xref: /openbmc/qemu/hw/intc/arm_gic.c (revision ddbb0d09)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "hw/sysbus.h"
22 #include "gic_internal.h"
23 #include "qom/cpu.h"
24 
25 //#define DEBUG_GIC
26 
27 #ifdef DEBUG_GIC
28 #define DPRINTF(fmt, ...) \
29 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
30 #else
31 #define DPRINTF(fmt, ...) do {} while(0)
32 #endif
33 
34 static const uint8_t gic_id[] = {
35     0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
36 };
37 
38 #define NUM_CPU(s) ((s)->num_cpu)
39 
40 static inline int gic_get_current_cpu(GICState *s)
41 {
42     if (s->num_cpu > 1) {
43         return current_cpu->cpu_index;
44     }
45     return 0;
46 }
47 
48 /* Return true if this GIC config has interrupt groups, which is
49  * true if we're a GICv2, or a GICv1 with the security extensions.
50  */
51 static inline bool gic_has_groups(GICState *s)
52 {
53     return s->revision == 2 || s->security_extn;
54 }
55 
56 /* TODO: Many places that call this routine could be optimized.  */
57 /* Update interrupt status after enabled or pending bits have been changed.  */
58 void gic_update(GICState *s)
59 {
60     int best_irq;
61     int best_prio;
62     int irq;
63     int irq_level, fiq_level;
64     int cpu;
65     int cm;
66 
67     for (cpu = 0; cpu < NUM_CPU(s); cpu++) {
68         cm = 1 << cpu;
69         s->current_pending[cpu] = 1023;
70         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
71             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
72             qemu_irq_lower(s->parent_irq[cpu]);
73             qemu_irq_lower(s->parent_fiq[cpu]);
74             continue;
75         }
76         best_prio = 0x100;
77         best_irq = 1023;
78         for (irq = 0; irq < s->num_irq; irq++) {
79             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
80                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
81                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
82                     best_prio = GIC_GET_PRIORITY(irq, cpu);
83                     best_irq = irq;
84                 }
85             }
86         }
87 
88         irq_level = fiq_level = 0;
89 
90         if (best_prio < s->priority_mask[cpu]) {
91             s->current_pending[cpu] = best_irq;
92             if (best_prio < s->running_priority[cpu]) {
93                 int group = GIC_TEST_GROUP(best_irq, cm);
94 
95                 if (extract32(s->ctlr, group, 1) &&
96                     extract32(s->cpu_ctlr[cpu], group, 1)) {
97                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
98                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
99                                 best_irq, cpu);
100                         fiq_level = 1;
101                     } else {
102                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
103                                 best_irq, cpu);
104                         irq_level = 1;
105                     }
106                 }
107             }
108         }
109 
110         qemu_set_irq(s->parent_irq[cpu], irq_level);
111         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
112     }
113 }
114 
115 void gic_set_pending_private(GICState *s, int cpu, int irq)
116 {
117     int cm = 1 << cpu;
118 
119     if (gic_test_pending(s, irq, cm)) {
120         return;
121     }
122 
123     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
124     GIC_SET_PENDING(irq, cm);
125     gic_update(s);
126 }
127 
128 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
129                                  int cm, int target)
130 {
131     if (level) {
132         GIC_SET_LEVEL(irq, cm);
133         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
134             DPRINTF("Set %d pending mask %x\n", irq, target);
135             GIC_SET_PENDING(irq, target);
136         }
137     } else {
138         GIC_CLEAR_LEVEL(irq, cm);
139     }
140 }
141 
142 static void gic_set_irq_generic(GICState *s, int irq, int level,
143                                 int cm, int target)
144 {
145     if (level) {
146         GIC_SET_LEVEL(irq, cm);
147         DPRINTF("Set %d pending mask %x\n", irq, target);
148         if (GIC_TEST_EDGE_TRIGGER(irq)) {
149             GIC_SET_PENDING(irq, target);
150         }
151     } else {
152         GIC_CLEAR_LEVEL(irq, cm);
153     }
154 }
155 
156 /* Process a change in an external IRQ input.  */
157 static void gic_set_irq(void *opaque, int irq, int level)
158 {
159     /* Meaning of the 'irq' parameter:
160      *  [0..N-1] : external interrupts
161      *  [N..N+31] : PPI (internal) interrupts for CPU 0
162      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
163      *  ...
