xref: /openbmc/qemu/hw/intc/arm_gic.c (revision f9c6a7f1395c6d88a3bb1a0cb48811994709966e)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "hw/sysbus.h"
22 #include "gic_internal.h"
23 #include "qom/cpu.h"
24 
25 //#define DEBUG_GIC
26 
27 #ifdef DEBUG_GIC
28 #define DPRINTF(fmt, ...) \
29 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
30 #else
31 #define DPRINTF(fmt, ...) do {} while(0)
32 #endif
33 
34 static const uint8_t gic_id[] = {
35     0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
36 };
37 
38 #define NUM_CPU(s) ((s)->num_cpu)
39 
40 static inline int gic_get_current_cpu(GICState *s)
41 {
42     if (s->num_cpu > 1) {
43         return current_cpu->cpu_index;
44     }
45     return 0;
46 }
47 
48 /* Return true if this GIC config has interrupt groups, which is
49  * true if we're a GICv2, or a GICv1 with the security extensions.
50  */
51 static inline bool gic_has_groups(GICState *s)
52 {
53     return s->revision == 2 || s->security_extn;
54 }
55 
56 /* TODO: Many places that call this routine could be optimized.  */
57 /* Update interrupt status after enabled or pending bits have been changed.  */
58 void gic_update(GICState *s)
59 {
60     int best_irq;
61     int best_prio;
62     int irq;
63     int level;
64     int cpu;
65     int cm;
66 
67     for (cpu = 0; cpu < NUM_CPU(s); cpu++) {
68         cm = 1 << cpu;
69         s->current_pending[cpu] = 1023;
70         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
71             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
72             qemu_irq_lower(s->parent_irq[cpu]);
73             return;
74         }
75         best_prio = 0x100;
76         best_irq = 1023;
77         for (irq = 0; irq < s->num_irq; irq++) {
78             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
79                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
80                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
81                     best_prio = GIC_GET_PRIORITY(irq, cpu);
82                     best_irq = irq;
83                 }
84             }
85         }
86         level = 0;
87         if (best_prio < s->priority_mask[cpu]) {
88             s->current_pending[cpu] = best_irq;
89             if (best_prio < s->running_priority[cpu]) {
90                 DPRINTF("Raised pending IRQ %d (cpu %d)\n", best_irq, cpu);
91                 level = 1;
92             }
93         }
94         qemu_set_irq(s->parent_irq[cpu], level);
95     }
96 }
97 
98 void gic_set_pending_private(GICState *s, int cpu, int irq)
99 {
100     int cm = 1 << cpu;
101 
102     if (gic_test_pending(s, irq, cm)) {
103         return;
104     }
105 
106     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
107     GIC_SET_PENDING(irq, cm);
108     gic_update(s);
109 }
110 
111 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
112                                  int cm, int target)
113 {
114     if (level) {
115         GIC_SET_LEVEL(irq, cm);
116         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
117             DPRINTF("Set %d pending mask %x\n", irq, target);
118             GIC_SET_PENDING(irq, target);
119         }
120     } else {
121         GIC_CLEAR_LEVEL(irq, cm);
122     }
123 }
124 
125 static void gic_set_irq_generic(GICState *s, int irq, int level,
126                                 int cm, int target)
127 {
128     if (level) {
129         GIC_SET_LEVEL(irq, cm);
130         DPRINTF("Set %d pending mask %x\n", irq, target);
131         if (GIC_TEST_EDGE_TRIGGER(irq)) {
132             GIC_SET_PENDING(irq, target);
133         }
134     } else {
135         GIC_CLEAR_LEVEL(irq, cm);
136     }
137 }
138 
139 /* Process a change in an external IRQ input.  */
140 static void gic_set_irq(void *opaque, int irq, int level)
141 {
142     /* Meaning of the 'irq' parameter:
143      *  [0..N-1] : external interrupts
144      *  [N..N+31] : PPI (internal) interrupts for CPU 0
145      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
146      *  ...
