xref: /openbmc/qemu/hw/intc/arm_gic.c (revision ebe15582)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/irq.h"
23 #include "hw/sysbus.h"
24 #include "gic_internal.h"
25 #include "qapi/error.h"
26 #include "hw/core/cpu.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30 #include "sysemu/kvm.h"
31 
32 /* #define DEBUG_GIC */
33 
34 #ifdef DEBUG_GIC
35 #define DEBUG_GIC_GATE 1
36 #else
37 #define DEBUG_GIC_GATE 0
38 #endif
39 
40 #define DPRINTF(fmt, ...) do {                                          \
41         if (DEBUG_GIC_GATE) {                                           \
42             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
43         }                                                               \
44     } while (0)
45 
46 static const uint8_t gic_id_11mpcore[] = {
47     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
48 };
49 
50 static const uint8_t gic_id_gicv1[] = {
51     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
52 };
53 
54 static const uint8_t gic_id_gicv2[] = {
55     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
56 };
57 
58 static inline int gic_get_current_cpu(GICState *s)
59 {
60     if (s->num_cpu > 1) {
61         return current_cpu->cpu_index;
62     }
63     return 0;
64 }
65 
66 static inline int gic_get_current_vcpu(GICState *s)
67 {
68     return gic_get_current_cpu(s) + GIC_NCPU;
69 }
70 
71 /* Return true if this GIC config has interrupt groups, which is
72  * true if we're a GICv2, or a GICv1 with the security extensions.
73  */
74 static inline bool gic_has_groups(GICState *s)
75 {
76     return s->revision == 2 || s->security_extn;
77 }
78 
79 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
80 {
81     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
82 }
83 
84 static inline void gic_get_best_irq(GICState *s, int cpu,
85                                     int *best_irq, int *best_prio, int *group)
86 {
87     int irq;
88     int cm = 1 << cpu;
89 
90     *best_irq = 1023;
91     *best_prio = 0x100;
92 
93     for (irq = 0; irq < s->num_irq; irq++) {
94         if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
95             (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
96             (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
97             if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
98                 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
99                 *best_irq = irq;
100             }
101         }
102     }
103 
104     if (*best_irq < 1023) {
105         *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
106     }
107 }
108 
109 static inline void gic_get_best_virq(GICState *s, int cpu,
110                                      int *best_irq, int *best_prio, int *group)
111 {
112     int lr_idx = 0;
113 
114     *best_irq = 1023;
115     *best_prio = 0x100;
116 
117     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
118         uint32_t lr_entry = s->h_lr[lr_idx][cpu];
119         int state = GICH_LR_STATE(lr_entry);
120 
121         if (state == GICH_LR_STATE_PENDING) {
122             int prio = GICH_LR_PRIORITY(lr_entry);
123 
124             if (prio < *best_prio) {
125                 *best_prio = prio;
126                 *best_irq = GICH_LR_VIRT_ID(lr_entry);
127                 *group = GICH_LR_GROUP(lr_entry);
128             }
129         }
130     }
131 }
132 
133 /* Return true if IRQ signaling is enabled for the given cpu and at least one
134  * of the given groups:
135  *   - in the non-virt case, the distributor must be enabled for one of the
136  *   given groups
137  *   - in the virt case, the virtual interface must be enabled.
138  *   - in all cases, the (v)CPU interface must be enabled for one of the given
139  *   groups.
140  */
141 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
142                                     int group_mask)
143 {
144     if (!virt && !(s->ctlr & group_mask)) {
145         return false;
146     }
147 
148     if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
149         return false;
150     }
151 
152     if (!(s->cpu_ctlr[cpu] & group_mask)) {
153         return false;
154     }
155 
156     return true;
157 }
158 
159 /* TODO: Many places that call this routine could be optimized.  */
160 /* Update interrupt status after enabled or pending bits have been changed.  */
161 static inline void gic_update_internal(GICState *s, bool virt)
162 {
163     int best_irq;
164     int best_prio;
165     int irq_level, fiq_level;
166     int cpu, cpu_iface;
167     int group = 0;
168     qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
169     qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
170 
171     for (cpu = 0; cpu < s->num_cpu; cpu++) {
172         cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
173 
174         s->current_pending[cpu_iface] = 1023;
175         if (!gic_irq_signaling_enabled(s, cpu, virt,
176                                        GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
177             qemu_irq_lower(irq_lines[cpu]);
178             qemu_irq_lower(fiq_lines[cpu]);
179             continue;
180         }
181 
182         if (virt) {
183             gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
184         } else {
185             gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
186         }
187 
188         if (best_irq != 1023) {
189             trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
190                                      best_irq, best_prio,
191                                      s->priority_mask[cpu_iface],
192                                      s->running_priority[cpu_iface]);
193         }
194 
195         irq_level = fiq_level = 0;
196 
197         if (best_prio < s->priority_mask[cpu_iface]) {
198             s->current_pending[cpu_iface] = best_irq;
199             if (best_prio < s->running_priority[cpu_iface]) {
200                 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
201                     if (group == 0 &&
202                         s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
203                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
204                                 best_irq, cpu_iface);
205                         fiq_level = 1;
206                         trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
207                                                  fiq_level);
208                     } else {
209                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
210                                 best_irq, cpu_iface);
211                         irq_level = 1;
212                         trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
213                                                  irq_level);
214                     }
215                 }
216             }
217         }
218 
219         qemu_set_irq(irq_lines[cpu], irq_level);
220         qemu_set_irq(fiq_lines[cpu], fiq_level);
221     }
222 }
223 
224 static void gic_update(GICState *s)
225 {
226     gic_update_internal(s, false);
227 }
228 
229 /* Return true if this LR is empty, i.e. the corresponding bit
230  * in ELRSR is set.
231  */
232 static inline bool gic_lr_entry_is_free(uint32_t entry)
233 {
234     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
235         && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
236 }
237 
238 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
239  * corrsponding bit in EISR is set.
