1 /* 2 * ARM Generic Interrupt Controller using KVM in-kernel support 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Written by Peter Maydell 6 * Save/Restore logic added by Christoffer Dall. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qapi/error.h" 24 #include "qemu/module.h" 25 #include "cpu.h" 26 #include "migration/blocker.h" 27 #include "sysemu/kvm.h" 28 #include "kvm_arm.h" 29 #include "gic_internal.h" 30 #include "vgic_common.h" 31 #include "qom/object.h" 32 33 #define TYPE_KVM_ARM_GIC "kvm-arm-gic" 34 typedef struct KVMARMGICClass KVMARMGICClass; 35 /* This is reusing the GICState typedef from ARM_GIC_COMMON */ 36 DECLARE_OBJ_CHECKERS(GICState, KVMARMGICClass, 37 KVM_ARM_GIC, TYPE_KVM_ARM_GIC) 38 39 struct KVMARMGICClass { 40 ARMGICCommonClass parent_class; 41 DeviceRealize parent_realize; 42 void (*parent_reset)(DeviceState *dev); 43 }; 44 45 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level) 46 { 47 /* Meaning of the 'irq' parameter: 48 * [0..N-1] : external interrupts 49 * [N..N+31] : PPI (internal) interrupts for CPU 0 50 * [N+32..N+63] : PPI (internal interrupts for CPU 1 51 * ... 52 * Convert this to the kernel's desired encoding, which 53 * has separate fields in the irq number for type, 54 * CPU number and interrupt number. 55 */ 56 int irqtype, cpu; 57 58 if (irq < (num_irq - GIC_INTERNAL)) { 59 /* External interrupt. The kernel numbers these like the GIC 60 * hardware, with external interrupt IDs starting after the 61 * internal ones. 62 */ 63 irqtype = KVM_ARM_IRQ_TYPE_SPI; 64 cpu = 0; 65 irq += GIC_INTERNAL; 66 } else { 67 /* Internal interrupt: decode into (cpu, interrupt id) */ 68 irqtype = KVM_ARM_IRQ_TYPE_PPI; 69 irq -= (num_irq - GIC_INTERNAL); 70 cpu = irq / GIC_INTERNAL; 71 irq %= GIC_INTERNAL; 72 } 73 kvm_arm_set_irq(cpu, irqtype, irq, !!level); 74 } 75 76 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level) 77 { 78 GICState *s = (GICState *)opaque; 79 80 kvm_arm_gic_set_irq(s->num_irq, irq, level); 81 } 82 83 static bool kvm_arm_gic_can_save_restore(GICState *s) 84 { 85 return s->dev_fd >= 0; 86 } 87 88 #define KVM_VGIC_ATTR(offset, cpu) \ 89 ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \ 90 KVM_DEV_ARM_VGIC_CPUID_MASK) | \ 91 (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \ 92 KVM_DEV_ARM_VGIC_OFFSET_MASK)) 93 94 static void kvm_gicd_access(GICState *s, int offset, int cpu, 95 uint32_t *val, bool write) 96 { 97 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 98 KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort); 99 } 100 101 static void kvm_gicc_access(GICState *s, int offset, int cpu, 102 uint32_t *val, bool write) 103 { 104 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS, 105 KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort); 106 } 107 108 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \ 109 for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++) 110 111 /* 112 * Translate from the in-kernel field for an IRQ value to/from the qemu 113 * representation. 114 */ 115 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu, 116 uint32_t *field, bool to_kernel); 117 118 /* synthetic translate function used for clear/set registers to completely 119 * clear a setting using a clear-register before setting the remaining bits 120 * using a set-register */ 121 static void translate_clear(GICState *s, int irq, int cpu, 122 uint32_t *field, bool to_kernel) 123 { 124 if (to_kernel) { 125 *field = ~0; 126 } else { 127 /* does not make sense: qemu model doesn't use set/clear regs */ 128 abort(); 129 } 130 } 131 132 static void