xref: /openbmc/qemu/hw/intc/arm_gic_kvm.c (revision 35658f6e)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Written by Peter Maydell
6  * Save/Restore logic added by Christoffer Dall.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "hw/sysbus.h"
27 #include "migration/migration.h"
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "gic_internal.h"
31 #include "vgic_common.h"
32 
33 //#define DEBUG_GIC_KVM
34 
35 #ifdef DEBUG_GIC_KVM
36 static const int debug_gic_kvm = 1;
37 #else
38 static const int debug_gic_kvm = 0;
39 #endif
40 
41 #define DPRINTF(fmt, ...) do { \
42         if (debug_gic_kvm) { \
43             printf("arm_gic: " fmt , ## __VA_ARGS__); \
44         } \
45     } while (0)
46 
47 #define TYPE_KVM_ARM_GIC "kvm-arm-gic"
48 #define KVM_ARM_GIC(obj) \
49      OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC)
50 #define KVM_ARM_GIC_CLASS(klass) \
51      OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC)
52 #define KVM_ARM_GIC_GET_CLASS(obj) \
53      OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC)
54 
55 typedef struct KVMARMGICClass {
56     ARMGICCommonClass parent_class;
57     DeviceRealize parent_realize;
58     void (*parent_reset)(DeviceState *dev);
59 } KVMARMGICClass;
60 
61 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level)
62 {
63     /* Meaning of the 'irq' parameter:
64      *  [0..N-1] : external interrupts
65      *  [N..N+31] : PPI (internal) interrupts for CPU 0
66      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
67      *  ...
68      * Convert this to the kernel's desired encoding, which
69      * has separate fields in the irq number for type,
70      * CPU number and interrupt number.
71      */
72     int kvm_irq, irqtype, cpu;
73 
74     if (irq < (num_irq - GIC_INTERNAL)) {
75         /* External interrupt. The kernel numbers these like the GIC
76          * hardware, with external interrupt IDs starting after the
77          * internal ones.
78          */
79         irqtype = KVM_ARM_IRQ_TYPE_SPI;
80         cpu = 0;
81         irq += GIC_INTERNAL;
82     } else {
83         /* Internal interrupt: decode into (cpu, interrupt id) */
84         irqtype = KVM_ARM_IRQ_TYPE_PPI;
85         irq -= (num_irq - GIC_INTERNAL);
86         cpu = irq / GIC_INTERNAL;
87         irq %= GIC_INTERNAL;
88     }
89     kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT)
90         | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq;
91 
92     kvm_set_irq(kvm_state, kvm_irq, !!level);
93 }
94 
95 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level)
96 {
97     GICState *s = (GICState *)opaque;
98 
99     kvm_arm_gic_set_irq(s->num_irq, irq, level);
100 }
101 
102 static bool kvm_arm_gic_can_save_restore(GICState *s)
103 {
104     return s->dev_fd >= 0;
105 }
106 
107 #define KVM_VGIC_ATTR(offset, cpu) \
108     ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \
109       KVM_DEV_ARM_VGIC_CPUID_MASK) | \
110      (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \
111       KVM_DEV_ARM_VGIC_OFFSET_MASK))
112 
113 static void kvm_gicd_access(GICState *s, int offset, int cpu,
114                             uint32_t *val, bool write)
115 {
116     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
117                       KVM_VGIC_ATTR(offset, cpu), val, write);
118 }
119 
120 static void kvm_gicc_access(GICState *s, int offset, int cpu,
121                             uint32_t *val, bool write)
122 {
123     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
124                       KVM_VGIC_ATTR(offset, cpu), val, write);
125 }
126 
127 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \
128     for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
129 
130 /*
131  * Translate from the in-kernel field for an IRQ value to/from the qemu
132  * representation.
