1 /* 2 * ARM Generic Interrupt Controller using KVM in-kernel support 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Written by Peter Maydell 6 * Save/Restore logic added by Christoffer Dall. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qapi/error.h" 24 #include "hw/sysbus.h" 25 #include "migration/migration.h" 26 #include "sysemu/kvm.h" 27 #include "kvm_arm.h" 28 #include "gic_internal.h" 29 #include "vgic_common.h" 30 31 //#define DEBUG_GIC_KVM 32 33 #ifdef DEBUG_GIC_KVM 34 static const int debug_gic_kvm = 1; 35 #else 36 static const int debug_gic_kvm = 0; 37 #endif 38 39 #define DPRINTF(fmt, ...) do { \ 40 if (debug_gic_kvm) { \ 41 printf("arm_gic: " fmt , ## __VA_ARGS__); \ 42 } \ 43 } while (0) 44 45 #define TYPE_KVM_ARM_GIC "kvm-arm-gic" 46 #define KVM_ARM_GIC(obj) \ 47 OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC) 48 #define KVM_ARM_GIC_CLASS(klass) \ 49 OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC) 50 #define KVM_ARM_GIC_GET_CLASS(obj) \ 51 OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC) 52 53 typedef struct KVMARMGICClass { 54 ARMGICCommonClass parent_class; 55 DeviceRealize parent_realize; 56 void (*parent_reset)(DeviceState *dev); 57 } KVMARMGICClass; 58 59 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level) 60 { 61 /* Meaning of the 'irq' parameter: 62 * [0..N-1] : external interrupts 63 * [N..N+31] : PPI (internal) interrupts for CPU 0 64 * [N+32..N+63] : PPI (internal interrupts for CPU 1 65 * ... 66 * Convert this to the kernel's desired encoding, which 67 * has separate fields in the irq number for type, 68 * CPU number and interrupt number. 69 */ 70 int kvm_irq, irqtype, cpu; 71 72 if (irq < (num_irq - GIC_INTERNAL)) { 73 /* External interrupt. The kernel numbers these like the GIC 74 * hardware, with external interrupt IDs starting after the 75 * internal ones. 76 */ 77 irqtype = KVM_ARM_IRQ_TYPE_SPI; 78 cpu = 0; 79 irq += GIC_INTERNAL; 80 } else { 81 /* Internal interrupt: decode into (cpu, interrupt id) */ 82 irqtype = KVM_ARM_IRQ_TYPE_PPI; 83 irq -= (num_irq - GIC_INTERNAL); 84 cpu = irq / GIC_INTERNAL; 85 irq %= GIC_INTERNAL; 86 } 87 kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) 88 | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq; 89 90 kvm_set_irq(kvm_state, kvm_irq, !!level); 91 } 92 93 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level) 94 { 95 GICState *s = (GICState *)opaque; 96 97 kvm_arm_gic_set_irq(s->num_irq, irq, level); 98 } 99 100 static bool kvm_arm_gic_can_save_restore(GICState *s) 101 { 102 return s->dev_fd >= 0; 103 } 104 105 #define KVM_VGIC_ATTR(offset, cpu) \ 106 ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \ 107 KVM_DEV_ARM_VGIC_CPUID_MASK) | \ 108 (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \ 109 KVM_DEV_ARM_VGIC_OFFSET_MASK)) 110 111 static void kvm_gicd_access(GICState *s, int offset, int cpu, 112 uint32_t *val, bool write) 113 { 114 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 115 KVM_VGIC_ATTR(offset, cpu), val, write); 116 } 117 118 static void kvm_gicc_access(GICState *s, int offset, int cpu, 119 uint32_t *val, bool write) 120 { 121 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS, 122 KVM_VGIC_ATTR(offset, cpu), val, write); 123 } 124 125 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \ 126 for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++) 127 128 /* 129 * Translate from the in-kernel field for an IRQ value to/from the qemu 130 * representation. 131 */ 132 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu, 133 uint32_t *field, bool to_kernel); 134 135 /* synthetic translate function used for clear/set registers to completely 136 * clear a setting using a clear-register before setting the remaining bits 137 * using a set-register */ 138 static void translate_clear(GICState *s, int irq, int cpu, 139 uint32_t *field, bool to_kernel) 140 { 141 if (to_kernel) { 142 *field = ~0; 143 } else { 144 /* does not make sense: qemu model doesn't use set/clear regs */ 145 abort(); 146 } 147 } 148 149 static void translate_group(GICState *s, int irq, int cpu, 150 uint32_t *field, bool to_kernel) 151 { 152 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 153 154 if (to_kernel) { 155 *field = GIC_TEST_GROUP(irq, cm); 156 } else { 157 if (*field & 1) { 158 GIC_SET_GROUP(irq, cm); 159 } 160 } 161 } 162 163 