147      */
148     GICState *s = (GICState *)opaque;
149     int cm, target;
150     if (irq < (s->num_irq - GIC_INTERNAL)) {
151         /* The first external input line is internal interrupt 32.  */
152         cm = ALL_CPU_MASK;
153         irq += GIC_INTERNAL;
154         target = GIC_TARGET(irq);
155     } else {
156         int cpu;
157         irq -= (s->num_irq - GIC_INTERNAL);
158         cpu = irq / GIC_INTERNAL;
159         irq %= GIC_INTERNAL;
160         cm = 1 << cpu;
161         target = cm;
162     }
163 
164     assert(irq >= GIC_NR_SGIS);
165 
166     if (level == GIC_TEST_LEVEL(irq, cm)) {
167         return;
168     }
169 
170     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
171         gic_set_irq_11mpcore(s, irq, level, cm, target);
172     } else {
173         gic_set_irq_generic(s, irq, level, cm, target);
174     }
175 
176     gic_update(s);
177 }
178 
179 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
180                                             MemTxAttrs attrs)
181 {
182     uint16_t pending_irq = s->current_pending[cpu];
183 
184     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
185         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
186         /* On a GIC without the security extensions, reading this register
187          * behaves in the same way as a secure access to a GIC with them.
188          */
189         bool secure = !s->security_extn || attrs.secure;
190 
191         if (group == 0 && !secure) {
192             /* Group0 interrupts hidden from Non-secure access */
193             return 1023;
194         }
195         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
196             /* Group1 interrupts only seen by Secure access if
197              * AckCtl bit set.
198              */
199             return 1022;
200         }
201     }
202     return pending_irq;
203 }
204 
205 static void gic_set_running_irq(GICState *s, int cpu, int irq)
206 {
207     s->running_irq[cpu] = irq;
208     if (irq == 1023) {
209         s->running_priority[cpu] = 0x100;
210     } else {
211         s->running_priority[cpu] = GIC_GET_PRIORITY(irq, cpu);
212     }
213     gic_update(s);
214 }
215 
216 uint32_t gic_acknowledge_irq(GICState *s, int cpu)
217 {
218     int ret, irq, src;
219     int cm = 1 << cpu;
220     irq = s->current_pending[cpu];
221     if (irq == 1023
222             || GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
223         DPRINTF("ACK no pending IRQ\n");
224         return 1023;
225     }
226     s->last_active[irq][cpu] = s->running_irq[cpu];
227 
228     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
229         /* Clear pending flags for both level and edge triggered interrupts.
230          * Level triggered IRQs will be reasserted once they become inactive.
231          */
232         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
233         ret = irq;
234     } else {
235         if (irq < GIC_NR_SGIS) {
236             /* Lookup the source CPU for the SGI and clear this in the
237              * sgi_pending map.  Return the src and clear the overall pending
238              * state on this CPU if the SGI is not pending from any CPUs.
239              */
240             assert(s->sgi_pending[irq][cpu] != 0);
241             src = ctz32(s->sgi_pending[irq][cpu]);
242             s->sgi_pending[irq][cpu] &= ~(1 << src);
243             if (s->sgi_pending[irq][cpu] == 0) {
244                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
245             }
246             ret = irq | ((src & 0x7) << 10);
247         } else {
248             /* Clear pending state for both level and edge triggered
249              * interrupts. (level triggered interrupts with an active line
250              * remain pending, see gic_test_pending)
251              */
252             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
253             ret = irq;
254         }
255     }
256 
257     gic_set_running_irq(s, cpu, irq);
258     DPRINTF("ACK %d\n", irq);
259     return ret;
260 }
261 
262 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
263                       MemTxAttrs attrs)
264 {
265     if (s->security_extn && !attrs.secure) {
266         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
267             return; /* Ignore Non-secure access of Group0 IRQ */
268         }
269         val = 0x80 | (val >> 1); /* Non-secure view */
270     }
271 
272     if (irq < GIC_INTERNAL) {
273         s->priority1[irq][cpu] = val;
274     } else {
275         s->priority2[(irq) - GIC_INTERNAL] = val;
276     }
277 }
278 
279 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
280                                  MemTxAttrs attrs)
281 {
282     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
283 
284     if (s->security_extn && !attrs.secure) {
285         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
286             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
287         }
288         prio = (prio << 1) & 0xff; /* Non-secure view */
289     }
290     return prio;
291 }
292 
293 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
294                                   MemTxAttrs attrs)
295 {
296     if (s->security_extn && !attrs.secure) {
297         if (s->priority_mask[cpu] & 0x80) {
298             /* Priority Mask in upper half */
299             pmask = 0x80 | (pmask >> 1);
300         } else {
301             /* Non-secure write ignored if priority mask is in lower half */
302             return;
303         }
304     }
305     s->priority_mask[cpu] = pmask;
306 }
307 
308 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
309 {
310     uint32_t pmask = s->priority_mask[cpu];
311 
312     if (s->security_extn && !attrs.secure) {
313         if (pmask & 0x80) {
314             /* Priority Mask in upper half, return Non-secure view */
315             pmask = (pmask << 1) & 0xff;
316         } else {
317             /* Priority Mask in lower half, RAZ */
318             pmask = 0;
319         }
320     }
321     return pmask;
322 }
323 
324 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
325 {
326     uint32_t ret = s->cpu_ctlr[cpu];
327 
328     if (s->security_extn && !attrs.secure) {
329         /* Construct the NS banked view of GICC_CTLR from the correct
330          * bits of the S banked view. We don't need to move the bypass
331          * control bits because we don't implement that (IMPDEF) part
332          * of the GIC architecture.