133  */
134 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
135                                   uint32_t *field, bool to_kernel);
136 
137 /* synthetic translate function used for clear/set registers to completely
138  * clear a setting using a clear-register before setting the remaining bits
139  * using a set-register */
140 static void translate_clear(GICState *s, int irq, int cpu,
141                             uint32_t *field, bool to_kernel)
142 {
143     if (to_kernel) {
144         *field = ~0;
145     } else {
146         /* does not make sense: qemu model doesn't use set/clear regs */
147         abort();
148     }
149 }
150 
151 static void translate_group(GICState *s, int irq, int cpu,
152                             uint32_t *field, bool to_kernel)
153 {
154     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
155 
156     if (to_kernel) {
157         *field = GIC_TEST_GROUP(irq, cm);
158     } else {
159         if (*field & 1) {
160             GIC_SET_GROUP(irq, cm);
161         }
162     }
163 }
164 
165 static void translate_enabled(GICState *s, int irq, int cpu,
166                               uint32_t *field, bool to_kernel)
167 {
168     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
169 
170     if (to_kernel) {
171         *field = GIC_TEST_ENABLED(irq, cm);
172     } else {
173         if (*field & 1) {
174             GIC_SET_ENABLED(irq, cm);
175         }
176     }
177 }
178 
179 static void translate_pending(GICState *s, int irq, int cpu,
180                               uint32_t *field, bool to_kernel)
181 {
182     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
183 
184     if (to_kernel) {
185         *field = gic_test_pending(s, irq, cm);
186     } else {
187         if (*field & 1) {
188             GIC_SET_PENDING(irq, cm);
189             /* TODO: Capture is level-line is held high in the kernel */
190         }
191     }
192 }
193 
194 static void translate_active(GICState *s, int irq, int cpu,
195                              uint32_t *field, bool to_kernel)
196 {
197     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
198 
199     if (to_kernel) {
200         *field = GIC_TEST_ACTIVE(irq, cm);
201     } else {
202         if (*field & 1) {
203             GIC_SET_ACTIVE(irq, cm);
204         }
205     }
206 }
207 
208 static void translate_trigger(GICState *s, int irq, int cpu,
209                               uint32_t *field, bool to_kernel)
210 {
211     if (to_kernel) {
212         *field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
213     } else {
214         if (*field & 0x2) {
215             GIC_SET_EDGE_TRIGGER(irq);
216         }
217     }
218 }
219 
220 static void translate_priority(GICState *s, int irq, int cpu,
221                                uint32_t *field, bool to_kernel)
222 {
223     if (to_kernel) {
224         *field = GIC_GET_PRIORITY(irq, cpu) & 0xff;
225     } else {
226         gic_set_priority(s, cpu, irq, *field & 0xff, MEMTXATTRS_UNSPECIFIED);
227     }
228 }
229 
230 static void translate_targets(GICState *s, int irq, int cpu,
231                               uint32_t *field, bool to_kernel)
232 {
233     if (to_kernel) {
234         *field = s->irq_target[irq] & 0xff;
235     } else {
236         s->irq_target[irq] = *field & 0xff;
237     }
238 }
239 
240 static void translate_sgisource(GICState *s, int irq, int cpu,
241                                 uint32_t *field, bool to_kernel)
242 {
243     if (to_kernel) {
244         *field = s->sgi_pending[irq][cpu] & 0xff;
245     } else {
246         s->sgi_pending[irq][cpu] = *field & 0xff;
247     }
248 }
249 
250 /* Read a register group from the kernel VGIC */
251 static void kvm_dist_get(GICState *s, uint32_t offset, int width,
252                          int maxirq, vgic_translate_fn translate_fn)
253 {
254     uint32_t reg;
255     int i;
256     int j;
257     int irq;
258     int cpu;
259     int regsz = 32 / width; /* irqs per kernel register */
260     uint32_t field;
261 
262     for_each_irq_reg(i, maxirq, width) {
263         irq = i * regsz;
264         cpu = 0;
265         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
266             kvm_gicd_access(s, offset, cpu, &reg, false);
267             for (j = 0; j < regsz; j++) {
268                 field = extract32(reg, j * width, width);
269                 translate_fn(s, irq + j, cpu, &field, false);
270             }
271 
272             cpu++;
273         }
274         offset += 4;
275     }
276 }
277 
278 /* Write a register group to the kernel VGIC */
279 static void kvm_dist_put(GICState *s, uint32_t offset, int width,
280                          int maxirq, vgic_translate_fn translate_fn)
281 {
282     uint32_t reg;
283     int i;
284     int j;
285     int irq;
286     int cpu;
287     int regsz = 32 / width; /* irqs per kernel register */
288     uint32_t field;
289 
290     for_each_irq_reg(i, maxirq, width) {
291         irq = i * regsz;
292         cpu = 0;
293         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
294             reg = 0;
295             for (j = 0; j < regsz; j++) {
296                 translate_fn(s, irq + j, cpu, &field, true);
297                 reg = deposit32(reg, j * width, width, field);
298             }
299             kvm_gicd_access(s, offset, cpu, &reg, true);
300 
301             cpu++;
302         }
303         offset += 4;
304     }
305 }
306 
307 static void kvm_arm_gic_put(GICState *s)
308 {
309     uint32_t reg;
310     int i;