static void translate_enabled(GICState *s, int irq, int cpu, 164 uint32_t *field, bool to_kernel) 165 { 166 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 167 168 if (to_kernel) { 169 *field = GIC_TEST_ENABLED(irq, cm); 170 } else { 171 if (*field & 1) { 172 GIC_SET_ENABLED(irq, cm); 173 } 174 } 175 } 176 177 static void translate_pending(GICState *s, int irq, int cpu, 178 uint32_t *field, bool to_kernel) 179 { 180 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 181 182 if (to_kernel) { 183 *field = gic_test_pending(s, irq, cm); 184 } else { 185 if (*field & 1) { 186 GIC_SET_PENDING(irq, cm); 187 /* TODO: Capture is level-line is held high in the kernel */ 188 } 189 } 190 } 191 192 static void translate_active(GICState *s, int irq, int cpu, 193 uint32_t *field, bool to_kernel) 194 { 195 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; 196 197 if (to_kernel) { 198 *field = GIC_TEST_ACTIVE(irq, cm); 199 } else { 200 if (*field & 1) { 201 GIC_SET_ACTIVE(irq, cm); 202 } 203 } 204 } 205 206 static void translate_trigger(GICState *s, int irq, int cpu, 207 uint32_t *field, bool to_kernel) 208 { 209 if (to_kernel) { 210 *field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0; 211 } else { 212 if (*field & 0x2) { 213 GIC_SET_EDGE_TRIGGER(irq); 214 } 215 } 216 } 217 218 static void translate_priority(GICState *s, int irq, int cpu, 219 uint32_t *field, bool to_kernel) 220 { 221 if (to_kernel) { 222 *field = GIC_GET_PRIORITY(irq, cpu) & 0xff; 223 } else { 224 gic_set_priority(s, cpu, irq, *field & 0xff, MEMTXATTRS_UNSPECIFIED); 225 } 226 } 227 228 static void translate_targets(GICState *s, int irq, int cpu, 229 uint32_t *field, bool to_kernel) 230 { 231 if (to_kernel) { 232 *field = s->irq_target[irq] & 0xff; 233 } else { 234 s->irq_target[irq] = *field & 0xff; 235 } 236 } 237 238 static void translate_sgisource(GICState *s, int irq, int cpu, 239 uint32_t *field, bool to_kernel) 240 { 241 if (to_kernel) { 242 *field = s->sgi_pending[irq][cpu] & 0xff; 243 } else { 244 s->sgi_pending[irq][cpu] = *field & 0xff; 245 } 246 } 247 248 /* Read a register group from the kernel VGIC */ 249 static void kvm_dist_get(GICState *s, uint32_t offset, int width, 250 int maxirq, vgic_translate_fn translate_fn) 251 { 252 uint32_t reg; 253 int i; 254 int j; 255 int irq; 256 int cpu; 257 int regsz = 32 / width; /* irqs per kernel register */ 258 uint32_t field; 259 260 for_each_irq_reg(i, maxirq, width) { 261 irq = i * regsz; 262 cpu = 0; 263 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 264 kvm_gicd_access(s, offset, cpu, ®, false); 265 for (j = 0; j < regsz; j++) { 266 field = extract32(reg, j * width, width); 267 translate_fn(s, irq + j, cpu, &field, false); 268 } 269 270 cpu++; 271 } 272 offset += 4; 273 } 274 } 275 276 /* Write a register group to the kernel VGIC */ 277 static void kvm_dist_put(GICState *s, uint32_t offset, int width, 278 int maxirq, vgic_translate_fn translate_fn) 279 { 280 uint32_t reg; 281 int i; 282 int j; 283 int irq; 284 int cpu; 285 int regsz = 32 / width; /* irqs per kernel register */ 286 uint32_t field; 287 288 for_each_irq_reg(i, maxirq, width) { 289 irq = i * regsz; 290 cpu = 0; 291 while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { 292 reg = 0; 293 for (j = 0; j < regsz; j++) { 294 translate_fn(s, irq + j, cpu, &field, true); 295 reg = deposit32(reg, j * width, width, field); 296 } 297 kvm_gicd_access(s, offset, cpu, ®, true); 298 299 cpu++; 300 } 301 offset += 4; 302 } 303 } 304 305 static void kvm_arm_gic_put(GICState *s) 306 { 307 uint32_t reg; 308 int i; 309 int cpu; 310 int num_cpu; 311 int num_irq; 312 313 /* Note: We do the restore in a slightly different order than the save 314 * (where the order doesn't matter and is simply ordered according to the 315 * register offset values */ 316 317 /***************************************************************** 318 * Distributor State 319 */ 320 321 /* s->ctlr -> GICD_CTLR */ 322 reg = s->ctlr; 323 kvm_gicd_access(s, 0x0, 0, ®, true); 324 325 /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */ 326 kvm_gicd_access(s, 0x4, 0, ®, false); 327 num_irq = ((reg & 0x1f) + 1) * 32; 328 num_cpu = ((reg & 0xe0) >> 5) + 1; 329 330 if (num_irq < s->num_irq) { 331 fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n", 332 s->num_irq, num_irq); 333 abort(); 334 } else if (num_cpu != s->num_cpu) { 