xref: /openbmc/qemu/hw/intc/arm_gic_kvm.c (revision 10df8ff1)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Written by Peter Maydell
6  * Save/Restore logic added by Christoffer Dall.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "hw/sysbus.h"
27 #include "migration/blocker.h"
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "gic_internal.h"
31 #include "vgic_common.h"
32 
33 #define TYPE_KVM_ARM_GIC "kvm-arm-gic"
34 #define KVM_ARM_GIC(obj) \
35      OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC)
36 #define KVM_ARM_GIC_CLASS(klass) \
37      OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC)
38 #define KVM_ARM_GIC_GET_CLASS(obj) \
39      OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC)
40 
41 typedef struct KVMARMGICClass {
42     ARMGICCommonClass parent_class;
43     DeviceRealize parent_realize;
44     void (*parent_reset)(DeviceState *dev);
45 } KVMARMGICClass;
46 
47 void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level)
48 {
49     /* Meaning of the 'irq' parameter:
50      *  [0..N-1] : external interrupts
51      *  [N..N+31] : PPI (internal) interrupts for CPU 0
52      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
53      *  ...
54      * Convert this to the kernel's desired encoding, which
55      * has separate fields in the irq number for type,
56      * CPU number and interrupt number.
57      */
58     int kvm_irq, irqtype, cpu;
59 
60     if (irq < (num_irq - GIC_INTERNAL)) {
61         /* External interrupt. The kernel numbers these like the GIC
62          * hardware, with external interrupt IDs starting after the
63          * internal ones.
64          */
65         irqtype = KVM_ARM_IRQ_TYPE_SPI;
66         cpu = 0;
67         irq += GIC_INTERNAL;
68     } else {
69         /* Internal interrupt: decode into (cpu, interrupt id) */
70         irqtype = KVM_ARM_IRQ_TYPE_PPI;
71         irq -= (num_irq - GIC_INTERNAL);
72         cpu = irq / GIC_INTERNAL;
73         irq %= GIC_INTERNAL;
74     }
75     kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT)
76         | (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq;
77 
78     kvm_set_irq(kvm_state, kvm_irq, !!level);
79 }
80 
81 static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level)
82 {
83     GICState *s = (GICState *)opaque;
84 
85     kvm_arm_gic_set_irq(s->num_irq, irq, level);
86 }
87 
88 static bool kvm_arm_gic_can_save_restore(GICState *s)
89 {
90     return s->dev_fd >= 0;
91 }
92 
93 #define KVM_VGIC_ATTR(offset, cpu) \
94     ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \
95       KVM_DEV_ARM_VGIC_CPUID_MASK) | \
96      (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \
97       KVM_DEV_ARM_VGIC_OFFSET_MASK))
98 
99 static void kvm_gicd_access(GICState *s, int offset, int cpu,
100                             uint32_t *val, bool write)
101 {
102     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
103                       KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort);
104 }
105 
106 static void kvm_gicc_access(GICState *s, int offset, int cpu,
107                             uint32_t *val, bool write)
108 {
109     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS,
110                       KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort);
111 }
112 
113 #define for_each_irq_reg(_ctr, _max_irq, _field_width) \
114     for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++)
115 
116 /*
117  * Translate from the in-kernel field for an IRQ value to/from the qemu
118  * representation.