333          */
334         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
335     }
336     return ret;
337 }
338 
339 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
340                                 MemTxAttrs attrs)
341 {
342     uint32_t mask;
343 
344     if (s->security_extn && !attrs.secure) {
345         /* The NS view can only write certain bits in the register;
346          * the rest are unchanged
347          */
348         mask = GICC_CTLR_EN_GRP1;
349         if (s->revision == 2) {
350             mask |= GICC_CTLR_EOIMODE_NS;
351         }
352         s->cpu_ctlr[cpu] &= ~mask;
353         s->cpu_ctlr[cpu] |= (value << 1) & mask;
354     } else {
355         if (s->revision == 2) {
356             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
357         } else {
358             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
359         }
360         s->cpu_ctlr[cpu] = value & mask;
361     }
362     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
363             "Group1 Interrupts %sabled\n", cpu,
364             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
365             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
366 }
367 
368 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
369 {
370     if (s->security_extn && !attrs.secure) {
371         if (s->running_priority[cpu] & 0x80) {
372             /* Running priority in upper half of range: return the Non-secure
373              * view of the priority.
374              */
375             return s->running_priority[cpu] << 1;
376         } else {
377             /* Running priority in lower half of range: RAZ */
378             return 0;
379         }
380     } else {
381         return s->running_priority[cpu];
382     }
383 }
384 
385 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
386 {
387     int update = 0;
388     int cm = 1 << cpu;
389     DPRINTF("EOI %d\n", irq);
390     if (irq >= s->num_irq) {
391         /* This handles two cases:
392          * 1. If software writes the ID of a spurious interrupt [ie 1023]
393          * to the GICC_EOIR, the GIC ignores that write.
394          * 2. If software writes the number of a non-existent interrupt
395          * this must be a subcase of "value written does not match the last
396          * valid interrupt value read from the Interrupt Acknowledge
397          * register" and so this is UNPREDICTABLE. We choose to ignore it.
398          */
399         return;
400     }
401     if (s->running_irq[cpu] == 1023)
402         return; /* No active IRQ.  */
403 
404     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
405         /* Mark level triggered interrupts as pending if they are still
406            raised.  */
407         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
408             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
409             DPRINTF("Set %d pending mask %x\n", irq, cm);
410             GIC_SET_PENDING(irq, cm);
411             update = 1;
412         }
413     }
414 
415     if (s->security_extn && !attrs.secure && !GIC_TEST_GROUP(irq, cm)) {
416         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
417         return;
418     }
419 
420     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
421      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
422      * i.e. go ahead and complete the irq anyway.
423      */
424 
425     if (irq != s->running_irq[cpu]) {
426         /* Complete an IRQ that is not currently running.  */
427         int tmp = s->running_irq[cpu];
428         while (s->last_active[tmp][cpu] != 1023) {
429             if (s->last_active[tmp][cpu] == irq) {
430                 s->last_active[tmp][cpu] = s->last_active[irq][cpu];
431                 break;
432             }
433             tmp = s->last_active[tmp][cpu];
434         }
435         if (update) {
436             gic_update(s);
437         }
438     } else {
439         /* Complete the current running IRQ.  */
440         gic_set_running_irq(s, cpu, s->last_active[s->running_irq[cpu]][cpu]);
441     }
442 }
443 
444 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
445 {
446     GICState *s = (GICState *)opaque;
447     uint32_t res;
448     int irq;
449     int i;
450     int cpu;
451     int cm;
452     int mask;
453 
454     cpu = gic_get_current_cpu(s);
455     cm = 1 << cpu;
456     if (offset < 0x100) {
457         if (offset == 0) {      /* GICD_CTLR */
458             if (s->security_extn && !attrs.secure) {
459                 /* The NS bank of this register is just an alias of the
460                  * EnableGrp1 bit in the S bank version.