240  */
241 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
242 {
243     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
244         && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
245 }
246 
247 static inline void gic_extract_lr_info(GICState *s, int cpu,
248                                 int *num_eoi, int *num_valid, int *num_pending)
249 {
250     int lr_idx;
251 
252     *num_eoi = 0;
253     *num_valid = 0;
254     *num_pending = 0;
255 
256     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
257         uint32_t *entry = &s->h_lr[lr_idx][cpu];
258 
259         if (gic_lr_entry_is_eoi(*entry)) {
260             (*num_eoi)++;
261         }
262 
263         if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
264             (*num_valid)++;
265         }
266 
267         if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
268             (*num_pending)++;
269         }
270     }
271 }
272 
273 static void gic_compute_misr(GICState *s, int cpu)
274 {
275     uint32_t value = 0;
276     int vcpu = cpu + GIC_NCPU;
277 
278     int num_eoi, num_valid, num_pending;
279 
280     gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
281 
282     /* EOI */
283     if (num_eoi) {
284         value |= R_GICH_MISR_EOI_MASK;
285     }
286 
287     /* U: true if only 0 or 1 LR entry is valid */
288     if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
289         value |= R_GICH_MISR_U_MASK;
290     }
291 
292     /* LRENP: EOICount is not 0 */
293     if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
294         ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
295         value |= R_GICH_MISR_LRENP_MASK;
296     }
297 
298     /* NP: no pending interrupts */
299     if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
300         value |= R_GICH_MISR_NP_MASK;
301     }
302 
303     /* VGrp0E: group0 virq signaling enabled */
304     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
305         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
306         value |= R_GICH_MISR_VGrp0E_MASK;
307     }
308 
309     /* VGrp0D: group0 virq signaling disabled */
310     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
311         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
312         value |= R_GICH_MISR_VGrp0D_MASK;
313     }
314 
315     /* VGrp1E: group1 virq signaling enabled */
316     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
317         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
318         value |= R_GICH_MISR_VGrp1E_MASK;
319     }
320 
321     /* VGrp1D: group1 virq signaling disabled */
322     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
323         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
324         value |= R_GICH_MISR_VGrp1D_MASK;
325     }
326 
327     s->h_misr[cpu] = value;
328 }
329 
330 static void gic_update_maintenance(GICState *s)
331 {
332     int cpu = 0;
333     int maint_level;
334 
335     for (cpu = 0; cpu < s->num_cpu; cpu++) {
336         gic_compute_misr(s, cpu);
337         maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
338 
339         trace_gic_update_maintenance_irq(cpu, maint_level);
340         qemu_set_irq(s->maintenance_irq[cpu], maint_level);
341     }
342 }
343 
344 static void gic_update_virt(GICState *s)
345 {
346     gic_update_internal(s, true);
347     gic_update_maintenance(s);
348 }
349 
350 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
351                                  int cm, int target)
352 {
353     if (level) {
354         GIC_DIST_SET_LEVEL(irq, cm);
355         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
356             DPRINTF("Set %d pending mask %x\n", irq, target);
357             GIC_DIST_SET_PENDING(irq, target);
358         }
359     } else {
360         GIC_DIST_CLEAR_LEVEL(irq, cm);
361     }
362 }
363 
364 static void gic_set_irq_generic(GICState *s, int irq, int level,
365                                 int cm, int target)
366 {
367     if (level) {
368         GIC_DIST_SET_LEVEL(irq, cm);
369         DPRINTF("Set %d pending mask %x\n", irq, target);
370         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
371             GIC_DIST_SET_PENDING(irq, target);
372         }
373     } else {
374         GIC_DIST_CLEAR_LEVEL(irq, cm);
375     }
376 }
377 
378 /* Process a change in an external IRQ input.  */
379 static void gic_set_irq(void *opaque, int irq, int level)
380 {
381     /* Meaning of the 'irq' parameter:
382      *  [0..N-1] : external interrupts
383      *  [N..N+31] : PPI (internal) interrupts for CPU 0
384      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
385      *  ...
386      */
387     GICState *s = (GICState *)opaque;
388     int cm, target;
389     if (irq < (s->num_irq - GIC_INTERNAL)) {
390         /* The first external input line is internal interrupt 32.  */
391         cm = ALL_CPU_MASK;
392         irq += GIC_INTERNAL;
393         target = GIC_DIST_TARGET(irq);
394     } else {
395         int cpu;
396         irq -= (s->num_irq - GIC_INTERNAL);
397         cpu = irq / GIC_INTERNAL;
398         irq %= GIC_INTERNAL;
399         cm = 1 << cpu;
400         target = cm;
401     }
402 
403     assert(irq >= GIC_NR_SGIS);
404 
405     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
406         return;
407     }
408 
409     if (s->revision == REV_11MPCORE) {
410         gic_set_irq_11mpcore(s, irq, level, cm, target);
411     } else {
412         gic_set_irq_generic(s, irq, level, cm, target);
413     }
414     trace_gic_set_irq(irq, level, cm, target);
415 
416     gic_update(s);
417 }
418 
419 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
420                                             MemTxAttrs attrs)
421 {
422     uint16_t pending_irq = s->current_pending[cpu];
423 
424     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
425         int group = gic_test_group(s, pending_irq, cpu);
426 
427         /* On a GIC without the security extensions, reading this register
428          * behaves in the same way as a secure access to a GIC with them.
429          */
430         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
431 
432         if (group == 0 && !secure) {
433             /* Group0 interrupts hidden from Non-secure access */
434             return 1023;
435         }
436         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
437             /* Group1 interrupts only seen by Secure access if
438              * AckCtl bit set.
439              */
440             return 1022;
441         }
442     }
443     return pending_irq;
444 }
445 
446 static int gic_get_group_priority(GICState *s, int cpu, int irq)
447 {
448     /* Return the group priority of the specified interrupt
449      * (which is the top bits of its priority, with the number
450      * of bits masked determined by the applicable binary point register).
451      */
452     int bpr;
453     uint32_t mask;
454 
455     if (gic_has_groups(s) &&
456         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
457         gic_test_group(s, irq, cpu)) {
458         bpr = s->abpr[cpu] - 1;
459         assert(bpr >= 0);
460     } else {
461         bpr = s->bpr[cpu];
462     }
463 
464     /* a BPR of 0 means the group priority bits are [7:1];
465      * a BPR of 1 means they are [7:2], and so on down to
466      * a BPR of 7 meaning no group priority bits at all.
467      */
468     mask = ~0U << ((bpr & 7) + 1);
469 
470     return gic_get_priority(s, irq, cpu) & mask;
471 }
472 
473 static void gic_activate_irq(GICState *s, int cpu, int irq)
474 {
475     /* Set the appropriate Active Priority Register bit for this IRQ,
476      * and update the running priority.
477      */
478     int prio = gic_get_group_priority(s, cpu, irq);
479     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
480     int preemption_level = prio >> (min_bpr + 1);
481     int regno = preemption_level / 32;
482     int bitno = preemption_level % 32;
483     uint32_t *papr = NULL;
484 
485     if (gic_is_vcpu(cpu)) {
486         assert(regno == 0);
487         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
488     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
489         papr = &s->nsapr[regno][cpu];
490     } else {
491         papr = &s->apr[regno][cpu];
492     }
493 
494     *papr |= (1 << bitno);
495 
496     s->running_priority[cpu] = prio;
497     gic_set_active(s, irq, cpu);
498 }
499 
500 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
501 {
502     /* Recalculate the current running priority for this CPU based
503      * on the set bits in the Active Priority Registers.
504      */
505     int i;
506 
507     if (gic_is_vcpu(cpu)) {
508         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
509         if (apr) {
510             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
511         } else {
512             return 0x100;
513         }
514     }
515 
516     for (i = 0; i < GIC_NR_APRS; i++) {
517         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
518         if (!apr) {
519             continue;
520         }
521         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
522     }
523     return 0x100;
524 }
525 
526 static void gic_drop_prio(GICState *s, int cpu, int group)
527 {
528     /* Drop the priority of the currently active interrupt in the
529      * specified group.
530      *
531      * Note that we can guarantee (because of the requirement to nest
532      * GICC_IAR reads [which activate an interrupt and raise priority]
533      * with GICC_EOIR writes [which drop the priority for the interrupt])
534      * that the interrupt we're being called for is the highest priority
535      * active interrupt, meaning that it has the lowest set bit in the
536      * APR registers.
537      *
538      * If the guest does not honour the ordering constraints then the
539      * behaviour of the GIC is UNPREDICTABLE, which for us means that
540      * the values of the APR registers might become incorrect and the
541      * running priority will be wrong, so interrupts that should preempt
542      * might not do so, and interrupts that should not preempt might do so.
543      */
544     if (gic_is_vcpu(cpu)) {
545         int rcpu = gic_get_vcpu_real_id(cpu);
546 
547         if (s->h_apr[rcpu]) {
548             /* Clear lowest set bit */
549             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
550         }
551     } else {
552         int i;
553 
554         for (i = 0; i < GIC_NR_APRS; i++) {
555             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
556             if (!*papr) {
557                 continue;
558             }
559             /* Clear lowest set bit */
560             *papr &= *papr - 1;
561             break;
562         }
563     }
564 
565     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
566 }
567 
568 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
569 {
570     int src;
571     uint32_t ret;
572 
573     if (!gic_is_vcpu(cpu)) {
574         /* Lookup the source CPU for the SGI and clear this in the
575          * sgi_pending map.  Return the src and clear the overall pending
576          * state on this CPU if the SGI is not pending from any CPUs.
