xref: /openbmc/qemu/hw/intc/arm_gic_common.c (revision 4d6d8a05)
1 /*
2  * ARM GIC support - common bits of emulated and KVM kernel model
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation, either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu/module.h"
24 #include "qemu/error-report.h"
25 #include "gic_internal.h"
26 #include "hw/arm/linux-boot-if.h"
27 #include "hw/qdev-properties.h"
28 #include "migration/vmstate.h"
29 #include "sysemu/kvm.h"
30 
31 static int gic_pre_save(void *opaque)
32 {
33     GICState *s = (GICState *)opaque;
34     ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
35 
36     if (c->pre_save) {
37         c->pre_save(s);
38     }
39 
40     return 0;
41 }
42 
43 static int gic_post_load(void *opaque, int version_id)
44 {
45     GICState *s = (GICState *)opaque;
46     ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
47 
48     if (c->post_load) {
49         c->post_load(s);
50     }
51     return 0;
52 }
53 
54 static bool gic_virt_state_needed(void *opaque)
55 {
56     GICState *s = (GICState *)opaque;
57 
58     return s->virt_extn;
59 }
60 
61 static const VMStateDescription vmstate_gic_irq_state = {
62     .name = "arm_gic_irq_state",
63     .version_id = 1,
64     .minimum_version_id = 1,
65     .fields = (const VMStateField[]) {
66         VMSTATE_UINT8(enabled, gic_irq_state),
67         VMSTATE_UINT8(pending, gic_irq_state),
68         VMSTATE_UINT8(active, gic_irq_state),
69         VMSTATE_UINT8(level, gic_irq_state),
70         VMSTATE_BOOL(model, gic_irq_state),
71         VMSTATE_BOOL(edge_trigger, gic_irq_state),
72         VMSTATE_UINT8(group, gic_irq_state),
73         VMSTATE_END_OF_LIST()
74     }
75 };
76 
77 static const VMStateDescription vmstate_gic_virt_state = {
78     .name = "arm_gic_virt_state",
79     .version_id = 1,
80     .minimum_version_id = 1,
81     .needed = gic_virt_state_needed,
82     .fields = (const VMStateField[]) {
83         /* Virtual interface */
84         VMSTATE_UINT32_ARRAY(h_hcr, GICState, GIC_NCPU),
85         VMSTATE_UINT32_ARRAY(h_misr, GICState, GIC_NCPU),
86         VMSTATE_UINT32_2DARRAY(h_lr, GICState, GIC_MAX_LR, GIC_NCPU),
87         VMSTATE_UINT32_ARRAY(h_apr, GICState, GIC_NCPU),
88 
89         /* Virtual CPU interfaces */
90         VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, GIC_NCPU, GIC_NCPU),
91         VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, GIC_NCPU, GIC_NCPU),
92         VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, GIC_NCPU, GIC_NCPU),
93         VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, GIC_NCPU, GIC_NCPU),
94         VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, GIC_NCPU, GIC_NCPU),
95         VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, GIC_NCPU, GIC_NCPU),
96 
97         VMSTATE_END_OF_LIST()
98     }
99 };
100 
101 static const VMStateDescription vmstate_gic = {
102     .name = "arm_gic",
103     .version_id = 12,
104     .minimum_version_id = 12,
105     .pre_save = gic_pre_save,
106     .post_load = gic_post_load,
107     .fields = (const VMStateField[]) {
108         VMSTATE_UINT32(ctlr, GICState),
109         VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, 0, GIC_NCPU),
110         VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1,
111                              vmstate_gic_irq_state, gic_irq_state),
112         VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ),
113         VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU),
114         VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL),
115         VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU),
116         VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, 0, GIC_NCPU),
117         VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, 0, GIC_NCPU),
118         VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, 0, GIC_NCPU),
119         VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, 0, GIC_NCPU),
120         VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, 0, GIC_NCPU),
121         VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU),
122         VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU),
123         VMSTATE_END_OF_LIST()
124     },
125     .subsections = (const VMStateDescription * const []) {
126         &vmstate_gic_virt_state,
127         NULL
128     }
129 };
130 
131 void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
132                             const MemoryRegionOps *ops,
133                             const MemoryRegionOps *virt_ops)
134 {
135     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
136     int i = s->num_irq - GIC_INTERNAL;
137 
138     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
139      * GPIO array layout is thus:
140      *  [0..N-1] SPIs
141      *  [N..N+31] PPIs for CPU 0
142      *  [N+32..N+63] PPIs for CPU 1
143      *   ...