461                  */
462                 return extract32(s->ctlr, 1, 1);
463             } else {
464                 return s->ctlr;
465             }
466         }
467         if (offset == 4)
468             /* Interrupt Controller Type Register */
469             return ((s->num_irq / 32) - 1)
470                     | ((NUM_CPU(s) - 1) << 5)
471                     | (s->security_extn << 10);
472         if (offset < 0x08)
473             return 0;
474         if (offset >= 0x80) {
475             /* Interrupt Group Registers: these RAZ/WI if this is an NS
476              * access to a GIC with the security extensions, or if the GIC
477              * doesn't have groups at all.
478              */
479             res = 0;
480             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
481                 /* Every byte offset holds 8 group status bits */
482                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
483                 if (irq >= s->num_irq) {
484                     goto bad_reg;
485                 }
486                 for (i = 0; i < 8; i++) {
487                     if (GIC_TEST_GROUP(irq + i, cm)) {
488                         res |= (1 << i);
489                     }
490                 }
491             }
492             return res;
493         }
494         goto bad_reg;
495     } else if (offset < 0x200) {
496         /* Interrupt Set/Clear Enable.  */
497         if (offset < 0x180)
498             irq = (offset - 0x100) * 8;
499         else
500             irq = (offset - 0x180) * 8;
501         irq += GIC_BASE_IRQ;
502         if (irq >= s->num_irq)
503             goto bad_reg;
504         res = 0;
505         for (i = 0; i < 8; i++) {
506             if (GIC_TEST_ENABLED(irq + i, cm)) {
507                 res |= (1 << i);
508             }
509         }
510     } else if (offset < 0x300) {
511         /* Interrupt Set/Clear Pending.  */
512         if (offset < 0x280)
513             irq = (offset - 0x200) * 8;
514         else
515             irq = (offset - 0x280) * 8;
516         irq += GIC_BASE_IRQ;
517         if (irq >= s->num_irq)
518             goto bad_reg;
519         res = 0;
520         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
521         for (i = 0; i < 8; i++) {
522             if (gic_test_pending(s, irq + i, mask)) {
523                 res |= (1 << i);
524             }
525         }
526     } else if (offset < 0x400) {
527         /* Interrupt Active.  */
528         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
529         if (irq >= s->num_irq)
530             goto bad_reg;
531         res = 0;
532         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
533         for (i = 0; i < 8; i++) {
534             if (GIC_TEST_ACTIVE(irq + i, mask)) {
535                 res |= (1 << i);
536             }
537         }
538     } else if (offset < 0x800) {
539         /* Interrupt Priority.  */
540         irq = (offset - 0x400) + GIC_BASE_IRQ;
541         if (irq >= s->num_irq)
542             goto bad_reg;
543         res = gic_get_priority(s, cpu, irq, attrs);
544     } else if (offset < 0xc00) {
545         /* Interrupt CPU Target.  */
546         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
547             /* For uniprocessor GICs these RAZ/WI */
548             res = 0;
549         } else {
550             irq = (offset - 0x800) + GIC_BASE_IRQ;
551             if (irq >= s->num_irq) {
552                 goto bad_reg;
553             }
554             if (irq >= 29 && irq <= 31) {
555                 res = cm;
556             } else {
557                 res = GIC_TARGET(irq);
558             }
559         }
560     } else if (offset < 0xf00) {
561         /* Interrupt Configuration.  */
562         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
563         if (irq >= s->num_irq)
564             goto bad_reg;
565         res = 0;
566         for (i = 0; i < 4; i++) {
567             if (GIC_TEST_MODEL(irq + i))
568                 res |= (1 << (i * 2));
569             if (GIC_TEST_EDGE_TRIGGER(irq + i))
570                 res |= (2 << (i * 2));
571         }
572     } else if (offset < 0xf10) {
573         goto bad_reg;
574     } else if (offset < 0xf30) {
575         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
576             goto bad_reg;
577         }
578 
579         if (offset < 0xf20) {
580             /* GICD_CPENDSGIRn */
581             irq = (offset - 0xf10);
582         } else {
583             irq = (offset - 0xf20);
584             /* GICD_SPENDSGIRn */
585         }
586 
587         res = s->sgi_pending[irq][cpu];
588     } else if (offset < 0xfe0) {
589         goto bad_reg;
590     } else /* offset >= 0xfe0 */ {
591         if (offset & 3) {
592             res = 0;
593         } else {
594             res = gic_id[(offset - 0xfe0) >> 2];
595         }
596     }
597     return res;
598 bad_reg:
599     qemu_log_mask(LOG_GUEST_ERROR,
600                   "gic_dist_readb: Bad offset %x\n", (int)offset);
601     return 0;
602 }
603 
604 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
605                                  unsigned size, MemTxAttrs attrs)
606 {
607     switch (size) {
608     case 1:
609         *data = gic_dist_readb(opaque, offset, attrs);
610         return MEMTX_OK;
611     case 2:
612         *data = gic_dist_readb(opaque, offset, attrs);
613         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
614         return MEMTX_OK;
615     case 4:
616         *data = gic_dist_readb(opaque, offset, attrs);
617         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
618         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
619         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