577          */
578         assert(s->sgi_pending[irq][cpu] != 0);
579         src = ctz32(s->sgi_pending[irq][cpu]);
580         s->sgi_pending[irq][cpu] &= ~(1 << src);
581         if (s->sgi_pending[irq][cpu] == 0) {
582             gic_clear_pending(s, irq, cpu);
583         }
584         ret = irq | ((src & 0x7) << 10);
585     } else {
586         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
587         src = GICH_LR_CPUID(*lr_entry);
588 
589         gic_clear_pending(s, irq, cpu);
590         ret = irq | (src << 10);
591     }
592 
593     return ret;
594 }
595 
596 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
597 {
598     int ret, irq;
599 
600     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
601      * for the case where this GIC supports grouping and the pending interrupt
602      * is in the wrong group.
603      */
604     irq = gic_get_current_pending_irq(s, cpu, attrs);
605     trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
606                               gic_get_vcpu_real_id(cpu), irq);
607 
608     if (irq >= GIC_MAXIRQ) {
609         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
610         return irq;
611     }
612 
613     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
614         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
615         return 1023;
616     }
617 
618     gic_activate_irq(s, cpu, irq);
619 
620     if (s->revision == REV_11MPCORE) {
621         /* Clear pending flags for both level and edge triggered interrupts.
622          * Level triggered IRQs will be reasserted once they become inactive.
623          */
624         gic_clear_pending(s, irq, cpu);
625         ret = irq;
626     } else {
627         if (irq < GIC_NR_SGIS) {
628             ret = gic_clear_pending_sgi(s, irq, cpu);
629         } else {
630             gic_clear_pending(s, irq, cpu);
631             ret = irq;
632         }
633     }
634 
635     if (gic_is_vcpu(cpu)) {
636         gic_update_virt(s);
637     } else {
638         gic_update(s);
639     }
640     DPRINTF("ACK %d\n", irq);
641     return ret;
642 }
643 
644 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
645                       MemTxAttrs attrs)
646 {
647     if (s->security_extn && !attrs.secure) {
648         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
649             return; /* Ignore Non-secure access of Group0 IRQ */
650         }
651         val = 0x80 | (val >> 1); /* Non-secure view */
652     }
653 
654     if (irq < GIC_INTERNAL) {
655         s->priority1[irq][cpu] = val;
656     } else {
657         s->priority2[(irq) - GIC_INTERNAL] = val;
658     }
659 }
660 
661 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
662                                  MemTxAttrs attrs)
663 {
664     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
665 
666     if (s->security_extn && !attrs.secure) {
667         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
668             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
669         }
670         prio = (prio << 1) & 0xff; /* Non-secure view */
671     }
672     return prio;
673 }
674 
675 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
676                                   MemTxAttrs attrs)
677 {
678     if (gic_cpu_ns_access(s, cpu, attrs)) {
679         if (s->priority_mask[cpu] & 0x80) {
680             /* Priority Mask in upper half */
681             pmask = 0x80 | (pmask >> 1);
682         } else {
683             /* Non-secure write ignored if priority mask is in lower half */
684             return;
685         }
686     }
687     s->priority_mask[cpu] = pmask;
688 }
689 
690 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
691 {
692     uint32_t pmask = s->priority_mask[cpu];
693 
694     if (gic_cpu_ns_access(s, cpu, attrs)) {
695         if (pmask & 0x80) {
696             /* Priority Mask in upper half, return Non-secure view */
697             pmask = (pmask << 1) & 0xff;
698         } else {
699             /* Priority Mask in lower half, RAZ */
700             pmask = 0;
701         }
702     }
703     return pmask;
704 }
705 
706 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
707 {
708     uint32_t ret = s->cpu_ctlr[cpu];
709 
710     if (gic_cpu_ns_access(s, cpu, attrs)) {
711         /* Construct the NS banked view of GICC_CTLR from the correct
712          * bits of the S banked view. We don't need to move the bypass
713          * control bits because we don't implement that (IMPDEF) part
714          * of the GIC architecture.
715          */
716         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
717     }
718     return ret;
719 }
720 
721 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
722                                 MemTxAttrs attrs)
723 {
724     uint32_t mask;
725 
726     if (gic_cpu_ns_access(s, cpu, attrs)) {
727         /* The NS view can only write certain bits in the register;
728          * the rest are unchanged
729          */
730         mask = GICC_CTLR_EN_GRP1;
731         if (s->revision == 2) {
732             mask |= GICC_CTLR_EOIMODE_NS;
733         }
734         s->cpu_ctlr[cpu] &= ~mask;
735         s->cpu_ctlr[cpu] |= (value << 1) & mask;
736     } else {
737         if (s->revision == 2) {
738             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
739         } else {
740             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
741         }
742         s->cpu_ctlr[cpu] = value & mask;
743     }
744     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
745             "Group1 Interrupts %sabled\n", cpu,
746             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
747             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
748 }
749 
750 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
751 {
752     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
753         /* Idle priority */
754         return 0xff;
755     }
756 
757     if (gic_cpu_ns_access(s, cpu, attrs)) {
758         if (s->running_priority[cpu] & 0x80) {
759             /* Running priority in upper half of range: return the Non-secure
760              * view of the priority.
761              */
762             return s->running_priority[cpu] << 1;
763         } else {
764             /* Running priority in lower half of range: RAZ */
765             return 0;
766         }
767     } else {
768         return s->running_priority[cpu];
769     }
770 }
771 
772 /* Return true if we should split priority drop and interrupt deactivation,
773  * ie whether the relevant EOIMode bit is set.
774  */
775 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
776 {
777     if (s->revision != 2) {
778         /* Before GICv2 prio-drop and deactivate are not separable */
779         return false;
780     }
781     if (gic_cpu_ns_access(s, cpu, attrs)) {
782         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
783     }
784     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
785 }
786 
787 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
788 {
789     int group;
790 
791     if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
792         /*
793          * This handles two cases:
794          * 1. If software writes the ID of a spurious interrupt [ie 1023]
795          * to the GICC_DIR, the GIC ignores that write.
796          * 2. If software writes the number of a non-existent interrupt
797          * this must be a subcase of "value written is not an active interrupt"
798          * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
799          * all IRQs potentially exist, so this limit does not apply.
800          */
801         return;
802     }
803 
804     if (!gic_eoi_split(s, cpu, attrs)) {
805         /* This is UNPREDICTABLE; we choose to ignore it */
806         qemu_log_mask(LOG_GUEST_ERROR,
807                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
808         return;
809     }
810 
811     if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
812         /* This vIRQ does not have an LR entry which is either active or
813          * pending and active. Increment EOICount and ignore the write.
814          */
815         int rcpu = gic_get_vcpu_real_id(cpu);
816         s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
817 
818         /* Update the virtual interface in case a maintenance interrupt should
819          * be raised.
820          */
821         gic_update_virt(s);
822         return;
823     }
824 
825     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
826 
827     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
828         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
829         return;
830     }
831 
832     gic_clear_active(s, irq, cpu);
833 }
834 
835 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
836 {
837     int cm = 1 << cpu;
838     int group;
839 
840     DPRINTF("EOI %d\n", irq);
841     if (gic_is_vcpu(cpu)) {
842         /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
843          * running prio is < 0x100.