311     int cpu;
312     int num_cpu;
313     int num_irq;
314 
315     /* Note: We do the restore in a slightly different order than the save
316      * (where the order doesn't matter and is simply ordered according to the
317      * register offset values */
318 
319     /*****************************************************************
320      * Distributor State
321      */
322 
323     /* s->ctlr -> GICD_CTLR */
324     reg = s->ctlr;
325     kvm_gicd_access(s, 0x0, 0, &reg, true);
326 
327     /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
328     kvm_gicd_access(s, 0x4, 0, &reg, false);
329     num_irq = ((reg & 0x1f) + 1) * 32;
330     num_cpu = ((reg & 0xe0) >> 5) + 1;
331 
332     if (num_irq < s->num_irq) {
333             fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
334                     s->num_irq, num_irq);
335             abort();
336     } else if (num_cpu != s->num_cpu) {
337             fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
338                     s->num_cpu, num_cpu);
339             /* Did we not create the VCPUs in the kernel yet? */
340             abort();
341     }
342 
343     /* TODO: Consider checking compatibility with the IIDR ? */
344 
345     /* irq_state[n].enabled -> GICD_ISENABLERn */
346     kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
347     kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
348 
349     /* irq_state[n].group -> GICD_IGROUPRn */
350     kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group);
351 
352     /* s->irq_target[irq] -> GICD_ITARGETSRn
353      * (restore targets before pending to ensure the pending state is set on
354      * the appropriate CPU interfaces in the kernel) */
355     kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
356 
357     /* irq_state[n].trigger -> GICD_ICFGRn
358      * (restore configuration registers before pending IRQs so we treat
359      * level/edge correctly) */
360     kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
361 
362     /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
363     kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
364     kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
365 
366     /* irq_state[n].active -> GICD_ISACTIVERn */
367     kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
368     kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
369 
370 
371     /* s->priorityX[irq] -> ICD_IPRIORITYRn */
372     kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
373 
374     /* s->sgi_pending -> ICD_CPENDSGIRn */
375     kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
376     kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
377 
378 
379     /*****************************************************************
380      * CPU Interface(s) State
381      */
382 
383     for (cpu = 0; cpu < s->num_cpu; cpu++) {
384         /* s->cpu_ctlr[cpu] -> GICC_CTLR */
385         reg = s->cpu_ctlr[cpu];
386         kvm_gicc_access(s, 0x00, cpu, &reg, true);
387 
388         /* s->priority_mask[cpu] -> GICC_PMR */
389         reg = (s->priority_mask[cpu] & 0xff);
390         kvm_gicc_access(s, 0x04, cpu, &reg, true);
391 
392         /* s->bpr[cpu] -> GICC_BPR */
393         reg = (s->bpr[cpu] & 0x7);
394         kvm_gicc_access(s, 0x08, cpu, &reg, true);
395 
396         /* s->abpr[cpu] -> GICC_ABPR */
397         reg = (s->abpr[cpu] & 0x7);
398         kvm_gicc_access(s, 0x1c, cpu, &reg, true);
399 
400         /* s->apr[n][cpu] -> GICC_APRn */
401         for (i = 0; i < 4; i++) {
402             reg = s->apr[i][cpu];
403             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, true);
404         }
405     }
406 }
407 
408 static void kvm_arm_gic_get(GICState *s)
409 {
410     uint32_t reg;
411     int i;
412     int cpu;
413 
414     /*****************************************************************
415      * Distributor State
416      */
417 
418     /* GICD_CTLR -> s->ctlr */
419     kvm_gicd_access(s, 0x0, 0, &reg, false);
420     s->ctlr = reg;
421 
422     /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
423     kvm_gicd_access(s, 0x4, 0, &reg, false);
424     s->num_irq = ((reg & 0x1f) + 1) * 32;
425     s->num_cpu = ((reg & 0xe0) >> 5) + 1;
426 
427     if (s->num_irq > GIC_MAXIRQ) {
428             fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
429                     s->num_irq);
430             abort();
431     }
432 
433     /* GICD_IIDR -> ? */
434     kvm_gicd_access(s, 0x8, 0, &reg, false);
435 
436     /* Clear all the IRQ settings */
437     for (i = 0; i < s->num_irq; i++) {
438         memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
439     }
440 
441     /* GICD_IGROUPRn -> irq_state[n].group */
442     kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group);
443 
444     /* GICD_ISENABLERn -> irq_state[n].enabled */
445     kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
446 
447     /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
448     kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
449 
450     /* GICD_ISACTIVERn -> irq_state[n].active */
451     kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
452 
453     /* GICD_ICFRn -> irq_state[n].trigger */
454     kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
455 
456     /* GICD_IPRIORITYRn -> s->priorityX[irq] */
457     kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
458 
459     /* GICD_ITARGETSRn -> s->irq_target[irq] */
460     kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