620         return MEMTX_OK;
621     default:
622         return MEMTX_ERROR;
623     }
624 }
625 
626 static void gic_dist_writeb(void *opaque, hwaddr offset,
627                             uint32_t value, MemTxAttrs attrs)
628 {
629     GICState *s = (GICState *)opaque;
630     int irq;
631     int i;
632     int cpu;
633 
634     cpu = gic_get_current_cpu(s);
635     if (offset < 0x100) {
636         if (offset == 0) {
637             if (s->security_extn && !attrs.secure) {
638                 /* NS version is just an alias of the S version's bit 1 */
639                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
640             } else if (gic_has_groups(s)) {
641                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
642             } else {
643                 s->ctlr = value & GICD_CTLR_EN_GRP0;
644             }
645             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
646                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
647                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
648         } else if (offset < 4) {
649             /* ignored.  */
650         } else if (offset >= 0x80) {
651             /* Interrupt Group Registers: RAZ/WI for NS access to secure
652              * GIC, or for GICs without groups.
653              */
654             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
655                 /* Every byte offset holds 8 group status bits */
656                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
657                 if (irq >= s->num_irq) {
658                     goto bad_reg;
659                 }
660                 for (i = 0; i < 8; i++) {
661                     /* Group bits are banked for private interrupts */
662                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
663                     if (value & (1 << i)) {
664                         /* Group1 (Non-secure) */
665                         GIC_SET_GROUP(irq + i, cm);
666                     } else {
667                         /* Group0 (Secure) */
668                         GIC_CLEAR_GROUP(irq + i, cm);
669                     }
670                 }
671             }
672         } else {
673             goto bad_reg;
674         }
675     } else if (offset < 0x180) {
676         /* Interrupt Set Enable.  */
677         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
678         if (irq >= s->num_irq)
679             goto bad_reg;
680         if (irq < GIC_NR_SGIS) {
681             value = 0xff;
682         }
683 
684         for (i = 0; i < 8; i++) {
685             if (value & (1 << i)) {
686                 int mask =
687                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
688                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
689 
690                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
691                     DPRINTF("Enabled IRQ %d\n", irq + i);
692                 }
693                 GIC_SET_ENABLED(irq + i, cm);
694                 /* If a raised level triggered IRQ enabled then mark
695                    is as pending.  */
696                 if (GIC_TEST_LEVEL(irq + i, mask)
697                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
698                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
699                     GIC_SET_PENDING(irq + i, mask);
700                 }
701             }
702         }
703     } else if (offset < 0x200) {
704         /* Interrupt Clear Enable.  */
705         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
706         if (irq >= s->num_irq)
707             goto bad_reg;
708         if (irq < GIC_NR_SGIS) {
709             value = 0;
710         }
711 
712         for (i = 0; i < 8; i++) {
713             if (value & (1 << i)) {
714                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
715 
716                 if (GIC_TEST_ENABLED(irq + i, cm)) {
717                     DPRINTF("Disabled IRQ %d\n", irq + i);
718                 }
719                 GIC_CLEAR_ENABLED(irq + i, cm);
720             }
721         }
722     } else if (offset < 0x280) {
723         /* Interrupt Set Pending.  */
724         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
725         if (irq >= s->num_irq)
726             goto bad_reg;
727         if (irq < GIC_NR_SGIS) {
728             value = 0;
729         }
730 
731         for (i = 0; i < 8; i++) {
732             if (value & (1 << i)) {
733                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
734             }
735         }
736     } else if (offset < 0x300) {
737         /* Interrupt Clear Pending.  */
738         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
739         if (irq >= s->num_irq)
740             goto bad_reg;
741         if (irq < GIC_NR_SGIS) {
742             value = 0;
743         }
744 
745         for (i = 0; i < 8; i++) {
746             /* ??? This currently clears the pending bit for all CPUs, even
747                for per-CPU interrupts.  It's unclear whether this is the
748                corect behavior.  */
749             if (value & (1 << i)) {
750                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
751             }
752         }
753     } else if (offset < 0x400) {
754         /* Interrupt Active.  */
755         goto bad_reg;
756     } else if (offset < 0x800) {
757         /* Interrupt Priority.  */
758         irq = (offset - 0x400) + GIC_BASE_IRQ;
759         if (irq >= s->num_irq)
760             goto bad_reg;
761         gic_set_priority(s, cpu, irq, value, attrs);
762     } else if (offset < 0xc00) {
763         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
764          * annoying exception of the 11MPCore's GIC.