164      */
165     GICState *s = (GICState *)opaque;
166     int cm, target;
167     if (irq < (s->num_irq - GIC_INTERNAL)) {
168         /* The first external input line is internal interrupt 32.  */
169         cm = ALL_CPU_MASK;
170         irq += GIC_INTERNAL;
171         target = GIC_TARGET(irq);
172     } else {
173         int cpu;
174         irq -= (s->num_irq - GIC_INTERNAL);
175         cpu = irq / GIC_INTERNAL;
176         irq %= GIC_INTERNAL;
177         cm = 1 << cpu;
178         target = cm;
179     }
180 
181     assert(irq >= GIC_NR_SGIS);
182 
183     if (level == GIC_TEST_LEVEL(irq, cm)) {
184         return;
185     }
186 
187     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
188         gic_set_irq_11mpcore(s, irq, level, cm, target);
189     } else {
190         gic_set_irq_generic(s, irq, level, cm, target);
191     }
192 
193     gic_update(s);
194 }
195 
196 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
197                                             MemTxAttrs attrs)
198 {
199     uint16_t pending_irq = s->current_pending[cpu];
200 
201     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
202         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
203         /* On a GIC without the security extensions, reading this register
204          * behaves in the same way as a secure access to a GIC with them.
205          */
206         bool secure = !s->security_extn || attrs.secure;
207 
208         if (group == 0 && !secure) {
209             /* Group0 interrupts hidden from Non-secure access */
210             return 1023;
211         }
212         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
213             /* Group1 interrupts only seen by Secure access if
214              * AckCtl bit set.
215              */
216             return 1022;
217         }
218     }
219     return pending_irq;
220 }
221 
222 static void gic_set_running_irq(GICState *s, int cpu, int irq)
223 {
224     s->running_irq[cpu] = irq;
225     if (irq == 1023) {
226         s->running_priority[cpu] = 0x100;
227     } else {
228         s->running_priority[cpu] = GIC_GET_PRIORITY(irq, cpu);
229     }
230     gic_update(s);
231 }
232 
233 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
234 {
235     int ret, irq, src;
236     int cm = 1 << cpu;
237 
238     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
239      * for the case where this GIC supports grouping and the pending interrupt
240      * is in the wrong group.
241      */
242     irq = gic_get_current_pending_irq(s, cpu, attrs);;
243 
244     if (irq >= GIC_MAXIRQ) {
245         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
246         return irq;
247     }
248 
249     if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
250         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
251         return 1023;
252     }
253     s->last_active[irq][cpu] = s->running_irq[cpu];
254 
255     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
256         /* Clear pending flags for both level and edge triggered interrupts.
257          * Level triggered IRQs will be reasserted once they become inactive.
258          */
259         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
260         ret = irq;
261     } else {
262         if (irq < GIC_NR_SGIS) {
263             /* Lookup the source CPU for the SGI and clear this in the
264              * sgi_pending map.  Return the src and clear the overall pending
265              * state on this CPU if the SGI is not pending from any CPUs.
266              */
267             assert(s->sgi_pending[irq][cpu] != 0);
268             src = ctz32(s->sgi_pending[irq][cpu]);
269             s->sgi_pending[irq][cpu] &= ~(1 << src);
270             if (s->sgi_pending[irq][cpu] == 0) {
271                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
272             }
273             ret = irq | ((src & 0x7) << 10);
274         } else {
275             /* Clear pending state for both level and edge triggered
276              * interrupts. (level triggered interrupts with an active line
277              * remain pending, see gic_test_pending)
278              */
279             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
280             ret = irq;
281         }
282     }
283 
284     gic_set_running_irq(s, cpu, irq);
285     DPRINTF("ACK %d\n", irq);
286     return ret;
287 }
288 
289 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
290                       MemTxAttrs attrs)
291 {
292     if (s->security_extn && !attrs.secure) {
293         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
294             return; /* Ignore Non-secure access of Group0 IRQ */
295         }
296         val = 0x80 | (val >> 1); /* Non-secure view */
297     }
298 
299     if (irq < GIC_INTERNAL) {
300         s->priority1[irq][cpu] = val;
301     } else {
302         s->priority2[(irq) - GIC_INTERNAL] = val;
303     }
304 }
305 
306 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
307                                  MemTxAttrs attrs)
308 {
309     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
310 
311     if (s->security_extn && !attrs.secure) {
312         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
313             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
314         }
315         prio = (prio << 1) & 0xff; /* Non-secure view */
316     }
317     return prio;
318 }
319 
320 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
321                                   MemTxAttrs attrs)
322 {
323     if (s->security_extn && !attrs.secure) {
324         if (s->priority_mask[cpu] & 0x80) {
325             /* Priority Mask in upper half */
326             pmask = 0x80 | (pmask >> 1);
327         } else {
328             /* Non-secure write ignored if priority mask is in lower half */
329             return;
330         }
331     }
332     s->priority_mask[cpu] = pmask;
333 }
334 
335 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
336 {
337     uint32_t pmask = s->priority_mask[cpu];
338 
339     if (s->security_extn && !attrs.secure) {
340         if (pmask & 0x80) {
341             /* Priority Mask in upper half, return Non-secure view */
342             pmask = (pmask << 1) & 0xff;
343         } else {
344             /* Priority Mask in lower half, RAZ */
345             pmask = 0;
346         }
347     }
348     return pmask;
349 }
350 
351 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
352 {
353     uint32_t ret = s->cpu_ctlr[cpu];
354 
355     if (s->security_extn && !attrs.secure) {
356         /* Construct the NS banked view of GICC_CTLR from the correct
357          * bits of the S banked view. We don't need to move the bypass
358          * control bits because we don't implement that (IMPDEF) part
359          * of the GIC architecture.