translate_group(GICState *s, int irq, int cpu, 133 uint32_t *field, bool to_kernel) 134 { 135 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 136 137 if (to_kernel) { 138 *field = GIC_DIST_TEST_GROUP(irq, cm); 139 } else { 140 if (*field & 1) { 141 GIC_DIST_SET_GROUP(irq, cm); 142 } 143 } 144 } 145 146 static void translate_enabled(GICState *s, int irq, int cpu, 147 uint32_t *field, bool to_kernel) 148 { 149 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 150 151 if (to_kernel) { 152 *field = GIC_DIST_TEST_ENABLED(irq, cm); 153 } else { 154 if (*field & 1) { 155 GIC_DIST_SET_ENABLED(irq, cm); 156 } 157 } 158 } 159 160 static void translate_pending(GICState *s, int irq, int cpu, 161 uint32_t *field, bool to_kernel) 162 { 163 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 164 165 if (to_kernel) { 166 *field = gic_test_pending(s, irq, cm); 167 } else { 168 if (*field & 1) { 169 GIC_DIST_SET_PENDING(irq, cm); 170 /* TODO: Capture is level-line is held high in the kernel */ 171 } 172 } 173 } 174 175 static void translate_active(GICState *s, int irq, int cpu, 176 uint32_t *field, bool to_kernel) 177 { 178 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 179 180 if (to_kernel) { 181 *field = GIC_DIST_TEST_ACTIVE(irq, cm); 182 } else { 183 if (*field & 1) { 184 GIC_DIST_SET_ACTIVE(irq, cm); 185 } 186 } 187 } 188 189 static void translate_trigger(GICState *s, int irq, int cpu, 190 uint32_t *field, bool to_kernel) 191 { 192 if (to_kernel) { 193 *field = (GIC_DIST_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0; 194 } else { 195 if (*field & 0x2) { 196 GIC_DIST_SET_EDGE_TRIGGER(irq); 197 } 198 } 199 } 200 201 static void translate_priority(GICState *s, int irq, int cpu, 202 uint32_t *field, bool to_kernel) 203 { 204 if (to_kernel) { 205 *field = GIC_DIST_GET_PRIORITY(irq, cpu) & 0xff; 206 } else { 207 gic_dist_set_priority(s, cpu, irq, 208 *field & 0xff, MEMTXATTRS_UNSPECIFIED); 209 } 210 } 211 212 static void translate_targets(GICState *s, int irq, int cpu, 213 uint32_t *field, bool to_kernel) 214 { 215 if (to_kernel) { 216 *field = s->irq_target[irq] & 0xff; 217 } else { 218 s->irq_target[irq] = *field & 0xff; 219 } 220 } 221 222 static void translate_sgisource(GICState *s, int irq, int cpu, 223 uint32_t *field, bool to_kernel) 224 { 225 if (to_kernel) { 226 *field = s->sgi_pending[irq][cpu] & 0xff; 227 } else { 228 s->sgi_pending[irq][cpu] = *field & 0xff; 229 } 230 } 231 232 /* Read a register group from the kernel VGIC */ 233 static void kvm_dist_get(GICState *s, uint32_t offset, int width, 234 int maxirq, vgic_translate_fn translate_fn) 235 { 236 uint32_t reg; 237 int i; 238 int j; 239 int irq; 240 int cpu; 241 int regsz = 32 / width; /* irqs per kernel register */ 242 uint32_t field; 243 244 for_each_irq_reg(i, maxirq, width) { 245 irq = i * regsz; 246 cpu = 0; 247 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 248 kvm_gicd_access(s, offset, cpu, ®, false); 249 for (j = 0; j < regsz; j++) { 250 field = extract32(reg, j * width, width); 251 translate_fn(s, irq + j, cpu, &field, false); 252 } 253 254 cpu++; 255 } 256 offset += 4; 257 } 258 } 259 260 /* Write a register group to the kernel VGIC */ 261 static void kvm_dist_put(GICState *s, uint32_t offset, int width, 262 int maxirq, vgic_translate_fn translate_fn) 263 { 264 uint32_t reg; 265 int i; 266 int j; 267 int irq; 268 int cpu; 269 int regsz = 32 / width; /* irqs per kernel register */ 270 uint32_t field; 271 272 for_each_irq_reg(i, maxirq, width) { 273 irq = i * regsz; 274 cpu = 0; 275 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 276 reg = 0; 