119  */
120 typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu,
121                                   uint32_t *field, bool to_kernel);
122 
123 /* synthetic translate function used for clear/set registers to completely
124  * clear a setting using a clear-register before setting the remaining bits
125  * using a set-register */
126 static void translate_clear(GICState *s, int irq, int cpu,
127                             uint32_t *field, bool to_kernel)
128 {
129     if (to_kernel) {
130         *field = ~0;
131     } else {
132         /* does not make sense: qemu model doesn't use set/clear regs */
133         abort();
134     }
135 }
136 
137 static void translate_group(GICState *s, int irq, int cpu,
138                             uint32_t *field, bool to_kernel)
139 {
140     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
141 
142     if (to_kernel) {
143         *field = GIC_DIST_TEST_GROUP(irq, cm);
144     } else {
145         if (*field & 1) {
146             GIC_DIST_SET_GROUP(irq, cm);
147         }
148     }
149 }
150 
151 static void translate_enabled(GICState *s, int irq, int cpu,
152                               uint32_t *field, bool to_kernel)
153 {
154     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
155 
156     if (to_kernel) {
157         *field = GIC_DIST_TEST_ENABLED(irq, cm);
158     } else {
159         if (*field & 1) {
160             GIC_DIST_SET_ENABLED(irq, cm);
161         }
162     }
163 }
164 
165 static void translate_pending(GICState *s, int irq, int cpu,
166                               uint32_t *field, bool to_kernel)
167 {
168     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
169 
170     if (to_kernel) {
171         *field = gic_test_pending(s, irq, cm);
172     } else {
173         if (*field & 1) {
174             GIC_DIST_SET_PENDING(irq, cm);
175             /* TODO: Capture is level-line is held high in the kernel */
176         }
177     }
178 }
179 
180 static void translate_active(GICState *s, int irq, int cpu,
181                              uint32_t *field, bool to_kernel)
182 {
183     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
184 
185     if (to_kernel) {
186         *field = GIC_DIST_TEST_ACTIVE(irq, cm);
187     } else {
188         if (*field & 1) {
189             GIC_DIST_SET_ACTIVE(irq, cm);
190         }
191     }
192 }
193 
194 static void translate_trigger(GICState *s, int irq, int cpu,
195                               uint32_t *field, bool to_kernel)
196 {
197     if (to_kernel) {
198         *field = (GIC_DIST_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
199     } else {
200         if (*field & 0x2) {
201             GIC_DIST_SET_EDGE_TRIGGER(irq);
202         }
203     }
204 }
205 
206 static void translate_priority(GICState *s, int irq, int cpu,
207                                uint32_t *field, bool to_kernel)
208 {
209     if (to_kernel) {
210         *field = GIC_DIST_GET_PRIORITY(irq, cpu) & 0xff;
211     } else {
212         gic_dist_set_priority(s, cpu, irq,
213                               *field & 0xff, MEMTXATTRS_UNSPECIFIED);
214     }
215 }
216 
217 static void translate_targets(GICState *s, int irq, int cpu,
218                               uint32_t *field, bool to_kernel)
219 {
220     if (to_kernel) {
221         *field = s->irq_target[irq] & 0xff;
222     } else {
223         s->irq_target[irq] = *field & 0xff;
224     }
225 }
226 
227 static void translate_sgisource(GICState *s, int irq, int cpu,
228                                 uint32_t *field, bool to_kernel)
229 {
230     if (to_kernel) {
231         *field = s->sgi_pending[irq][cpu] & 0xff;
232     } else {
233         s->sgi_pending[irq][cpu] = *field & 0xff;
234     }
235 }
236 
237 /* Read a register group from the kernel VGIC */
238 static void kvm_dist_get(GICState *s, uint32_t offset, int width,
239                          int maxirq, vgic_translate_fn translate_fn)
240 {
241     uint32_t reg;
242     int i;
243     int j;
244     int irq;
245     int cpu;
246     int regsz = 32 / width; /* irqs per kernel register */
247     uint32_t field;
248 
249     for_each_irq_reg(i, maxirq, width) {
250         irq = i * regsz;
251         cpu = 0;
252         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
253             kvm_gicd_access(s, offset, cpu, &reg, false);
254             for (j = 0; j < regsz; j++) {