144      */
145     i += (GIC_INTERNAL * s->num_cpu);
146     qdev_init_gpio_in(DEVICE(s), handler, i);
147 
148     for (i = 0; i < s->num_cpu; i++) {
149         sysbus_init_irq(sbd, &s->parent_irq[i]);
150     }
151     for (i = 0; i < s->num_cpu; i++) {
152         sysbus_init_irq(sbd, &s->parent_fiq[i]);
153     }
154     for (i = 0; i < s->num_cpu; i++) {
155         sysbus_init_irq(sbd, &s->parent_virq[i]);
156     }
157     for (i = 0; i < s->num_cpu; i++) {
158         sysbus_init_irq(sbd, &s->parent_vfiq[i]);
159     }
160     if (s->virt_extn) {
161         for (i = 0; i < s->num_cpu; i++) {
162             sysbus_init_irq(sbd, &s->maintenance_irq[i]);
163         }
164     }
165 
166     /* Distributor */
167     memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000);
168     sysbus_init_mmio(sbd, &s->iomem);
169 
170     /* This is the main CPU interface "for this core". It is always
171      * present because it is required by both software emulation and KVM.
172      */
173     memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL,
174                           s, "gic_cpu", s->revision == 2 ? 0x2000 : 0x100);
175     sysbus_init_mmio(sbd, &s->cpuiomem[0]);
176 
177     if (s->virt_extn) {
178         memory_region_init_io(&s->vifaceiomem[0], OBJECT(s), virt_ops,
179                               s, "gic_viface", 0x1000);
180         sysbus_init_mmio(sbd, &s->vifaceiomem[0]);
181 
182         memory_region_init_io(&s->vcpuiomem, OBJECT(s),
183                               virt_ops ? &virt_ops[1] : NULL,
184                               s, "gic_vcpu", 0x2000);
185         sysbus_init_mmio(sbd, &s->vcpuiomem);
186     }
187 }
188 
189 static void arm_gic_common_realize(DeviceState *dev, Error **errp)
190 {
191     GICState *s = ARM_GIC_COMMON(dev);
192     int num_irq = s->num_irq;
193 
194     if (s->num_cpu > GIC_NCPU) {
195         error_setg(errp, "requested %u CPUs exceeds GIC maximum %d",
196                    s->num_cpu, GIC_NCPU);
197         return;
198     }
199     if (s->num_irq > GIC_MAXIRQ) {
200         error_setg(errp,
201                    "requested %u interrupt lines exceeds GIC maximum %d",
202                    num_irq, GIC_MAXIRQ);
203         return;
204     }
205     /* ITLinesNumber is represented as (N / 32) - 1 (see
206      * gic_dist_readb) so this is an implementation imposed
207      * restriction, not an architectural one:
208      */
209     if (s->num_irq < 32 || (s->num_irq % 32)) {
210         error_setg(errp,
211                    "%d interrupt lines unsupported: not divisible by 32",
212                    num_irq);
213         return;
214     }
215 
216     if (s->security_extn &&
217         (s->revision == REV_11MPCORE)) {
218         error_setg(errp, "this GIC revision does not implement "
219                    "the security extensions");
220         return;
221     }
222 
223     if (s->virt_extn) {
224         if (s->revision != 2) {
225             error_setg(errp, "GIC virtualization extensions are only "
226                        "supported by revision 2");
227             return;
228         }
229 
230         /* For now, set the number of implemented LRs to 4, as found in most
231          * real GICv2. This could be promoted as a QOM property if we need to
232          * emulate a variant with another num_lrs.
233          */
234         s->num_lrs = 4;
235     }
236 }
237 
238 static inline void arm_gic_common_reset_irq_state(GICState *s, int cidx,
239                                                   int resetprio)
240 {
241     int i, j;
242 
243     for (i = cidx; i < cidx + s->num_cpu; i++) {
244         if (s->revision == REV_11MPCORE) {
245             s->priority_mask[i] = 0xf0;
246         } else {
247             s->priority_mask[i] = resetprio;
248         }
249         s->current_pending[i] = 1023;
250         s->running_priority[i] = 0x100;
251         s->cpu_ctlr[i] = 0;
252         s->bpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
253         s->abpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_ABPR : GIC_MIN_ABPR;
254 
255         if (!gic_is_vcpu(i)) {
256             for (j = 0; j < GIC_INTERNAL; j++) {
257                 s->priority1[j][i] = resetprio;
258             }
259             for (j = 0; j < GIC_NR_SGIS; j++) {
260                 s->sgi_pending[j][i] = 0;
261             }
262         }
263     }
264 }
265 
266 static void arm_gic_common_reset_hold(Object *obj)
267 {
268     GICState *s = ARM_GIC_COMMON(obj);
269     int i, j;
270     int resetprio;
271 
272     /* If we're resetting a TZ-aware GIC as if secure firmware
273      * had set it up ready to start a kernel in non-secure,
274      * we need to set interrupt priorities to a "zero for the
275      * NS view" value. This is particularly critical for the
276      * priority_mask[] values, because if they are zero then NS
277      * code cannot ever rewrite the priority to anything else.