844          */
845         bool prio_drop = s->running_priority[cpu] < 0x100;
846 
847         if (irq >= GIC_MAXIRQ) {
848             /* Ignore spurious interrupt */
849             return;
850         }
851 
852         gic_drop_prio(s, cpu, 0);
853 
854         if (!gic_eoi_split(s, cpu, attrs)) {
855             bool valid = gic_virq_is_valid(s, irq, cpu);
856             if (prio_drop && !valid) {
857                 /* We are in a situation where:
858                  *   - V_CTRL.EOIMode is false (no EOI split),
859                  *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
860                  *   - This vIRQ does not have an LR entry which is either
861                  *     active or pending and active.
862                  * In that case, we must increment EOICount.
863                  */
864                 int rcpu = gic_get_vcpu_real_id(cpu);
865                 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
866             } else if (valid) {
867                 gic_clear_active(s, irq, cpu);
868             }
869         }
870 
871         gic_update_virt(s);
872         return;
873     }
874 
875     if (irq >= s->num_irq) {
876         /* This handles two cases:
877          * 1. If software writes the ID of a spurious interrupt [ie 1023]
878          * to the GICC_EOIR, the GIC ignores that write.
879          * 2. If software writes the number of a non-existent interrupt
880          * this must be a subcase of "value written does not match the last
881          * valid interrupt value read from the Interrupt Acknowledge
882          * register" and so this is UNPREDICTABLE. We choose to ignore it.
883          */
884         return;
885     }
886     if (s->running_priority[cpu] == 0x100) {
887         return; /* No active IRQ.  */
888     }
889 
890     if (s->revision == REV_11MPCORE) {
891         /* Mark level triggered interrupts as pending if they are still
892            raised.  */
893         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
894             && GIC_DIST_TEST_LEVEL(irq, cm)
895             && (GIC_DIST_TARGET(irq) & cm) != 0) {
896             DPRINTF("Set %d pending mask %x\n", irq, cm);
897             GIC_DIST_SET_PENDING(irq, cm);
898         }
899     }
900 
901     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
902 
903     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
904         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
905         return;
906     }
907 
908     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
909      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
910      * i.e. go ahead and complete the irq anyway.
911      */
912 
913     gic_drop_prio(s, cpu, group);
914 
915     /* In GICv2 the guest can choose to split priority-drop and deactivate */
916     if (!gic_eoi_split(s, cpu, attrs)) {
917         gic_clear_active(s, irq, cpu);
918     }
919     gic_update(s);
920 }
921 
922 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
923 {
924     GICState *s = (GICState *)opaque;
925     uint32_t res;
926     int irq;
927     int i;
928     int cpu;
929     int cm;
930     int mask;
931 
932     cpu = gic_get_current_cpu(s);
933     cm = 1 << cpu;
934     if (offset < 0x100) {
935         if (offset == 0) {      /* GICD_CTLR */
936             if (s->security_extn && !attrs.secure) {
937                 /* The NS bank of this register is just an alias of the
938                  * EnableGrp1 bit in the S bank version.
939                  */
940                 return extract32(s->ctlr, 1, 1);
941             } else {
942                 return s->ctlr;
943             }
944         }
945         if (offset == 4)
946             /* Interrupt Controller Type Register */
947             return ((s->num_irq / 32) - 1)
948                     | ((s->num_cpu - 1) << 5)
949                     | (s->security_extn << 10);
950         if (offset < 0x08)
951             return 0;
952         if (offset >= 0x80) {
953             /* Interrupt Group Registers: these RAZ/WI if this is an NS
954              * access to a GIC with the security extensions, or if the GIC
955              * doesn't have groups at all.
956              */
957             res = 0;
958             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
959                 /* Every byte offset holds 8 group status bits */
960                 irq = (offset - 0x080) * 8;
961                 if (irq >= s->num_irq) {
962                     goto bad_reg;
963                 }
964                 for (i = 0; i < 8; i++) {
965                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
966                         res |= (1 << i);
967                     }
968                 }
969             }
970             return res;
971         }
972         goto bad_reg;
973     } else if (offset < 0x200) {
974         /* Interrupt Set/Clear Enable.  */
975         if (offset < 0x180)
976             irq = (offset - 0x100) * 8;
977         else
978             irq = (offset - 0x180) * 8;
979         if (irq >= s->num_irq)
980             goto bad_reg;
981         res = 0;
982         for (i = 0; i < 8; i++) {
983             if (s->security_extn && !attrs.secure &&
984                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
985                 continue; /* Ignore Non-secure access of Group0 IRQ */
986             }
987 
988             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
989                 res |= (1 << i);
990             }
991         }
992     } else if (offset < 0x300) {
993         /* Interrupt Set/Clear Pending.  */
994         if (offset < 0x280)
995             irq = (offset - 0x200) * 8;
996         else
997             irq = (offset - 0x280) * 8;
998         if (irq >= s->num_irq)
999             goto bad_reg;
1000         res = 0;
1001         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1002         for (i = 0; i < 8; i++) {
1003             if (s->security_extn && !attrs.secure &&
1004                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1005                 continue; /* Ignore Non-secure access of Group0 IRQ */
1006             }
1007 
1008             if (gic_test_pending(s, irq + i, mask)) {
1009                 res |= (1 << i);
1010             }
1011         }
1012     } else if (offset < 0x400) {
1013         /* Interrupt Set/Clear Active.  */
1014         if (offset < 0x380) {
1015             irq = (offset - 0x300) * 8;
1016         } else if (s->revision == 2) {
1017             irq = (offset - 0x380) * 8;
1018         } else {
1019             goto bad_reg;
1020         }
1021 
1022         if (irq >= s->num_irq)
1023             goto bad_reg;
1024         res = 0;
1025         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1026         for (i = 0; i < 8; i++) {
1027             if (s->security_extn && !attrs.secure &&
1028                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1029                 continue; /* Ignore Non-secure access of Group0 IRQ */
1030             }
1031 
1032             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1033                 res |= (1 << i);
1034             }
1035         }
1036     } else if (offset < 0x800) {
1037         /* Interrupt Priority.  */
1038         irq = (offset - 0x400);
1039         if (irq >= s->num_irq)
1040             goto bad_reg;
1041         res = gic_dist_get_priority(s, cpu, irq, attrs);
1042     } else if (offset < 0xc00) {
1043         /* Interrupt CPU Target.  */
1044         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1045             /* For uniprocessor GICs these RAZ/WI */
1046             res = 0;
1047         } else {
1048             irq = (offset - 0x800);
1049             if (irq >= s->num_irq) {
1050                 goto bad_reg;
1051             }
1052             if (irq < 29 && s->revision == REV_11MPCORE) {
1053                 res = 0;
1054             } else if (irq < GIC_INTERNAL) {
1055                 res = cm;
1056             } else {
1057                 res = GIC_DIST_TARGET(irq);
1058             }
1059         }
1060     } else if (offset < 0xf00) {
1061         /* Interrupt Configuration.  */
1062         irq = (offset - 0xc00) * 4;
1063         if (irq >= s->num_irq)
1064             goto bad_reg;
1065         res = 0;
1066         for (i = 0; i < 4; i++) {
1067             if (s->security_extn && !attrs.secure &&
1068                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1069                 continue; /* Ignore Non-secure access of Group0 IRQ */
1070             }
1071 
1072             if (GIC_DIST_TEST_MODEL(irq + i)) {
1073                 res |= (1 << (i * 2));
1074             }
1075             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1076                 res |= (2 << (i * 2));
1077             }
1078         }
1079     } else if (offset < 0xf10) {
1080         goto bad_reg;
1081     } else if (offset < 0xf30) {
1082         if (s->revision == REV_11MPCORE) {
1083             goto bad_reg;
1084         }
1085 
1086         if (offset < 0xf20) {
1087             /* GICD_CPENDSGIRn */
1088             irq = (offset - 0xf10);
1089         } else {
1090             irq = (offset - 0xf20);
1091             /* GICD_SPENDSGIRn */
1092         }
1093 
1094         if (s->security_extn && !attrs.secure &&
1095             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1096             res = 0; /* Ignore Non-secure access of Group0 IRQ */
1097         } else {
1098             res = s->sgi_pending[irq][cpu];
1099         }
1100     } else if (offset < 0xfd0) {
1101         goto bad_reg;
1102     } else if (offset < 0x1000) {
1103         if (offset & 3) {
1104             res = 0;
1105         } else {
1106             switch (s->revision) {
1107             case REV_11MPCORE:
1108                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1109                 break;