765          */
766         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
767             irq = (offset - 0x800) + GIC_BASE_IRQ;
768             if (irq >= s->num_irq) {
769                 goto bad_reg;
770             }
771             if (irq < 29) {
772                 value = 0;
773             } else if (irq < GIC_INTERNAL) {
774                 value = ALL_CPU_MASK;
775             }
776             s->irq_target[irq] = value & ALL_CPU_MASK;
777         }
778     } else if (offset < 0xf00) {
779         /* Interrupt Configuration.  */
780         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
781         if (irq >= s->num_irq)
782             goto bad_reg;
783         if (irq < GIC_NR_SGIS)
784             value |= 0xaa;
785         for (i = 0; i < 4; i++) {
786             if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
787                 if (value & (1 << (i * 2))) {
788                     GIC_SET_MODEL(irq + i);
789                 } else {
790                     GIC_CLEAR_MODEL(irq + i);
791                 }
792             }
793             if (value & (2 << (i * 2))) {
794                 GIC_SET_EDGE_TRIGGER(irq + i);
795             } else {
796                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
797             }
798         }
799     } else if (offset < 0xf10) {
800         /* 0xf00 is only handled for 32-bit writes.  */
801         goto bad_reg;
802     } else if (offset < 0xf20) {
803         /* GICD_CPENDSGIRn */
804         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
805             goto bad_reg;
806         }
807         irq = (offset - 0xf10);
808 
809         s->sgi_pending[irq][cpu] &= ~value;
810         if (s->sgi_pending[irq][cpu] == 0) {
811             GIC_CLEAR_PENDING(irq, 1 << cpu);
812         }
813     } else if (offset < 0xf30) {
814         /* GICD_SPENDSGIRn */
815         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
816             goto bad_reg;
817         }
818         irq = (offset - 0xf20);
819 
820         GIC_SET_PENDING(irq, 1 << cpu);
821         s->sgi_pending[irq][cpu] |= value;
822     } else {
823         goto bad_reg;
824     }
825     gic_update(s);
826     return;
827 bad_reg:
828     qemu_log_mask(LOG_GUEST_ERROR,
829                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
830 }
831 
832 static void gic_dist_writew(void *opaque, hwaddr offset,
833                             uint32_t value, MemTxAttrs attrs)
834 {
835     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
836     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
837 }
838 
839 static void gic_dist_writel(void *opaque, hwaddr offset,
840                             uint32_t value, MemTxAttrs attrs)
841 {
842     GICState *s = (GICState *)opaque;
843     if (offset == 0xf00) {
844         int cpu;
845         int irq;
846         int mask;
847         int target_cpu;
848 
849         cpu = gic_get_current_cpu(s);
850         irq = value & 0x3ff;
851         switch ((value >> 24) & 3) {
852         case 0:
853             mask = (value >> 16) & ALL_CPU_MASK;
854             break;
855         case 1:
856             mask = ALL_CPU_MASK ^ (1 << cpu);
857             break;
858         case 2:
859             mask = 1 << cpu;
860             break;
861         default:
862             DPRINTF("Bad Soft Int target filter\n");
863             mask = ALL_CPU_MASK;
864             break;
865         }
866         GIC_SET_PENDING(irq, mask);
867         target_cpu = ctz32(mask);
868         while (target_cpu < GIC_NCPU) {
869             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
870             mask &= ~(1 << target_cpu);
871             target_cpu = ctz32(mask);
872         }
873         gic_update(s);
874         return;
875     }
876     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
877     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
878 }
879 
880 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
881                                   unsigned size, MemTxAttrs attrs)
882 {
883     switch (size) {
884     case 1:
885         gic_dist_writeb(opaque, offset, data, attrs);
886         return MEMTX_OK;
887     case 2:
888         gic_dist_writew(opaque, offset, data, attrs);
889         return MEMTX_OK;
890     case 4:
891         gic_dist_writel(opaque, offset, data, attrs);
892         return MEMTX_OK;