278      */
279     if (s->security_extn && s->irq_reset_nonsecure) {
280         resetprio = 0x80;
281     } else {
282         resetprio = 0;
283     }
284 
285     memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
286     arm_gic_common_reset_irq_state(s, 0, resetprio);
287 
288     if (s->virt_extn) {
289         /* vCPU states are stored at indexes GIC_NCPU .. GIC_NCPU+num_cpu.
290          * The exposed vCPU interface does not have security extensions.
291          */
292         arm_gic_common_reset_irq_state(s, GIC_NCPU, 0);
293     }
294 
295     for (i = 0; i < GIC_NR_SGIS; i++) {
296         GIC_DIST_SET_ENABLED(i, ALL_CPU_MASK);
297         GIC_DIST_SET_EDGE_TRIGGER(i);
298     }
299 
300     for (i = 0; i < ARRAY_SIZE(s->priority2); i++) {
301         s->priority2[i] = resetprio;
302     }
303 
304     for (i = 0; i < GIC_MAXIRQ; i++) {
305         /* For uniprocessor GICs all interrupts always target the sole CPU */
306         if (s->num_cpu == 1) {
307             s->irq_target[i] = 1;
308         } else {
309             s->irq_target[i] = 0;
310         }
311     }
312     if (s->security_extn && s->irq_reset_nonsecure) {
313         for (i = 0; i < GIC_MAXIRQ; i++) {
314             GIC_DIST_SET_GROUP(i, ALL_CPU_MASK);
315         }
316     }
317 
318     if (s->virt_extn) {
319         for (i = 0; i < s->num_lrs; i++) {
320             for (j = 0; j < s->num_cpu; j++) {
321                 s->h_lr[i][j] = 0;
322             }
323         }
324 
325         for (i = 0; i < s->num_cpu; i++) {
326             s->h_hcr[i] = 0;
327             s->h_misr[i] = 0;
328         }
329     }
330 
331     s->ctlr = 0;
332 }
333 
334 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
335                                       bool secure_boot)
336 {
337     GICState *s = ARM_GIC_COMMON(obj);
338 
339     if (s->security_extn && !secure_boot) {
340         /* We're directly booting a kernel into NonSecure. If this GIC
341          * implements the security extensions then we must configure it
342          * to have all the interrupts be NonSecure (this is a job that
343          * is done by the Secure boot firmware in real hardware, and in
344          * this mode QEMU is acting as a minimalist firmware-and-bootloader
345          * equivalent).
346          */
347         s->irq_reset_nonsecure = true;
348     }
349 }
350 
351 static Property arm_gic_common_properties[] = {
352     DEFINE_PROP_UINT32("num-cpu", GICState, num_cpu, 1),
353     DEFINE_PROP_UINT32("num-irq", GICState, num_irq, 32),
354     /* Revision can be 1 or 2 for GIC architecture specification
355      * versions 1 or 2, or 0 to indicate the legacy 11MPCore GIC.
356      */
357     DEFINE_PROP_UINT32("revision", GICState, revision, 1),
358     /* True if the GIC should implement the security extensions */
359     DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0),
360     /* True if the GIC should implement the virtualization extensions */
361     DEFINE_PROP_BOOL("has-virtualization-extensions", GICState, virt_extn, 0),
362     DEFINE_PROP_UINT32("num-priority-bits", GICState, n_prio_bits, 8),
363     DEFINE_PROP_END_OF_LIST(),
364 };
365 
366 static void arm_gic_common_class_init(ObjectClass *klass, void *data)
367 {
368     DeviceClass *dc = DEVICE_CLASS(klass);
369     ResettableClass *rc = RESETTABLE_CLASS(klass);
370     ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
371 
372     rc->phases.hold = arm_gic_common_reset_hold;
373     dc->realize = arm_gic_common_realize;
374     device_class_set_props(dc, arm_gic_common_properties);
375     dc->vmsd = &vmstate_gic;
376     albifc->arm_linux_init = arm_gic_common_linux_init;
377 }
378 
379 static const TypeInfo arm_gic_common_type = {
380     .name = TYPE_ARM_GIC_COMMON,
381     .parent = TYPE_SYS_BUS_DEVICE,
382     .instance_size = sizeof(GICState),
383     .class_size = sizeof(ARMGICCommonClass),
384     .class_init = arm_gic_common_class_init,
385     .abstract = true,
386     .interfaces = (InterfaceInfo []) {
387         { TYPE_ARM_LINUX_BOOT_IF },
388         { },
389     },
390 };
391 
392 static void register_types(void)
393 {
394     type_register_static(&arm_gic_common_type);
395 }
396 
397 type_init(register_types)
398 
399 const char *gic_class_name(void)
400 {
401     return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic";
402 }
403