1110             case 1:
1111                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1112                 break;
1113             case 2:
1114                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1115                 break;
1116             default:
1117                 res = 0;
1118             }
1119         }
1120     } else {
1121         g_assert_not_reached();
1122     }
1123     return res;
1124 bad_reg:
1125     qemu_log_mask(LOG_GUEST_ERROR,
1126                   "gic_dist_readb: Bad offset %x\n", (int)offset);
1127     return 0;
1128 }
1129 
1130 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1131                                  unsigned size, MemTxAttrs attrs)
1132 {
1133     switch (size) {
1134     case 1:
1135         *data = gic_dist_readb(opaque, offset, attrs);
1136         break;
1137     case 2:
1138         *data = gic_dist_readb(opaque, offset, attrs);
1139         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1140         break;
1141     case 4:
1142         *data = gic_dist_readb(opaque, offset, attrs);
1143         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1144         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1145         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1146         break;
1147     default:
1148         return MEMTX_ERROR;
1149     }
1150 
1151     trace_gic_dist_read(offset, size, *data);
1152     return MEMTX_OK;
1153 }
1154 
1155 static void gic_dist_writeb(void *opaque, hwaddr offset,
1156                             uint32_t value, MemTxAttrs attrs)
1157 {
1158     GICState *s = (GICState *)opaque;
1159     int irq;
1160     int i;
1161     int cpu;
1162 
1163     cpu = gic_get_current_cpu(s);
1164     if (offset < 0x100) {
1165         if (offset == 0) {
1166             if (s->security_extn && !attrs.secure) {
1167                 /* NS version is just an alias of the S version's bit 1 */
1168                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1169             } else if (gic_has_groups(s)) {
1170                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1171             } else {
1172                 s->ctlr = value & GICD_CTLR_EN_GRP0;
1173             }
1174             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1175                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1176                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1177         } else if (offset < 4) {
1178             /* ignored.  */
1179         } else if (offset >= 0x80) {
1180             /* Interrupt Group Registers: RAZ/WI for NS access to secure
1181              * GIC, or for GICs without groups.
1182              */
1183             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1184                 /* Every byte offset holds 8 group status bits */
1185                 irq = (offset - 0x80) * 8;
1186                 if (irq >= s->num_irq) {
1187                     goto bad_reg;
1188                 }
1189                 for (i = 0; i < 8; i++) {
1190                     /* Group bits are banked for private interrupts */
1191                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1192                     if (value & (1 << i)) {
1193                         /* Group1 (Non-secure) */
1194                         GIC_DIST_SET_GROUP(irq + i, cm);
1195                     } else {
1196                         /* Group0 (Secure) */
1197                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
1198                     }
1199                 }
1200             }
1201         } else {
1202             goto bad_reg;
1203         }
1204     } else if (offset < 0x180) {
1205         /* Interrupt Set Enable.  */
1206         irq = (offset - 0x100) * 8;
1207         if (irq >= s->num_irq)
1208             goto bad_reg;
1209         if (irq < GIC_NR_SGIS) {
1210             value = 0xff;
1211         }
1212 
1213         for (i = 0; i < 8; i++) {
1214             if (value & (1 << i)) {
1215                 int mask =
1216                     (irq < GIC_INTERNAL) ? (1 << cpu)
1217                                          : GIC_DIST_TARGET(irq + i);
1218                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1219 
1220                 if (s->security_extn && !attrs.secure &&
1221                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1222                     continue; /* Ignore Non-secure access of Group0 IRQ */
1223                 }
1224 
1225                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1226                     DPRINTF("Enabled IRQ %d\n", irq + i);
1227                     trace_gic_enable_irq(irq + i);
1228                 }
1229                 GIC_DIST_SET_ENABLED(irq + i, cm);
1230                 /* If a raised level triggered IRQ enabled then mark
1231                    is as pending.  */
1232                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1233                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1234                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1235                     GIC_DIST_SET_PENDING(irq + i, mask);
1236                 }
1237             }
1238         }
1239     } else if (offset < 0x200) {
1240         /* Interrupt Clear Enable.  */
1241         irq = (offset - 0x180) * 8;
1242         if (irq >= s->num_irq)
1243             goto bad_reg;
1244         if (irq < GIC_NR_SGIS) {
1245             value = 0;
1246         }
1247 
1248         for (i = 0; i < 8; i++) {
1249             if (value & (1 << i)) {
1250                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1251 
1252                 if (s->security_extn && !attrs.secure &&
1253                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1254                     continue; /* Ignore Non-secure access of Group0 IRQ */
1255                 }
1256 
1257                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1258                     DPRINTF("Disabled IRQ %d\n", irq + i);
1259                     trace_gic_disable_irq(irq + i);
1260                 }
1261                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1262             }
1263         }
1264     } else if (offset < 0x280) {
1265         /* Interrupt Set Pending.  */
1266         irq = (offset - 0x200) * 8;
1267         if (irq >= s->num_irq)
1268             goto bad_reg;
1269         if (irq < GIC_NR_SGIS) {
1270             value = 0;
1271         }
1272 
1273         for (i = 0; i < 8; i++) {
1274             if (value & (1 << i)) {
1275                 if (s->security_extn && !attrs.secure &&
1276                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1277                     continue; /* Ignore Non-secure access of Group0 IRQ */
1278                 }
1279 
1280                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1281             }
1282         }
1283     } else if (offset < 0x300) {
1284         /* Interrupt Clear Pending.  */
1285         irq = (offset - 0x280) * 8;
1286         if (irq >= s->num_irq)
1287             goto bad_reg;
1288         if (irq < GIC_NR_SGIS) {
1289             value = 0;
1290         }
1291 
1292         for (i = 0; i < 8; i++) {
1293             if (s->security_extn && !attrs.secure &&
1294                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1295                 continue; /* Ignore Non-secure access of Group0 IRQ */
1296             }
1297 
1298             /* ??? This currently clears the pending bit for all CPUs, even
1299                for per-CPU interrupts.  It's unclear whether this is the
1300                corect behavior.  */
1301             if (value & (1 << i)) {
1302                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1303             }
1304         }
1305     } else if (offset < 0x380) {
1306         /* Interrupt Set Active.  */
1307         if (s->revision != 2) {
1308             goto bad_reg;
1309         }
1310 
1311         irq = (offset - 0x300) * 8;
1312         if (irq >= s->num_irq) {
1313             goto bad_reg;
1314         }
1315 
1316         /* This register is banked per-cpu for PPIs */
1317         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1318 
1319         for (i = 0; i < 8; i++) {
1320             if (s->security_extn && !attrs.secure &&
1321                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1322                 continue; /* Ignore Non-secure access of Group0 IRQ */
1323             }
1324 
1325             if (value & (1 << i)) {
1326                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1327             }
1328         }
1329     } else if (offset < 0x400) {
1330         /* Interrupt Clear Active.  */
1331         if (s->revision != 2) {
1332             goto bad_reg;
1333         }
1334 
1335         irq = (offset - 0x380) * 8;
1336         if (irq >= s->num_irq) {
1337             goto bad_reg;
1338         }
1339 
1340         /* This register is banked per-cpu for PPIs */
1341         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1342 
1343         for (i = 0; i < 8; i++) {
1344             if (s->security_extn && !attrs.secure &&
1345                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1346                 continue; /* Ignore Non-secure access of Group0 IRQ */
1347             }
1348 
1349             if (value & (1 << i)) {
1350                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1351             }
1352         }
1353     } else if (offset < 0x800) {
1354         /* Interrupt Priority.  */
1355         irq = (offset - 0x400);
1356         if (irq >= s->num_irq)
1357             goto bad_reg;
1358         gic_dist_set_priority(s, cpu, irq, value, attrs);
1359     } else if (offset < 0xc00) {
1360         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1361          * annoying exception of the 11MPCore's GIC.