893     default:
894         return MEMTX_ERROR;
895     }
896 }
897 
898 static const MemoryRegionOps gic_dist_ops = {
899     .read_with_attrs = gic_dist_read,
900     .write_with_attrs = gic_dist_write,
901     .endianness = DEVICE_NATIVE_ENDIAN,
902 };
903 
904 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
905                                 uint64_t *data, MemTxAttrs attrs)
906 {
907     switch (offset) {
908     case 0x00: /* Control */
909         *data = gic_get_cpu_control(s, cpu, attrs);
910         break;
911     case 0x04: /* Priority mask */
912         *data = gic_get_priority_mask(s, cpu, attrs);
913         break;
914     case 0x08: /* Binary Point */
915         if (s->security_extn && !attrs.secure) {
916             /* BPR is banked. Non-secure copy stored in ABPR. */
917             *data = s->abpr[cpu];
918         } else {
919             *data = s->bpr[cpu];
920         }
921         break;
922     case 0x0c: /* Acknowledge */
923         *data = gic_acknowledge_irq(s, cpu);
924         break;
925     case 0x14: /* Running Priority */
926         *data = gic_get_running_priority(s, cpu, attrs);
927         break;
928     case 0x18: /* Highest Pending Interrupt */
929         *data = gic_get_current_pending_irq(s, cpu, attrs);
930         break;
931     case 0x1c: /* Aliased Binary Point */
932         /* GIC v2, no security: ABPR
933          * GIC v1, no security: not implemented (RAZ/WI)
934          * With security extensions, secure access: ABPR (alias of NS BPR)
935          * With security extensions, nonsecure access: RAZ/WI
936          */
937         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
938             *data = 0;
939         } else {
940             *data = s->abpr[cpu];
941         }
942         break;
943     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
944         *data = s->apr[(offset - 0xd0) / 4][cpu];
945         break;
946     default:
947         qemu_log_mask(LOG_GUEST_ERROR,
948                       "gic_cpu_read: Bad offset %x\n", (int)offset);
949         return MEMTX_ERROR;
950     }
951     return MEMTX_OK;
952 }
953 
954 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
955                                  uint32_t value, MemTxAttrs attrs)
956 {
957     switch (offset) {
958     case 0x00: /* Control */
959         gic_set_cpu_control(s, cpu, value, attrs);
960         break;
961     case 0x04: /* Priority mask */
962         gic_set_priority_mask(s, cpu, value, attrs);
963         break;
964     case 0x08: /* Binary Point */
965         if (s->security_extn && !attrs.secure) {
966             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
967         } else {
968             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
969         }
970         break;
971     case 0x10: /* End Of Interrupt */
972         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
973         return MEMTX_OK;
974     case 0x1c: /* Aliased Binary Point */
975         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
976             /* unimplemented, or NS access: RAZ/WI */
977             return MEMTX_OK;
978         } else {
979             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
980         }
981         break;
982     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
983         qemu_log_mask(LOG_UNIMP, "Writing APR not implemented\n");
984         break;
985     default:
986         qemu_log_mask(LOG_GUEST_ERROR,
987                       "gic_cpu_write: Bad offset %x\n", (int)offset);
988         return MEMTX_ERROR;
989     }
990     gic_update(s);
991     return MEMTX_OK;
992 }
993 
994 /* Wrappers to read/write the GIC CPU interface for the current CPU */
995 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
996                                     unsigned size, MemTxAttrs attrs)
997 {
998     GICState *s = (GICState *)opaque;
999     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1000 }
1001 
1002 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1003                                      uint64_t value, unsigned size,
1004                                      MemTxAttrs attrs)
1005 {
1006     GICState *s = (GICState *)opaque;
1007     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1008 }
1009 
1010 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1011  * These just decode the opaque pointer into GICState* + cpu id.