277 for (j = 0; j < regsz; j++) { 278 translate_fn(s, irq + j, cpu, &field, true); 279 reg = deposit32(reg, j * width, width, field); 280 } 281 kvm_gicd_access(s, offset, cpu, ®, true); 282 283 cpu++; 284 } 285 offset += 4; 286 } 287 } 288 289 static void kvm_arm_gic_put(GICState *s) 290 { 291 uint32_t reg; 292 int i; 293 int cpu; 294 int num_cpu; 295 int num_irq; 296 297 /* Note: We do the restore in a slightly different order than the save 298 * (where the order doesn't matter and is simply ordered according to the 299 * register offset values */ 300 301 /***************************************************************** 302 * Distributor State 303 */ 304 305 /* s->ctlr -> GICD_CTLR */ 306 reg = s->ctlr; 307 kvm_gicd_access(s, 0x0, 0, ®, true); 308 309 /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */ 310 kvm_gicd_access(s, 0x4, 0, ®, false); 311 num_irq = ((reg & 0x1f) + 1) * 32; 312 num_cpu = ((reg & 0xe0) >> 5) + 1; 313 314 if (num_irq < s->num_irq) { 315 fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n", 316 s->num_irq, num_irq); 317 abort(); 318 } else if (num_cpu != s->num_cpu) { 319 fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n", 320 s->num_cpu, num_cpu); 321 /* Did we not create the VCPUs in the kernel yet? */ 322 abort(); 323 } 324 325 /* TODO: Consider checking compatibility with the IIDR ? */ 326 327 /* irq_state[n].enabled -> GICD_ISENABLERn */ 328 kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear); 329 kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled); 330 331 /* irq_state[n].group -> GICD_IGROUPRn */ 332 kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group); 333 334 /* s->irq_target[irq] -> GICD_ITARGETSRn 335 * (restore targets before pending to ensure the pending state is set on 336 * the appropriate CPU interfaces in the kernel) */ 337 kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets); 338 339 /* irq_state[n].trigger -> GICD_ICFGRn 340 * (restore configuration registers before pending IRQs so we treat 341 * level/edge correctly) */ 342 kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger); 343 344 /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */ 345 kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear); 346 kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending); 347 348 /* irq_state[n].active -> GICD_ISACTIVERn */ 349 kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear); 350 kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active); 351 352 353 /* s->priorityX[irq] -> ICD_IPRIORITYRn */ 354 kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority); 355 356 /* s->sgi_pending -> ICD_CPENDSGIRn */ 357 kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear); 358 kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource); 359 360 361 /***************************************************************** 362 * CPU Interface(s) State 363 */ 364 365 for (cpu = 0; cpu < s->num_cpu; cpu++) { 366 /* s->cpu_ctlr[cpu] -> GICC_CTLR */ 367 reg = s->cpu_ctlr[cpu]; 368 kvm_gicc_access(s, 0x00, cpu, ®, true); 369 370 /* s->priority_mask[cpu] -> GICC_PMR */ 371 reg = (s->priority_mask[cpu] & 0xff); 372 kvm_gicc_access(s, 0x04, cpu, ®, true); 373 374 /* s->bpr[cpu] -> GICC_BPR */ 375 reg = (s->bpr[cpu] & 0x7); 376 kvm_gicc_access(s, 0x08, cpu, ®, true); 377 378 /* s->abpr[cpu] -> GICC_ABPR */ 379 reg = (s->abpr[cpu] & 0x7); 380 kvm_gicc_access(s, 0x1c, cpu, ®, true); 381 382 /* s->apr[n][cpu] -> GICC_APRn */ 383 for (i = 0; i < 4; i++) { 384 reg = s->apr[i][cpu]; 385 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, true); 386 } 387 } 