1362          */
1363         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1364             irq = (offset - 0x800);
1365             if (irq >= s->num_irq) {
1366                 goto bad_reg;
1367             }
1368             if (irq < 29 && s->revision == REV_11MPCORE) {
1369                 value = 0;
1370             } else if (irq < GIC_INTERNAL) {
1371                 value = ALL_CPU_MASK;
1372             }
1373             s->irq_target[irq] = value & ALL_CPU_MASK;
1374         }
1375     } else if (offset < 0xf00) {
1376         /* Interrupt Configuration.  */
1377         irq = (offset - 0xc00) * 4;
1378         if (irq >= s->num_irq)
1379             goto bad_reg;
1380         if (irq < GIC_NR_SGIS)
1381             value |= 0xaa;
1382         for (i = 0; i < 4; i++) {
1383             if (s->security_extn && !attrs.secure &&
1384                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1385                 continue; /* Ignore Non-secure access of Group0 IRQ */
1386             }
1387 
1388             if (s->revision == REV_11MPCORE) {
1389                 if (value & (1 << (i * 2))) {
1390                     GIC_DIST_SET_MODEL(irq + i);
1391                 } else {
1392                     GIC_DIST_CLEAR_MODEL(irq + i);
1393                 }
1394             }
1395             if (value & (2 << (i * 2))) {
1396                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1397             } else {
1398                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1399             }
1400         }
1401     } else if (offset < 0xf10) {
1402         /* 0xf00 is only handled for 32-bit writes.  */
1403         goto bad_reg;
1404     } else if (offset < 0xf20) {
1405         /* GICD_CPENDSGIRn */
1406         if (s->revision == REV_11MPCORE) {
1407             goto bad_reg;
1408         }
1409         irq = (offset - 0xf10);
1410 
1411         if (!s->security_extn || attrs.secure ||
1412             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1413             s->sgi_pending[irq][cpu] &= ~value;
1414             if (s->sgi_pending[irq][cpu] == 0) {
1415                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1416             }
1417         }
1418     } else if (offset < 0xf30) {
1419         /* GICD_SPENDSGIRn */
1420         if (s->revision == REV_11MPCORE) {
1421             goto bad_reg;
1422         }
1423         irq = (offset - 0xf20);
1424 
1425         if (!s->security_extn || attrs.secure ||
1426             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1427             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1428             s->sgi_pending[irq][cpu] |= value;
1429         }
1430     } else {
1431         goto bad_reg;
1432     }
1433     gic_update(s);
1434     return;
1435 bad_reg:
1436     qemu_log_mask(LOG_GUEST_ERROR,
1437                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1438 }
1439 
1440 static void gic_dist_writew(void *opaque, hwaddr offset,
1441                             uint32_t value, MemTxAttrs attrs)
1442 {
1443     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1444     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1445 }
1446 
1447 static void gic_dist_writel(void *opaque, hwaddr offset,
1448                             uint32_t value, MemTxAttrs attrs)
1449 {
1450     GICState *s = (GICState *)opaque;
1451     if (offset == 0xf00) {
1452         int cpu;
1453         int irq;
1454         int mask;
1455         int target_cpu;
1456 
1457         cpu = gic_get_current_cpu(s);
1458         irq = value & 0x3ff;
1459         switch ((value >> 24) & 3) {
1460         case 0:
1461             mask = (value >> 16) & ALL_CPU_MASK;
1462             break;
1463         case 1:
1464             mask = ALL_CPU_MASK ^ (1 << cpu);
1465             break;
1466         case 2:
1467             mask = 1 << cpu;
1468             break;
1469         default:
1470             DPRINTF("Bad Soft Int target filter\n");
1471             mask = ALL_CPU_MASK;
1472             break;
1473         }
1474         GIC_DIST_SET_PENDING(irq, mask);
1475         target_cpu = ctz32(mask);
1476         while (target_cpu < GIC_NCPU) {
1477             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1478             mask &= ~(1 << target_cpu);
1479             target_cpu = ctz32(mask);
1480         }
1481         gic_update(s);
1482         return;
1483     }
1484     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1485     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1486 }
1487 
1488 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1489                                   unsigned size, MemTxAttrs attrs)
1490 {
1491     trace_gic_dist_write(offset, size, data);
1492 
1493     switch (size) {
1494     case 1:
1495         gic_dist_writeb(opaque, offset, data, attrs);
1496         return MEMTX_OK;
1497     case 2:
1498         gic_dist_writew(opaque, offset, data, attrs);
1499         return MEMTX_OK;
1500     case 4:
1501         gic_dist_writel(opaque, offset, data, attrs);
1502         return MEMTX_OK;
1503     default:
1504         return MEMTX_ERROR;
1505     }
1506 }
1507 
1508 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1509 {
1510     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1511      * second half of GICC_NSAPR.