255                 field = extract32(reg, j * width, width);
256                 translate_fn(s, irq + j, cpu, &field, false);
257             }
258 
259             cpu++;
260         }
261         offset += 4;
262     }
263 }
264 
265 /* Write a register group to the kernel VGIC */
266 static void kvm_dist_put(GICState *s, uint32_t offset, int width,
267                          int maxirq, vgic_translate_fn translate_fn)
268 {
269     uint32_t reg;
270     int i;
271     int j;
272     int irq;
273     int cpu;
274     int regsz = 32 / width; /* irqs per kernel register */
275     uint32_t field;
276 
277     for_each_irq_reg(i, maxirq, width) {
278         irq = i * regsz;
279         cpu = 0;
280         while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) {
281             reg = 0;
282             for (j = 0; j < regsz; j++) {
283                 translate_fn(s, irq + j, cpu, &field, true);
284                 reg = deposit32(reg, j * width, width, field);
285             }
286             kvm_gicd_access(s, offset, cpu, &reg, true);
287 
288             cpu++;
289         }
290         offset += 4;
291     }
292 }
293 
294 static void kvm_arm_gic_put(GICState *s)
295 {
296     uint32_t reg;
297     int i;
298     int cpu;
299     int num_cpu;
300     int num_irq;
301 
302     /* Note: We do the restore in a slightly different order than the save
303      * (where the order doesn't matter and is simply ordered according to the
304      * register offset values */
305 
306     /*****************************************************************
307      * Distributor State
308      */
309 
310     /* s->ctlr -> GICD_CTLR */
311     reg = s->ctlr;
312     kvm_gicd_access(s, 0x0, 0, &reg, true);
313 
314     /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */
315     kvm_gicd_access(s, 0x4, 0, &reg, false);
316     num_irq = ((reg & 0x1f) + 1) * 32;
317     num_cpu = ((reg & 0xe0) >> 5) + 1;
318 
319     if (num_irq < s->num_irq) {
320             fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n",
321                     s->num_irq, num_irq);
322             abort();
323     } else if (num_cpu != s->num_cpu) {
324             fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n",
325                     s->num_cpu, num_cpu);
326             /* Did we not create the VCPUs in the kernel yet? */
327             abort();
328     }
329 
330     /* TODO: Consider checking compatibility with the IIDR ? */
331 
332     /* irq_state[n].enabled -> GICD_ISENABLERn */
333     kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear);
334     kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled);
335 
336     /* irq_state[n].group -> GICD_IGROUPRn */
337     kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group);
338 
339     /* s->irq_target[irq] -> GICD_ITARGETSRn
340      * (restore targets before pending to ensure the pending state is set on
341      * the appropriate CPU interfaces in the kernel) */
342     kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets);
343 
344     /* irq_state[n].trigger -> GICD_ICFGRn
345      * (restore configuration registers before pending IRQs so we treat
346      * level/edge correctly) */
347     kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger);
348 
349     /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */
350     kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear);
351     kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending);
352 
353     /* irq_state[n].active -> GICD_ISACTIVERn */
354     kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear);
355     kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active);
356 
357 
358     /* s->priorityX[irq] -> ICD_IPRIORITYRn */
359     kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority);
360 
361     /* s->sgi_pending -> ICD_CPENDSGIRn */
362     kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear);
363     kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource);
364 
365 
366     /*****************************************************************
367      * CPU Interface(s) State
368      */
369 
370     for (cpu = 0; cpu < s->num_cpu; cpu++) {
371         /* s->cpu_ctlr[cpu] -> GICC_CTLR */
372         reg = s->cpu_ctlr[cpu];
373         kvm_gicc_access(s, 0x00, cpu, &reg, true);
374 
375         /* s->priority_mask[cpu] -> GICC_PMR */
376         reg = (s->priority_mask[cpu] & 0xff);