388 } 389 390 static void kvm_arm_gic_get(GICState *s) 391 { 392 uint32_t reg; 393 int i; 394 int cpu; 395 396 /***************************************************************** 397 * Distributor State 398 */ 399 400 /* GICD_CTLR -> s->ctlr */ 401 kvm_gicd_access(s, 0x0, 0, ®, false); 402 s->ctlr = reg; 403 404 /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */ 405 kvm_gicd_access(s, 0x4, 0, ®, false); 406 s->num_irq = ((reg & 0x1f) + 1) * 32; 407 s->num_cpu = ((reg & 0xe0) >> 5) + 1; 408 409 if (s->num_irq > GIC_MAXIRQ) { 410 fprintf(stderr, "Too many IRQs reported from the kernel: %d\n", 411 s->num_irq); 412 abort(); 413 } 414 415 /* GICD_IIDR -> ? */ 416 kvm_gicd_access(s, 0x8, 0, ®, false); 417 418 /* Clear all the IRQ settings */ 419 for (i = 0; i < s->num_irq; i++) { 420 memset(&s->irq_state[i], 0, sizeof(s->irq_state[0])); 421 } 422 423 /* GICD_IGROUPRn -> irq_state[n].group */ 424 kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group); 425 426 /* GICD_ISENABLERn -> irq_state[n].enabled */ 427 kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled); 428 429 /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */ 430 kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending); 431 432 /* GICD_ISACTIVERn -> irq_state[n].active */ 433 kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active); 434 435 /* GICD_ICFRn -> irq_state[n].trigger */ 436 kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger); 437 438 /* GICD_IPRIORITYRn -> s->priorityX[irq] */ 439 kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority); 440 441 /* GICD_ITARGETSRn -> s->irq_target[irq] */ 442 kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets); 443 444 /* GICD_CPENDSGIRn -> s->sgi_pending */ 445 kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource); 446 447 448 /***************************************************************** 449 * CPU Interface(s) State 450 */ 451 452 for (cpu = 0; cpu < s->num_cpu; cpu++) { 453 /* GICC_CTLR -> s->cpu_ctlr[cpu] */ 454 kvm_gicc_access(s, 0x00, cpu, ®, false); 455 s->cpu_ctlr[cpu] = reg; 456 457 /* GICC_PMR -> s->priority_mask[cpu] */ 458 kvm_gicc_access(s, 0x04, cpu, ®, false); 459 s->priority_mask[cpu] = (reg & 0xff); 460 461 /* GICC_BPR -> s->bpr[cpu] */ 462 kvm_gicc_access(s, 0x08, cpu, ®, false); 463 s->bpr[cpu] = (reg & 0x7); 464 465 /* GICC_ABPR -> s->abpr[cpu] */ 466 kvm_gicc_access(s, 0x1c, cpu, ®, false); 467 s->abpr[cpu] = (reg & 0x7); 468 469 /* GICC_APRn -> s->apr[n][cpu] */ 470 for (i = 0; i < 4; i++) { 471 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, false); 472 s->apr[i][cpu] = reg; 473 } 474 } 475 } 476 477 static void kvm_arm_gic_reset(DeviceState *dev) 478 { 479 GICState *s = ARM_GIC_COMMON(dev); 480 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 481 482 kgc->parent_reset(dev); 483 484 if (kvm_arm_gic_can_save_restore(s)) { 485 kvm_arm_gic_put(s); 486 } 487 } 488 489 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp) 490 { 491 int i; 492 GICState *s = KVM_ARM_GIC(dev); 493 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 494 Error *local_err = NULL; 495 int ret; 496 497 kgc->parent_realize(dev, &local_err); 498 if (local_err) { 499 error_propagate(errp, local_err); 500 return; 501 } 502 503 if (s->security_extn) { 504 error_setg(errp, "the in-kernel VGIC does not implement the " 505 "security extensions"); 506 return; 507 } 508 509 if (s->virt_extn) { 510 error_setg(errp, "the in-kernel VGIC does not implement the " 511 "virtualization extensions"); 512 return; 513 } 514 515 if (!kvm_arm_gic_can_save_restore(s)) { 516 