1512      */
1513     switch (GIC_MIN_BPR) {
1514     case 0:
1515         if (regno < 2) {
1516             return s->nsapr[regno + 2][cpu];
1517         }
1518         break;
1519     case 1:
1520         if (regno == 0) {
1521             return s->nsapr[regno + 1][cpu];
1522         }
1523         break;
1524     case 2:
1525         if (regno == 0) {
1526             return extract32(s->nsapr[0][cpu], 16, 16);
1527         }
1528         break;
1529     case 3:
1530         if (regno == 0) {
1531             return extract32(s->nsapr[0][cpu], 8, 8);
1532         }
1533         break;
1534     default:
1535         g_assert_not_reached();
1536     }
1537     return 0;
1538 }
1539 
1540 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1541                                          uint32_t value)
1542 {
1543     /* Write the Nonsecure view of GICC_APR<regno>. */
1544     switch (GIC_MIN_BPR) {
1545     case 0:
1546         if (regno < 2) {
1547             s->nsapr[regno + 2][cpu] = value;
1548         }
1549         break;
1550     case 1:
1551         if (regno == 0) {
1552             s->nsapr[regno + 1][cpu] = value;
1553         }
1554         break;
1555     case 2:
1556         if (regno == 0) {
1557             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1558         }
1559         break;
1560     case 3:
1561         if (regno == 0) {
1562             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1563         }
1564         break;
1565     default:
1566         g_assert_not_reached();
1567     }
1568 }
1569 
1570 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1571                                 uint64_t *data, MemTxAttrs attrs)
1572 {
1573     switch (offset) {
1574     case 0x00: /* Control */
1575         *data = gic_get_cpu_control(s, cpu, attrs);
1576         break;
1577     case 0x04: /* Priority mask */
1578         *data = gic_get_priority_mask(s, cpu, attrs);
1579         break;
1580     case 0x08: /* Binary Point */
1581         if (gic_cpu_ns_access(s, cpu, attrs)) {
1582             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1583                 /* NS view of BPR when CBPR is 1 */
1584                 *data = MIN(s->bpr[cpu] + 1, 7);
1585             } else {
1586                 /* BPR is banked. Non-secure copy stored in ABPR. */
1587                 *data = s->abpr[cpu];
1588             }
1589         } else {
1590             *data = s->bpr[cpu];
1591         }
1592         break;
1593     case 0x0c: /* Acknowledge */
1594         *data = gic_acknowledge_irq(s, cpu, attrs);
1595         break;
1596     case 0x14: /* Running Priority */
1597         *data = gic_get_running_priority(s, cpu, attrs);
1598         break;
1599     case 0x18: /* Highest Pending Interrupt */
1600         *data = gic_get_current_pending_irq(s, cpu, attrs);
1601         break;
1602     case 0x1c: /* Aliased Binary Point */
1603         /* GIC v2, no security: ABPR
1604          * GIC v1, no security: not implemented (RAZ/WI)
1605          * With security extensions, secure access: ABPR (alias of NS BPR)
1606          * With security extensions, nonsecure access: RAZ/WI
1607          */
1608         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1609             *data = 0;
1610         } else {
1611             *data = s->abpr[cpu];
1612         }
1613         break;
1614     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1615     {
1616         int regno = (offset - 0xd0) / 4;
1617         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1618 
1619         if (regno >= nr_aprs || s->revision != 2) {
1620             *data = 0;
1621         } else if (gic_is_vcpu(cpu)) {
1622             *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1623         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1624             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1625             *data = gic_apr_ns_view(s, regno, cpu);
1626         } else {
1627             *data = s->apr[regno][cpu];
1628         }
1629         break;
1630     }
1631     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1632     {
1633         int regno = (offset - 0xe0) / 4;
1634 
1635         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1636             gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1637             *data = 0;
1638         } else {
1639             *data = s->nsapr[regno][cpu];
1640         }
1641         break;
1642     }
1643     default:
1644         qemu_log_mask(LOG_GUEST_ERROR,
1645                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1646         *data = 0;
1647         break;
1648     }
1649 
1650     trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1651                        gic_get_vcpu_real_id(cpu), offset, *data);
1652     return MEMTX_OK;
1653 }
1654 
1655 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1656                                  uint32_t value, MemTxAttrs attrs)
1657 {
1658     trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1659                         gic_get_vcpu_real_id(cpu), offset, value);
1660 
1661     switch (offset) {
1662     case 0x00: /* Control */
1663         gic_set_cpu_control(s, cpu, value, attrs);
1664         break;
1665     case 0x04: /* Priority mask */
1666         gic_set_priority_mask(s, cpu, value, attrs);
1667         break;
1668     case 0x08: /* Binary Point */
1669         if (gic_cpu_ns_access(s, cpu, attrs)) {
1670             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1671                 /* WI when CBPR is 1 */
1672                 return MEMTX_OK;
1673             } else {
1674                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1675             }
1676         } else {
1677             int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1678             s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1679         }
1680         break;
1681     case 0x10: /* End Of Interrupt */
1682         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1683         return MEMTX_OK;
1684     case 0x1c: /* Aliased Binary Point */
1685         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1686             /* unimplemented, or NS access: RAZ/WI */
1687             return MEMTX_OK;
1688         } else {
1689             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1690         }
1691         break;
1692     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1693     {
1694         int regno = (offset - 0xd0) / 4;
1695         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1696 
1697         if (regno >= nr_aprs || s->revision != 2) {
1698             return MEMTX_OK;
1699         }
1700         if (gic_is_vcpu(cpu)) {
1701             s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1702         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1703             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1704             gic_apr_write_ns_view(s, regno, cpu, value);
1705         } else {
1706             s->apr[regno][cpu] = value;
1707         }
1708         break;
1709     }
1710     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1711     {
1712         int regno = (offset - 0xe0) / 4;
1713 
1714         if (regno >= GIC_NR_APRS || s->revision != 2) {
1715             return MEMTX_OK;
1716         }
1717         if (gic_is_vcpu(cpu)) {
1718             return MEMTX_OK;
1719         }
1720         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1721             return MEMTX_OK;
1722         }
1723         s->nsapr[regno][cpu] = value;
1724         break;
1725     }
1726     case 0x1000:
1727         /* GICC_DIR */
1728         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1729         break;
1730     default:
1731         qemu_log_mask(LOG_GUEST_ERROR,
1732                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1733         return MEMTX_OK;
1734     }
1735 
1736     if (gic_is_vcpu(cpu)) {
1737         gic_update_virt(s);
1738     } else {
1739         gic_update(s);
1740     }
1741 
1742     return MEMTX_OK;
1743 }
1744 
1745 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1746 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1747                                     unsigned size, MemTxAttrs attrs)
1748 {
1749     GICState *s = (GICState *)opaque;
1750     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1751 }
1752 
1753 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1754                                      uint64_t value, unsigned size,
1755                                      MemTxAttrs attrs)
1756 {
1757     GICState *s = (GICState *)opaque;
1758     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1759 }
1760 
1761 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1762  * These just decode the opaque pointer into GICState* + cpu id.
1763  */
1764 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1765                                    unsigned size, MemTxAttrs attrs)
1766 {
1767     GICState **backref = (GICState **)opaque;
1768     GICState *s = *backref;
1769     int id = (backref - s->backref);
1770     return gic_cpu_read(s, id, addr, data, attrs);
1771 }
1772 
1773 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1774                                     uint64_t value, unsigned size,
1775                                     MemTxAttrs attrs)
1776 {
1777     GICState **backref = (GICState **)opaque;
1778     GICState *s = *backref;
1779     int id = (backref - s->backref);
1780     return gic_cpu_write(s, id, addr, value, attrs);
1781 }
1782 
1783 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1784                                     unsigned size, MemTxAttrs attrs)
1785 {
1786     GICState *s = (GICState *)opaque;
1787 
1788     return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1789 }
1790 
1791 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1792                                      uint64_t value, unsigned size,
1793                                      MemTxAttrs attrs)
1794 {
1795     GICState *s = (GICState *)opaque;
1796 
1797     return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1798 }
1799 
1800 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1801 {
1802     int lr_idx;
1803     uint32_t ret = 0;
1804 
1805     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1806         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1807         ret = deposit32(ret, lr_idx - lr_start, 1,
1808                         gic_lr_entry_is_eoi(*entry));
1809     }
1810 
1811     return ret;