377         kvm_gicc_access(s, 0x04, cpu, &reg, true);
378 
379         /* s->bpr[cpu] -> GICC_BPR */
380         reg = (s->bpr[cpu] & 0x7);
381         kvm_gicc_access(s, 0x08, cpu, &reg, true);
382 
383         /* s->abpr[cpu] -> GICC_ABPR */
384         reg = (s->abpr[cpu] & 0x7);
385         kvm_gicc_access(s, 0x1c, cpu, &reg, true);
386 
387         /* s->apr[n][cpu] -> GICC_APRn */
388         for (i = 0; i < 4; i++) {
389             reg = s->apr[i][cpu];
390             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, true);
391         }
392     }
393 }
394 
395 static void kvm_arm_gic_get(GICState *s)
396 {
397     uint32_t reg;
398     int i;
399     int cpu;
400 
401     /*****************************************************************
402      * Distributor State
403      */
404 
405     /* GICD_CTLR -> s->ctlr */
406     kvm_gicd_access(s, 0x0, 0, &reg, false);
407     s->ctlr = reg;
408 
409     /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */
410     kvm_gicd_access(s, 0x4, 0, &reg, false);
411     s->num_irq = ((reg & 0x1f) + 1) * 32;
412     s->num_cpu = ((reg & 0xe0) >> 5) + 1;
413 
414     if (s->num_irq > GIC_MAXIRQ) {
415             fprintf(stderr, "Too many IRQs reported from the kernel: %d\n",
416                     s->num_irq);
417             abort();
418     }
419 
420     /* GICD_IIDR -> ? */
421     kvm_gicd_access(s, 0x8, 0, &reg, false);
422 
423     /* Clear all the IRQ settings */
424     for (i = 0; i < s->num_irq; i++) {
425         memset(&s->irq_state[i], 0, sizeof(s->irq_state[0]));
426     }
427 
428     /* GICD_IGROUPRn -> irq_state[n].group */
429     kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group);
430 
431     /* GICD_ISENABLERn -> irq_state[n].enabled */
432     kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled);
433 
434     /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */
435     kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending);
436 
437     /* GICD_ISACTIVERn -> irq_state[n].active */
438     kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active);
439 
440     /* GICD_ICFRn -> irq_state[n].trigger */
441     kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger);
442 
443     /* GICD_IPRIORITYRn -> s->priorityX[irq] */
444     kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority);
445 
446     /* GICD_ITARGETSRn -> s->irq_target[irq] */
447     kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets);
448 
449     /* GICD_CPENDSGIRn -> s->sgi_pending */
450     kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource);
451 
452 
453     /*****************************************************************
454      * CPU Interface(s) State
455      */
456 
457     for (cpu = 0; cpu < s->num_cpu; cpu++) {
458         /* GICC_CTLR -> s->cpu_ctlr[cpu] */
459         kvm_gicc_access(s, 0x00, cpu, &reg, false);
460         s->cpu_ctlr[cpu] = reg;
461 
462         /* GICC_PMR -> s->priority_mask[cpu] */
463         kvm_gicc_access(s, 0x04, cpu, &reg, false);
464         s->priority_mask[cpu] = (reg & 0xff);
465 
466         /* GICC_BPR -> s->bpr[cpu] */
467         kvm_gicc_access(s, 0x08, cpu, &reg, false);
468         s->bpr[cpu] = (reg & 0x7);
469 
470         /* GICC_ABPR -> s->abpr[cpu] */
471         kvm_gicc_access(s, 0x1c, cpu, &reg, false);
472         s->abpr[cpu] = (reg & 0x7);
473 
474         /* GICC_APRn -> s->apr[n][cpu] */
475         for (i = 0; i < 4; i++) {
476             kvm_gicc_access(s, 0xd0 + i * 4, cpu, &reg, false);
477             s->apr[i][cpu] = reg;
478         }
479     }
480 }
481 
482 static void kvm_arm_gic_reset(DeviceState *dev)
483 {
484     GICState *s = ARM_GIC_COMMON(dev);
485     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
486 
487     kgc->parent_reset(dev);
488 
489     if (kvm_arm_gic_can_save_restore(s)) {
490         kvm_arm_gic_put(s);
491     }
492 }
493 
494 static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
495 {
496     int i;
497     GICState *s = KVM_ARM_GIC(dev);
498     KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
499     Error *local_err = NULL;
500     int ret;
501 
502     kgc->parent_realize(dev, &local_err);
503     if (local_err) {
504         error_propagate(errp, local_err);
505         return;
506     }
507 
508     if (s->security_extn) {
509         error_setg(errp, "the in-kernel VGIC does not implement the "