335 fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n", 336 s->num_cpu, num_cpu); 337 /* Did we not create the VCPUs in the kernel yet? */ 338 abort(); 339 } 340 341 /* TODO: Consider checking compatibility with the IIDR ? */ 342 343 /* irq_state[n].enabled -> GICD_ISENABLERn */ 344 kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear); 345 kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled); 346 347 /* irq_state[n].group -> GICD_IGROUPRn */ 348 kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group); 349 350 /* s->irq_target[irq] -> GICD_ITARGETSRn 351 * (restore targets before pending to ensure the pending state is set on 352 * the appropriate CPU interfaces in the kernel) */ 353 kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets); 354 355 /* irq_state[n].trigger -> GICD_ICFGRn 356 * (restore configuration registers before pending IRQs so we treat 357 * level/edge correctly) */ 358 kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger); 359 360 /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */ 361 kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear); 362 kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending); 363 364 /* irq_state[n].active -> GICD_ISACTIVERn */ 365 kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear); 366 kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active); 367 368 369 /* s->priorityX[irq] -> ICD_IPRIORITYRn */ 370 kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority); 371 372 /* s->sgi_pending -> ICD_CPENDSGIRn */ 373 kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear); 374 kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource); 375 376 377 /***************************************************************** 378 * CPU Interface(s) State 379 */ 380 381 for (cpu = 0; cpu < s->num_cpu; cpu++) { 382 /* s->cpu_ctlr[cpu] -> GICC_CTLR */ 383 reg = s->cpu_ctlr[cpu]; 384 kvm_gicc_access(s, 0x00, cpu, ®, true); 385 386 /* s->priority_mask[cpu] -> GICC_PMR */ 387 reg = (s->priority_mask[cpu] & 0xff); 388 kvm_gicc_access(s, 0x04, cpu, ®, true); 389 390 /* s->bpr[cpu] -> GICC_BPR */ 391 reg = (s->bpr[cpu] & 0x7); 392 kvm_gicc_access(s, 0x08, cpu, ®, true); 393 394 /* s->abpr[cpu] -> GICC_ABPR */ 395 reg = (s->abpr[cpu] & 0x7); 396 kvm_gicc_access(s, 0x1c, cpu, ®, true); 397 398 /* s->apr[n][cpu] -> GICC_APRn */ 399 for (i = 0; i < 4; i++) { 400 reg = s->apr[i][cpu]; 401 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, true); 402 } 403 } 404 } 405 406 static void kvm_arm_gic_get(GICState *s) 407 { 408 uint32_t reg; 409 int i; 410 int cpu; 411 412 /***************************************************************** 413 * Distributor State 414 */ 415 416 /* GICD_CTLR -> s->ctlr */ 417 kvm_gicd_access(s, 0x0, 0, ®, false); 418 s->ctlr = reg; 419 420 /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */ 421 kvm_gicd_access(s, 0x4, 0, ®, false); 422 s->num_irq = ((reg & 0x1f) + 1) * 32; 423 s->num_cpu = ((reg & 0xe0) >> 5) + 1; 424 425 if (s->num_irq > GIC_MAXIRQ) { 426 fprintf(stderr, "Too many IRQs reported from the kernel: %d\n", 427 s->num_irq); 428 abort(); 429 } 430 431 /* GICD_IIDR -> ? */ 432 kvm_gicd_access(s, 0x8, 0, ®, false); 433 434 /* Clear all the IRQ settings */ 435 for (i = 0; i < s->num_irq; i++) { 436 memset(&s->irq_state[i], 0, sizeof(s->irq_state[0])); 437 } 438 439 /* GICD_IGROUPRn -> irq_state[n].group */ 440 kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group); 441 442 /* GICD_ISENABLERn -> irq_state[n].enabled */ 443 kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled); 444 445 /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */ 446 kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending); 447 448 /* GICD_ISACTIVERn -> irq_state[n].active */ 449 kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active); 450 451 /* GICD_ICFRn -> irq_state[n].trigger */ 452 kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger); 453 454 /* GICD_IPRIORITYRn -> s->priorityX[irq] */ 455 kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority); 456 457 /* GICD_ITARGETSRn -> s->irq_target[irq] */ 458 kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets); 459 460 /* GICD_CPENDSGIRn -> s->sgi_pending */ 461 kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource); 462 463 464 /***************************************************************** 