1012  */
1013 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1014                                    unsigned size, MemTxAttrs attrs)
1015 {
1016     GICState **backref = (GICState **)opaque;
1017     GICState *s = *backref;
1018     int id = (backref - s->backref);
1019     return gic_cpu_read(s, id, addr, data, attrs);
1020 }
1021 
1022 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1023                                     uint64_t value, unsigned size,
1024                                     MemTxAttrs attrs)
1025 {
1026     GICState **backref = (GICState **)opaque;
1027     GICState *s = *backref;
1028     int id = (backref - s->backref);
1029     return gic_cpu_write(s, id, addr, value, attrs);
1030 }
1031 
1032 static const MemoryRegionOps gic_thiscpu_ops = {
1033     .read_with_attrs = gic_thiscpu_read,
1034     .write_with_attrs = gic_thiscpu_write,
1035     .endianness = DEVICE_NATIVE_ENDIAN,
1036 };
1037 
1038 static const MemoryRegionOps gic_cpu_ops = {
1039     .read_with_attrs = gic_do_cpu_read,
1040     .write_with_attrs = gic_do_cpu_write,
1041     .endianness = DEVICE_NATIVE_ENDIAN,
1042 };
1043 
1044 void gic_init_irqs_and_distributor(GICState *s)
1045 {
1046     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
1047     int i;
1048 
1049     i = s->num_irq - GIC_INTERNAL;
1050     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
1051      * GPIO array layout is thus:
1052      *  [0..N-1] SPIs
1053      *  [N..N+31] PPIs for CPU 0
1054      *  [N+32..N+63] PPIs for CPU 1
1055      *   ...
1056      */
1057     if (s->revision != REV_NVIC) {
1058         i += (GIC_INTERNAL * s->num_cpu);
1059     }
1060     qdev_init_gpio_in(DEVICE(s), gic_set_irq, i);
1061     for (i = 0; i < NUM_CPU(s); i++) {
1062         sysbus_init_irq(sbd, &s->parent_irq[i]);
1063     }
1064     for (i = 0; i < NUM_CPU(s); i++) {
1065         sysbus_init_irq(sbd, &s->parent_fiq[i]);
1066     }
1067     memory_region_init_io(&s->iomem, OBJECT(s), &gic_dist_ops, s,
1068                           "gic_dist", 0x1000);
1069 }
1070 
1071 static void arm_gic_realize(DeviceState *dev, Error **errp)
1072 {
1073     /* Device instance realize function for the GIC sysbus device */
1074     int i;
1075     GICState *s = ARM_GIC(dev);
1076     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1077     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1078     Error *local_err = NULL;
1079 
1080     agc->parent_realize(dev, &local_err);
1081     if (local_err) {
1082         error_propagate(errp, local_err);
1083         return;
1084     }
1085 
1086     gic_init_irqs_and_distributor(s);
1087 
1088     /* Memory regions for the CPU interfaces (NVIC doesn't have these):
1089      * a region for "CPU interface for this core", then a region for
1090      * "CPU interface for core 0", "for core 1", ...
1091      * NB that the memory region size of 0x100 applies for the 11MPCore
1092      * and also cores following the GIC v1 spec (ie A9).
1093      * GIC v2 defines a larger memory region (0x1000) so this will need
1094      * to be extended when we implement A15.
1095      */
1096     memory_region_init_io(&s->cpuiomem[0], OBJECT(s), &gic_thiscpu_ops, s,
1097                           "gic_cpu", 0x100);
1098     for (i = 0; i < NUM_CPU(s); i++) {
1099         s->backref[i] = s;
1100         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1101                               &s->backref[i], "gic_cpu", 0x100);
1102     }
1103     /* Distributor */
1104     sysbus_init_mmio(sbd, &s->iomem);
1105     /* cpu interfaces (one for "current cpu" plus one per cpu) */
1106     for (i = 0; i <= NUM_CPU(s); i++) {
1107         sysbus_init_mmio(sbd, &s->cpuiomem[i]);
1108     }
1109 }
1110 
1111 static void arm_gic_class_init(ObjectClass *klass, void *data)
1112 {
1113     DeviceClass *dc = DEVICE_CLASS(klass);
1114     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1115 
1116     agc->parent_realize = dc->realize;
1117     dc->realize = arm_gic_realize;
1118 }
1119 
1120 static const TypeInfo arm_gic_info = {
1121     .name = TYPE_ARM_GIC,
1122     .parent = TYPE_ARM_GIC_COMMON,
1123     .instance_size = sizeof(GICState),
1124     .class_init = arm_gic_class_init,
1125     .class_size = sizeof(ARMGICClass),
1126 };
1127 
1128 static void arm_gic_register_types(void)
1129 {
1130     type_register_static(&arm_gic_info);
1131 }
1132 
1133 type_init(arm_gic_register_types)
1134