461 
462     /* GICD_CPENDSGIRn -> s->sgi_pending */
463     kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
464 
465 
466     /*****************************************************************
467      * CPU Interface(s) State
468      */
469 
470     for (cpu = 0; cpu < s->num_cpu; cpu++) {
471         /* GICC_CTLR -> s->cpu_ctlr[cpu] */
472         kvm_gicc_access(s, 0x00, cpu, &reg, false);
473         s->cpu_ctlr[cpu] = reg;
474 
475         /* GICC_PMR -> s->priority_mask[cpu] */
476         kvm_gicc_access(s, 0x04, cpu, &reg, false);
477         s->priority_mask[cpu] = (reg & 0xff);
478 
479         /* GICC_BPR -> s->bpr[cpu] */
480         kvm_gicc_access(s, 0x08, cpu, &reg, false);
481         s->bpr[cpu] = (reg & 0x7);
482 
483         /* GICC_ABPR -> s->abpr[cpu] */
484         kvm_gicc_access(s, 0x1c, cpu, &reg, false);
485         s->abpr[cpu] = (reg & 0x7);
486 
487         /* GICC_APRn -> s->apr[n][cpu] */
488         for (i = 0; i < 4; i++) {
489             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, false);
490             s->apr[i][cpu] = reg;
491         }
492     }
493 }
494 
495 static void kvm_arm_gic_reset(DeviceState *dev)
496 {
497     GICState *s = ARM_GIC_COMMON(dev);
498     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
499 
500     kgc->parent_reset(dev);
501 
502     if (kvm_arm_gic_can_save_restore(s)) {
503         kvm_arm_gic_put(s);
504     }
505 }
506 
507 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
508 {
509     int i;
510     GICState *s = KVM_ARM_GIC(dev);
511     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
512     Error *local_err = NULL;
513     int ret;
514 
515     kgc->parent_realize(dev, &local_err);
516     if (local_err) {
517         error_propagate(errp, local_err);
518         return;
519     }
520 
521     if (s->security_extn) {
522         error_setg(errp, "the in-kernel VGIC does not implement the "
523                    "security extensions");
524         return;
525     }
526 
527     gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL);
528 
529     for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
530         qemu_irq irq = qdev_get_gpio_in(dev, i);
531         kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i);
532     }
533 
534     /* Try to create the device via the device control API */
535     s->dev_fd = -1;
536     ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
537     if (ret >= 0) {
538         s->dev_fd = ret;
539 
540         /* Newstyle API is used, we may have attributes */
541         if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
542             uint32_t numirqs = s->num_irq;
543             kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0,
544                               &numirqs, true);
545         }
546         /* Tell the kernel to complete VGIC initialization now */
547         if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
548                                   KVM_DEV_ARM_VGIC_CTRL_INIT)) {
549             kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
550                               KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true);
551         }
552     } else if (ret != -ENODEV && ret != -ENOTSUP) {
553         error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
554         return;
555     }
556 
557     /* Distributor */
558     kvm_arm_register_device(&s->iomem,
559                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
560                             | KVM_VGIC_V2_ADDR_TYPE_DIST,
561                             KVM_DEV_ARM_VGIC_GRP_ADDR,
562                             KVM_VGIC_V2_ADDR_TYPE_DIST,
563                             s->dev_fd);
564     /* CPU interface for current core. Unlike arm_gic, we don't
565      * provide the "interface for core #N" memory regions, because
566      * cores with a VGIC don't have those.
567      */
568     kvm_arm_register_device(&s->cpuiomem[0],
569                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
570                             | KVM_VGIC_V2_ADDR_TYPE_CPU,
571                             KVM_DEV_ARM_VGIC_GRP_ADDR,
572                             KVM_VGIC_V2_ADDR_TYPE_CPU,
573                             s->dev_fd);
574 
575     if (!kvm_arm_gic_can_save_restore(s)) {
576         error_setg(&s->migration_blocker, "This operating system kernel does "
577                                           "not support vGICv2 migration");
578         migrate_add_blocker(s->migration_blocker);
579     }
580 }
581 
582 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
583 {
584     DeviceClass *dc = DEVICE_CLASS(klass);
585     ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
586     KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
587 
588     agcc->pre_save = kvm_arm_gic_get;
589     agcc->post_load = kvm_arm_gic_put;
590     kgc->parent_realize = dc->realize;
591     kgc->parent_reset = dc->reset;
592     dc->realize = kvm_arm_gic_realize;
593     dc->reset = kvm_arm_gic_reset;
594 }
595 
596 static const TypeInfo kvm_arm_gic_info = {
597     .name = TYPE_KVM_ARM_GIC,
598     .parent = TYPE_ARM_GIC_COMMON,
599     .instance_size = sizeof(GICState),
600     .class_init = kvm_arm_gic_class_init,
601     .class_size = sizeof(KVMARMGICClass),
602 };
603 
604 static void kvm_arm_gic_register_types(void)
605 {
606     type_register_static(&kvm_arm_gic_info);
607 }
608 
609 type_init(kvm_arm_gic_register_types)
610