 309 kvm_gicd_access(s, 0x0, 0, ®, true); 310 311 /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */ 312 kvm_gicd_access(s, 0x4, 0, ®, false); 313 num_irq = ((reg & 0x1f) + 1) * 32; 314 num_cpu = ((reg & 0xe0) >> 5) + 1; 315 316 if (num_irq < s->num_irq) { 317 fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n", 318 s->num_irq, num_irq); 319 abort(); 320 } else if (num_cpu != s->num_cpu) { 321 fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n", 322 s->num_cpu, num_cpu); 323 /* Did we not create the VCPUs in the kernel yet? */ 324 abort(); 325 } 326 327 /* TODO: Consider checking compatibility with the IIDR ? */ 328 329 /* irq_state[n].enabled -> GICD_ISENABLERn */ 330 kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear); 331 kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled); 332 333 /* irq_state[n].group -> GICD_IGROUPRn */ 334 kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group); 335 336 /* s->irq_target[irq] -> GICD_ITARGETSRn 337 * (restore targets before pending to ensure the pending state is set on 338 * the appropriate CPU interfaces in the kernel) */ 339 kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets); 340 341 /* irq_state[n].trigger -> GICD_ICFGRn 342 * (restore configuration registers before pending IRQs so we treat 343 * level/edge correctly) */ 344 kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger); 345 346 /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */ 347 kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear); 348 kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending); 349 350 /* irq_state[n].active -> GICD_ISACTIVERn */ 351 kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear); 352 kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active); 353 354 355 /* s->priorityX[irq] -> ICD_IPRIORITYRn */ 356 kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority); 357 358 /* s->sgi_pending -> ICD_CPENDSGIRn */ 359 kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear); 360 kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource); 361 362 363 /***************************************************************** 364 * CPU Interface(s) State 365 */ 366 367 for (cpu = 0; cpu < s->num_cpu; cpu++) { 368 /* s->cpu_ctlr[cpu] -> GICC_CTLR */ 369 reg = s->cpu_ctlr[cpu]; 370 kvm_gicc_access(s, 0x00, cpu, ®, true); 371 372 /* s->priority_mask[cpu] -> GICC_PMR */ 373 reg = (s->priority_mask[cpu] & 0xff); 374 kvm_gicc_access(s, 0x04, cpu, ®, true); 375 376 /* s->bpr[cpu] -> GICC_BPR */ 377 reg = (s->bpr[cpu] & 0x7); 378 kvm_gicc_access(s, 0x08, cpu, ®, true); 379 380 /* s->abpr[cpu] -> GICC_ABPR */ 381 reg = (s->abpr[cpu] & 0x7); 382 kvm_gicc_access(s, 0x1c, cpu, ®, true); 383 384 /* s->apr[n][cpu] -> GICC_APRn */ 385 for (i = 0; i < 4; i++) { 386 reg = s->apr[i][cpu]; 387 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, true); 388 } 389 } 390 } 391 392 static void kvm_arm_gic_get(GICState *s) 393 { 394 uint32_t reg; 395 int i; 396 int cpu; 397 398 /***************************************************************** 399 * Distributor State 400 */ 401 402 /* GICD_CTLR -> s->ctlr */ 403 kvm_gicd_access(s, 0x0, 0, ®, false); 404 s->ctlr = reg; 405 406 /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */ 407 kvm_gicd_access(s, 0x4, 0, ®, false); 408 s->num_irq = ((reg & 0x1f) + 1) * 32; 409 s->num_cpu = ((reg & 0xe0) >> 5) + 1; 410 411 if (s->num_irq > GIC_MAXIRQ) { 412 fprintf(stderr, "Too many IRQs reported from the kernel: %d\n", 413 s->num_irq); 414 abort(); 415 } 416 417 /* GICD_IIDR -> ? */ 418 kvm_gicd_access(s, 0x8, 0, ®, false); 419 420 /* Clear all the IRQ settings */ 421 for (i = 0; i < s->num_irq; i++) { 422 memset(&s->irq_state[i], 0, sizeof(s->irq_state[0])); 423 } 424 425 /* GICD_IGROUPRn -> irq_state[n].group */ 426 kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group); 427 428 /* GICD_ISENABLERn -> irq_state[n].enabled */ 429 kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled); 430 431 /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */ 432 kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending); 433 434 /* GICD_ISACTIVERn -> irq_state[n].active */ 435 kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active); 436 437 /* GICD_ICFRn -> irq_state[n].trigger */ 438 kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger); 439 440 /* GICD_IPRIORITYRn -> s->priorityX[irq] */ 441 kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority); 442 443 /* GICD_ITARGETSRn -> s->irq_target[irq] */ 444 kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets); 445 446 /* GICD_CPENDSGIRn -> s->sgi_pending */ 447 kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource); 448 449 450 /***************************************************************** 451 * CPU Interface(s) State 452 */ 453 454 for (cpu = 0; cpu < s->num_cpu; cpu++) { 