error_setg(&s->migration_blocker, "This operating system kernel does " 517 "not support vGICv2 migration"); 518 if (migrate_add_blocker(s->migration_blocker, errp) < 0) { 519 error_free(s->migration_blocker); 520 return; 521 } 522 } 523 524 gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL, NULL); 525 526 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) { 527 qemu_irq irq = qdev_get_gpio_in(dev, i); 528 kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i); 529 } 530 531 /* Try to create the device via the device control API */ 532 s->dev_fd = -1; 533 ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false); 534 if (ret >= 0) { 535 s->dev_fd = ret; 536 537 /* Newstyle API is used, we may have attributes */ 538 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) { 539 uint32_t numirqs = s->num_irq; 540 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, 541 &numirqs, true, &error_abort); 542 } 543 /* Tell the kernel to complete VGIC initialization now */ 544 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 545 KVM_DEV_ARM_VGIC_CTRL_INIT)) { 546 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 547 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, 548 &error_abort); 549 } 550 } else if (kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) { 551 error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); 552 error_append_hint(errp, 553 "Perhaps the host CPU does not support GICv2?\n"); 554 } else if (ret != -ENODEV && ret != -ENOTSUP) { 555 /* 556 * Very ancient kernel without KVM_CAP_DEVICE_CTRL: assume that 557 * ENODEV or ENOTSUP mean "can't create GICv2 with KVM_CREATE_DEVICE", 558 * and that we will get a GICv2 via KVM_CREATE_IRQCHIP. 559 */ 560 error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); 561 return; 562 } 563 564 /* Distributor */ 565 kvm_arm_register_device(&s->iomem, 566 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 567 | KVM_VGIC_V2_ADDR_TYPE_DIST, 568 KVM_DEV_ARM_VGIC_GRP_ADDR, 569 KVM_VGIC_V2_ADDR_TYPE_DIST, 570 s->dev_fd, 0); 571 /* CPU interface for current core. Unlike arm_gic, we don't 572 * provide the "interface for core #N" memory regions, because 573 * cores with a VGIC don't have those. 574 */ 575 kvm_arm_register_device(&s->cpuiomem[0], 576 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 577 | KVM_VGIC_V2_ADDR_TYPE_CPU, 578 KVM_DEV_ARM_VGIC_GRP_ADDR, 579 KVM_VGIC_V2_ADDR_TYPE_CPU, 580 s->dev_fd, 0); 581 582 if (kvm_has_gsi_routing()) { 583 /* set up irq routing */ 584 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) { 585 kvm_irqchip_add_irq_route(kvm_state, i, 0, i); 586 } 587 588 kvm_gsi_routing_allowed = true; 589 590 kvm_irqchip_commit_routes(kvm_state); 591 } 592 } 593 594 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data) 595 { 596 DeviceClass *dc = DEVICE_CLASS(klass); 597 ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass); 598 KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass); 599 600 agcc->pre_save = kvm_arm_gic_get; 601 agcc->post_load = kvm_arm_gic_put; 602 device_class_set_parent_realize(dc, kvm_arm_gic_realize, 603 &kgc->parent_realize); 604 device_class_set_parent_reset(dc, kvm_arm_gic_reset, &kgc->parent_reset); 605 } 606 607 static const TypeInfo kvm_arm_gic_info = { 608 .name = TYPE_KVM_ARM_GIC, 609 .parent = TYPE_ARM_GIC_COMMON, 610 .instance_size = sizeof(GICState), 611 .class_init = kvm_arm_gic_class_init, 612 .class_size = sizeof(KVMARMGICClass), 613 }; 614 615 static void kvm_arm_gic_register_types(void) 616 { 617 type_register_static(&kvm_arm_gic_info); 618 } 619 620 type_init(kvm_arm_gic_register_types) 621