1812 }
1813 
1814 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1815 {
1816     int lr_idx;
1817     uint32_t ret = 0;
1818 
1819     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1820         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1821         ret = deposit32(ret, lr_idx - lr_start, 1,
1822                         gic_lr_entry_is_free(*entry));
1823     }
1824 
1825     return ret;
1826 }
1827 
1828 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1829 {
1830     int vcpu = gic_get_current_vcpu(s);
1831     uint32_t ctlr;
1832     uint32_t abpr;
1833     uint32_t bpr;
1834     uint32_t prio_mask;
1835 
1836     ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1837     abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1838     bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1839     prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1840 
1841     gic_set_cpu_control(s, vcpu, ctlr, attrs);
1842     s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1843     s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1844     gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1845 }
1846 
1847 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1848                                 uint64_t *data, MemTxAttrs attrs)
1849 {
1850     GICState *s = ARM_GIC(opaque);
1851     int vcpu = cpu + GIC_NCPU;
1852 
1853     switch (addr) {
1854     case A_GICH_HCR: /* Hypervisor Control */
1855         *data = s->h_hcr[cpu];
1856         break;
1857 
1858     case A_GICH_VTR: /* VGIC Type */
1859         *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1860         *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1861                            GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1862         *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1863                            (7 - GIC_VIRT_MIN_BPR) - 1);
1864         break;
1865 
1866     case A_GICH_VMCR: /* Virtual Machine Control */
1867         *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1868                            extract32(s->cpu_ctlr[vcpu], 0, 10));
1869         *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1870         *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1871         *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1872                            extract32(s->priority_mask[vcpu], 3, 5));
1873         break;
1874 
1875     case A_GICH_MISR: /* Maintenance Interrupt Status */
1876         *data = s->h_misr[cpu];
1877         break;
1878 
1879     case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1880     case A_GICH_EISR1:
1881         *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1882         break;
1883 
1884     case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1885     case A_GICH_ELRSR1:
1886         *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1887         break;
1888 
1889     case A_GICH_APR: /* Active Priorities */
1890         *data = s->h_apr[cpu];
1891         break;
1892 
1893     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1894     {
1895         int lr_idx = (addr - A_GICH_LR0) / 4;
1896 
1897         if (lr_idx > s->num_lrs) {
1898             *data = 0;
1899         } else {
1900             *data = s->h_lr[lr_idx][cpu];
1901         }
1902         break;
1903     }
1904 
1905     default:
1906         qemu_log_mask(LOG_GUEST_ERROR,
1907                       "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1908         return MEMTX_OK;
1909     }
1910 
1911     trace_gic_hyp_read(addr, *data);
1912     return MEMTX_OK;
1913 }
1914 
1915 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1916                                  uint64_t value, MemTxAttrs attrs)
1917 {
1918     GICState *s = ARM_GIC(opaque);
1919     int vcpu = cpu + GIC_NCPU;
1920 
1921     trace_gic_hyp_write(addr, value);
1922 
1923     switch (addr) {
1924     case A_GICH_HCR: /* Hypervisor Control */
1925         s->h_hcr[cpu] = value & GICH_HCR_MASK;
1926         break;
1927 
1928     case A_GICH_VMCR: /* Virtual Machine Control */
1929         gic_vmcr_write(s, value, attrs);
1930         break;
1931 
1932     case A_GICH_APR: /* Active Priorities */
1933         s->h_apr[cpu] = value;
1934         s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1935         break;
1936 
1937     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1938     {
1939         int lr_idx = (addr - A_GICH_LR0) / 4;
1940 
1941         if (lr_idx > s->num_lrs) {
1942             return MEMTX_OK;
1943         }
1944 
1945         s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1946         trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1947         break;
1948     }
1949 
1950     default:
1951         qemu_log_mask(LOG_GUEST_ERROR,
1952                       "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1953         return MEMTX_OK;
1954     }
1955 
1956     gic_update_virt(s);
1957     return MEMTX_OK;
1958 }
1959 
1960 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1961                                     unsigned size, MemTxAttrs attrs)
1962 {
1963     GICState *s = (GICState *)opaque;
1964 
1965     return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1966 }
1967 
1968 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1969                                      uint64_t value, unsigned size,
1970                                      MemTxAttrs attrs)
1971 {
1972     GICState *s = (GICState *)opaque;
1973 
1974     return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1975 }
1976 
1977 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1978                                     unsigned size, MemTxAttrs attrs)
1979 {
1980     GICState **backref = (GICState **)opaque;
1981     GICState *s = *backref;
1982     int id = (backref - s->backref);
1983 
1984     return gic_hyp_read(s, id, addr, data, attrs);
1985 }
1986 
1987 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
1988                                      uint64_t value, unsigned size,
1989                                      MemTxAttrs attrs)
1990 {
1991     GICState **backref = (GICState **)opaque;
1992     GICState *s = *backref;
1993     int id = (backref - s->backref);
1994 
1995     return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
1996 
1997 }
1998 
1999 static const MemoryRegionOps gic_ops[2] = {
2000     {
2001         .read_with_attrs = gic_dist_read,
2002         .write_with_attrs = gic_dist_write,
2003         .endianness = DEVICE_NATIVE_ENDIAN,
2004     },
2005     {
2006         .read_with_attrs = gic_thiscpu_read,
2007         .write_with_attrs = gic_thiscpu_write,
2008         .endianness = DEVICE_NATIVE_ENDIAN,
2009     }
2010 };
2011 
2012 static const MemoryRegionOps gic_cpu_ops = {
2013     .read_with_attrs = gic_do_cpu_read,
2014     .write_with_attrs = gic_do_cpu_write,
2015     .endianness = DEVICE_NATIVE_ENDIAN,
2016 };
2017 
2018 static const MemoryRegionOps gic_virt_ops[2] = {
2019     {
2020         .read_with_attrs = gic_thiscpu_hyp_read,
2021         .write_with_attrs = gic_thiscpu_hyp_write,
2022         .endianness = DEVICE_NATIVE_ENDIAN,
2023     },
2024     {
2025         .read_with_attrs = gic_thisvcpu_read,
2026         .write_with_attrs = gic_thisvcpu_write,
2027         .endianness = DEVICE_NATIVE_ENDIAN,
2028     }
2029 };
2030 
2031 static const MemoryRegionOps gic_viface_ops = {
2032     .read_with_attrs = gic_do_hyp_read,
2033     .write_with_attrs = gic_do_hyp_write,
2034     .endianness = DEVICE_NATIVE_ENDIAN,
2035 };
2036 
2037 static void arm_gic_realize(DeviceState *dev, Error **errp)
2038 {
2039     /* Device instance realize function for the GIC sysbus device */
2040     int i;
2041     GICState *s = ARM_GIC(dev);
2042     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2043     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2044     Error *local_err = NULL;
2045 
2046     agc->parent_realize(dev, &local_err);
2047     if (local_err) {
2048         error_propagate(errp, local_err);
2049         return;
2050     }
2051 
2052     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2053         error_setg(errp, "KVM with user space irqchip only works when the "
2054                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
2055         return;
2056     }
2057 
2058     /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2059      * enabled, virtualization extensions related interfaces (main virtual
2060      * interface (s->vifaceiomem[0]) and virtual CPU interface).
2061      */
2062     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2063 
2064     /* Extra core-specific regions for the CPU interfaces. This is
2065      * necessary for "franken-GIC" implementations, for example on
2066      * Exynos 4.
2067      * NB that the memory region size of 0x100 applies for the 11MPCore
2068      * and also cores following the GIC v1 spec (ie A9).
2069      * GIC v2 defines a larger memory region (0x1000) so this will need
2070      * to be extended when we implement A15.
2071      */
2072     for (i = 0; i < s->num_cpu; i++) {
2073         s->backref[i] = s;
2074         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2075                               &s->backref[i], "gic_cpu", 0x100);
2076         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2077     }
2078 
2079     /* Extra core-specific regions for virtual interfaces. This is required by
2080      * the GICv2 specification.
2081      */
2082     if (s->virt_extn) {
2083         for (i = 0; i < s->num_cpu; i++) {
2084             memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2085                                   &gic_viface_ops, &s->backref[i],
2086                                   "gic_viface", 0x200);
2087             sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2088         }
2089     }
2090 
2091 }
2092 
2093 static void arm_gic_class_init(ObjectClass *klass, void *data)
2094 {
2095     DeviceClass *dc = DEVICE_CLASS(klass);
2096     ARMGICClass *agc = ARM_GIC_CLASS(klass);
2097 
2098     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2099 }
2100 
2101 static const TypeInfo arm_gic_info = {
2102     .name = TYPE_ARM_GIC,
2103     .parent = TYPE_ARM_GIC_COMMON,
2104     .instance_size = sizeof(GICState),
2105     .class_init = arm_gic_class_init,
2106     .class_size = sizeof(ARMGICClass),
2107 };
2108 
2109 static void arm_gic_register_types(void)
2110 {
2111     type_register_static(&arm_gic_info);
2112 }
2113 
2114 type_init(arm_gic_register_types)
2115