510                    "security extensions");
511         return;
512     }
513 
514     if (s->virt_extn) {
515         error_setg(errp, "the in-kernel VGIC does not implement the "
516                    "virtualization extensions");
517         return;
518     }
519 
520     if (!kvm_arm_gic_can_save_restore(s)) {
521         error_setg(&s->migration_blocker, "This operating system kernel does "
522                                           "not support vGICv2 migration");
523         migrate_add_blocker(s->migration_blocker, &local_err);
524         if (local_err) {
525             error_propagate(errp, local_err);
526             error_free(s->migration_blocker);
527             return;
528         }
529     }
530 
531     gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL, NULL);
532 
533     for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
534         qemu_irq irq = qdev_get_gpio_in(dev, i);
535         kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i);
536     }
537 
538     /* Try to create the device via the device control API */
539     s->dev_fd = -1;
540     ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false);
541     if (ret >= 0) {
542         s->dev_fd = ret;
543 
544         /* Newstyle API is used, we may have attributes */
545         if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) {
546             uint32_t numirqs = s->num_irq;
547             kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0,
548                               &numirqs, true, &error_abort);
549         }
550         /* Tell the kernel to complete VGIC initialization now */
551         if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
552                                   KVM_DEV_ARM_VGIC_CTRL_INIT)) {
553             kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
554                               KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true,
555                               &error_abort);
556         }
557     } else if (ret != -ENODEV && ret != -ENOTSUP) {
558         error_setg_errno(errp, -ret, "error creating in-kernel VGIC");
559         return;
560     }
561 
562     /* Distributor */
563     kvm_arm_register_device(&s->iomem,
564                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
565                             | KVM_VGIC_V2_ADDR_TYPE_DIST,
566                             KVM_DEV_ARM_VGIC_GRP_ADDR,
567                             KVM_VGIC_V2_ADDR_TYPE_DIST,
568                             s->dev_fd, 0);
569     /* CPU interface for current core. Unlike arm_gic, we don't
570      * provide the "interface for core #N" memory regions, because
571      * cores with a VGIC don't have those.
572      */
573     kvm_arm_register_device(&s->cpuiomem[0],
574                             (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
575                             | KVM_VGIC_V2_ADDR_TYPE_CPU,
576                             KVM_DEV_ARM_VGIC_GRP_ADDR,
577                             KVM_VGIC_V2_ADDR_TYPE_CPU,
578                             s->dev_fd, 0);
579 
580     if (kvm_has_gsi_routing()) {
581         /* set up irq routing */
582         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
583             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
584         }
585 
586         kvm_gsi_routing_allowed = true;
587 
588         kvm_irqchip_commit_routes(kvm_state);
589     }
590 }
591 
592 static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
593 {
594     DeviceClass *dc = DEVICE_CLASS(klass);
595     ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
596     KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
597 
598     agcc->pre_save = kvm_arm_gic_get;
599     agcc->post_load = kvm_arm_gic_put;
600     device_class_set_parent_realize(dc, kvm_arm_gic_realize,
601                                     &kgc->parent_realize);
602     device_class_set_parent_reset(dc, kvm_arm_gic_reset, &kgc->parent_reset);
603 }
604 
605 static const TypeInfo kvm_arm_gic_info = {
606     .name = TYPE_KVM_ARM_GIC,
607     .parent = TYPE_ARM_GIC_COMMON,
608     .instance_size = sizeof(GICState),
609     .class_init = kvm_arm_gic_class_init,
610     .class_size = sizeof(KVMARMGICClass),
611 };
612 
613 static void kvm_arm_gic_register_types(void)
614 {
615     type_register_static(&kvm_arm_gic_info);
616 }
617 
618 type_init(kvm_arm_gic_register_types)
619