465 * CPU Interface(s) State 466 */ 467 468 for (cpu = 0; cpu < s->num_cpu; cpu++) { 469 /* GICC_CTLR -> s->cpu_ctlr[cpu] */ 470 kvm_gicc_access(s, 0x00, cpu, ®, false); 471 s->cpu_ctlr[cpu] = reg; 472 473 /* GICC_PMR -> s->priority_mask[cpu] */ 474 kvm_gicc_access(s, 0x04, cpu, ®, false); 475 s->priority_mask[cpu] = (reg & 0xff); 476 477 /* GICC_BPR -> s->bpr[cpu] */ 478 kvm_gicc_access(s, 0x08, cpu, ®, false); 479 s->bpr[cpu] = (reg & 0x7); 480 481 /* GICC_ABPR -> s->abpr[cpu] */ 482 kvm_gicc_access(s, 0x1c, cpu, ®, false); 483 s->abpr[cpu] = (reg & 0x7); 484 485 /* GICC_APRn -> s->apr[n][cpu] */ 486 for (i = 0; i < 4; i++) { 487 kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, false); 488 s->apr[i][cpu] = reg; 489 } 490 } 491 } 492 493 static void kvm_arm_gic_reset(DeviceState *dev) 494 { 495 GICState *s = ARM_GIC_COMMON(dev); 496 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 497 498 kgc->parent_reset(dev); 499 500 if (kvm_arm_gic_can_save_restore(s)) { 501 kvm_arm_gic_put(s); 502 } 503 } 504 505 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp) 506 { 507 int i; 508 GICState *s = KVM_ARM_GIC(dev); 509 KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); 510 Error *local_err = NULL; 511 int ret; 512 513 kgc->parent_realize(dev, &local_err); 514 if (local_err) { 515 error_propagate(errp, local_err); 516 return; 517 } 518 519 if (s->security_extn) { 520 error_setg(errp, "the in-kernel VGIC does not implement the " 521 "security extensions"); 522 return; 523 } 524 525 gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL); 526 527 for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) { 528 qemu_irq irq = qdev_get_gpio_in(dev, i); 529 kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i); 530 } 531 532 /* Try to create the device via the device control API */ 533 s->dev_fd = -1; 534 ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false); 535 if (ret >= 0) { 536 s->dev_fd = ret; 537 538 /* Newstyle API is used, we may have attributes */ 539 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) { 540 uint32_t numirqs = s->num_irq; 541 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, 542 &numirqs, true); 543 } 544 /* Tell the kernel to complete VGIC initialization now */ 545 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 546 KVM_DEV_ARM_VGIC_CTRL_INIT)) { 547 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 548 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true); 549 } 550 } else if (ret != -ENODEV && ret != -ENOTSUP) { 551 error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); 552 return; 553 } 554 555 /* Distributor */ 556 kvm_arm_register_device(&s->iomem, 557 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 558 | KVM_VGIC_V2_ADDR_TYPE_DIST, 559 KVM_DEV_ARM_VGIC_GRP_ADDR, 560 KVM_VGIC_V2_ADDR_TYPE_DIST, 561 s->dev_fd); 562 /* CPU interface for current core. Unlike arm_gic, we don't 563 * provide the "interface for core #N" memory regions, because 564 * cores with a VGIC don't have those. 565 */ 566 kvm_arm_register_device(&s->cpuiomem[0], 567 (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) 568 | KVM_VGIC_V2_ADDR_TYPE_CPU, 569 KVM_DEV_ARM_VGIC_GRP_ADDR, 570 KVM_VGIC_V2_ADDR_TYPE_CPU, 571 s->dev_fd); 572 573 if (!kvm_arm_gic_can_save_restore(s)) { 574 error_setg(&s->migration_blocker, "This operating system kernel does " 575 "not support vGICv2 migration"); 576 migrate_add_blocker(s->migration_blocker); 577 } 578 } 579 580 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data) 581 { 582 DeviceClass *dc = DEVICE_CLASS(klass); 583 ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass); 584 KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass); 585 586 agcc->pre_save = kvm_arm_gic_get; 587 agcc->post_load = kvm_arm_gic_put; 588 kgc->parent_realize = dc->realize; 589 kgc->parent_reset = dc->reset; 590 dc->realize = kvm_arm_gic_realize; 591 dc->reset = kvm_arm_gic_reset; 592 } 593 594 static const TypeInfo kvm_arm_gic_info = { 595 .name = TYPE_KVM_ARM_GIC, 596 .parent = TYPE_ARM_GIC_COMMON, 597 .instance_size = sizeof(GICState), 598 .class_init = kvm_arm_gic_class_init, 599 .class_size = sizeof(KVMARMGICClass), 600 }; 601 602 static void kvm_arm_gic_register_types(void) 603 { 604 type_register_static(&kvm_arm_gic_info); 605 } 606 607 type_init(kvm_arm_gic_register_types) 608