455 /* GICC_CTLR -> s->cpu_ctlr[cpu] */ 456 kvm_gicc_access(s, 0x00, cpu, ®, false); 457 s->cpu_ctlr[cpu] = reg; 458 459 /* GICC_PMR -> s->priority_mask[cpu] */ 460 kvm_gicc_access(s, 0x04, cpu, ®, false); 461 s->priority_mask[cpu] = (reg & 0xff); 462 463 /* GICC_BPR -> s->bpr[cpu] */ 464 kvm_gicc_access(s, 0x08, cpu, ®, false); 465 s->bpr[cpu] = (reg & 0x7); 466 467 /* GICC_ABPR -> s->abpr[cpu] */ 468 kvm_gicc_access(s, 0x1c, cpu, ®, false); 469 s->abpr[cpu] = (reg & 0x7); 470 471 /* GICC_APRn -> s->apr[n][cpu] */ 472 for (i = 0; i < 4; i++) { 473 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, false); 474 s->apr[i][cpu] = reg; 475 } 476 } 477 } 478 479 static void kvm_arm_gic_reset(DeviceState *dev) 480 { 481 GICState *s = ARM_GIC_COMMON(dev); 482 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 483 484 kgc->parent_reset(dev); 485 486 if (kvm_arm_gic_can_save_restore(s)) { 487 kvm_arm_gic_put(s); 488 } 489 } 490 491 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp) 492 { 493 int i; 494 GICState *s = KVM_ARM_GIC(dev); 495 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 496 Error *local_err = NULL; 497 int ret; 498 499 kgc->parent_realize(dev, &local_err); 500 if (local_err) { 501 error_propagate(errp, local_err); 502 return; 503 } 504 505 if (s->security_extn) { 506 error_setg(errp, "the in-kernel VGIC does not implement the " 507 "security extensions"); 508 return; 509 } 510 511 if (s->virt_extn) { 512 error_setg(errp, "the in-kernel VGIC does not implement the " 513 "virtualization extensions"); 514 return; 515 } 516 517 if (!kvm_arm_gic_can_save_restore(s)) { 518 error_setg(&s->migration_blocker, "This operating system kernel does " 519 "not support vGICv2 migration"); 520 migrate_add_blocker(s->migration_blocker, &local_err); 521 if (local_err) { 522 error_propagate(errp, local_err); 523 error_free(s->migration_blocker); 524 return; 525 } 526 } 527 528 gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL, NULL); 529 530 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) { 531 qemu_irq irq = qdev_get_gpio_in(dev, i); 532 kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i); 533 } 534 535 /* Try to create the device via the device control API */ 536 s->dev_fd = -1; 537 ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false); 538 if (ret >= 0) { 539 s->dev_fd = ret; 540 541 /* Newstyle API is used, we may have attributes */ 542 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) { 543 uint32_t numirqs = s->num_irq; 544 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, 545 &numirqs, true, &error_abort); 546 } 547 /* Tell the kernel to complete VGIC initialization now */ 548 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 549 KVM_DEV_ARM_VGIC_CTRL_INIT)) { 550 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 551 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, 552 &error_abort); 553 } 554 } else if (ret != -ENODEV && ret != -ENOTSUP) { 555 error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); 556 return; 557 } 558 559 /* Distributor */ 560 kvm_arm_register_device(&s->iomem, 561 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 562 | KVM_VGIC_V2_ADDR_TYPE_DIST, 563 KVM_DEV_ARM_VGIC_GRP_ADDR, 564 KVM_VGIC_V2_ADDR_TYPE_DIST, 565 s->dev_fd, 0); 566 /* CPU interface for current core. Unlike arm_gic, we don't 567 * provide the "interface for core #N" memory regions, because 568 * cores with a VGIC don't have those. 569 */ 570 kvm_arm_register_device(&s->cpuiomem[0], 571 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 572 | KVM_VGIC_V2_ADDR_TYPE_CPU, 573 KVM_DEV_ARM_VGIC_GRP_ADDR, 574 KVM_VGIC_V2_ADDR_TYPE_CPU, 575 s->dev_fd, 0); 576 577 if (kvm_has_gsi_routing()) { 578 /* set up irq routing */ 579 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) { 580 kvm_irqchip_add_irq_route(kvm_state, i, 0, i); 581 } 582 583 kvm_gsi_routing_allowed = true; 584 585 kvm_irqchip_commit_routes(kvm_state); 586 } 587 } 588 589 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data) 590 { 591 DeviceClass *dc = DEVICE_CLASS(klass); 592 ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass); 593 KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass); 594 595 agcc->pre_save = kvm_arm_gic_get; 596 agcc->post_load = kvm_arm_gic_put; 597 device_class_set_parent_realize(dc, kvm_arm_gic_realize, 598 &kgc->parent_realize); 599 device_class_set_parent_reset(dc, kvm_arm_gic_reset, &kgc->parent_reset); 600 } 601 602 static const TypeInfo kvm_arm_gic_info = { 603 .name = TYPE_KVM_ARM_GIC, 604 .parent = TYPE_ARM_GIC_COMMON, 605 .instance_size = sizeof(GICState), 606 .class_init = kvm_arm_gic_class_init, 607 .class_size = sizeof(KVMARMGICClass), 608 }; 609 610 static void kvm_arm_gic_register_types(void) 611 { 612 type_register_static(&kvm_arm_gic_info); 613 } 614 615 type_init(kvm_arm_gic_register_types) 616