360          */
361         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
362     }
363     return ret;
364 }
365 
366 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
367                                 MemTxAttrs attrs)
368 {
369     uint32_t mask;
370 
371     if (s->security_extn && !attrs.secure) {
372         /* The NS view can only write certain bits in the register;
373          * the rest are unchanged
374          */
375         mask = GICC_CTLR_EN_GRP1;
376         if (s->revision == 2) {
377             mask |= GICC_CTLR_EOIMODE_NS;
378         }
379         s->cpu_ctlr[cpu] &= ~mask;
380         s->cpu_ctlr[cpu] |= (value << 1) & mask;
381     } else {
382         if (s->revision == 2) {
383             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
384         } else {
385             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
386         }
387         s->cpu_ctlr[cpu] = value & mask;
388     }
389     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
390             "Group1 Interrupts %sabled\n", cpu,
391             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
392             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
393 }
394 
395 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
396 {
397     if (s->security_extn && !attrs.secure) {
398         if (s->running_priority[cpu] & 0x80) {
399             /* Running priority in upper half of range: return the Non-secure
400              * view of the priority.
401              */
402             return s->running_priority[cpu] << 1;
403         } else {
404             /* Running priority in lower half of range: RAZ */
405             return 0;
406         }
407     } else {
408         return s->running_priority[cpu];
409     }
410 }
411 
412 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
413 {
414     int update = 0;
415     int cm = 1 << cpu;
416     DPRINTF("EOI %d\n", irq);
417     if (irq >= s->num_irq) {
418         /* This handles two cases:
419          * 1. If software writes the ID of a spurious interrupt [ie 1023]
420          * to the GICC_EOIR, the GIC ignores that write.
421          * 2. If software writes the number of a non-existent interrupt
422          * this must be a subcase of "value written does not match the last
423          * valid interrupt value read from the Interrupt Acknowledge
424          * register" and so this is UNPREDICTABLE. We choose to ignore it.
425          */
426         return;
427     }
428     if (s->running_irq[cpu] == 1023)
429         return; /* No active IRQ.  */
430 
431     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
432         /* Mark level triggered interrupts as pending if they are still
433            raised.  */
434         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
435             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
436             DPRINTF("Set %d pending mask %x\n", irq, cm);
437             GIC_SET_PENDING(irq, cm);
438             update = 1;
439         }
440     }
441 
442     if (s->security_extn && !attrs.secure && !GIC_TEST_GROUP(irq, cm)) {
443         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
444         return;
445     }
446 
447     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
448      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
449      * i.e. go ahead and complete the irq anyway.
450      */
451 
452     if (irq != s->running_irq[cpu]) {
453         /* Complete an IRQ that is not currently running.  */
454         int tmp = s->running_irq[cpu];
455         while (s->last_active[tmp][cpu] != 1023) {
456             if (s->last_active[tmp][cpu] == irq) {
457                 s->last_active[tmp][cpu] = s->last_active[irq][cpu];
458                 break;
459             }
460             tmp = s->last_active[tmp][cpu];
461         }
462         if (update) {
463             gic_update(s);
464         }
465     } else {
466         /* Complete the current running IRQ.  */
467         gic_set_running_irq(s, cpu, s->last_active[s->running_irq[cpu]][cpu]);
468     }
469 }
470 
471 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
472 {
473     GICState *s = (GICState *)opaque;
474     uint32_t res;
475     int irq;
476     int i;
477     int cpu;
478     int cm;
479     int mask;
480 
481     cpu = gic_get_current_cpu(s);
482     cm = 1 << cpu;
483     if (offset < 0x100) {
484         if (offset == 0) {      /* GICD_CTLR */
485             if (s->security_extn && !attrs.secure) {
486                 /* The NS bank of this register is just an alias of the
487                  * EnableGrp1 bit in the S bank version.
488                  */
489                 return extract32(s->ctlr, 1, 1);
490             } else {
491                 return s->ctlr;
492             }
493         }
494         if (offset == 4)
495             /* Interrupt Controller Type Register */
496             return ((s->num_irq / 32) - 1)
497                     | ((NUM_CPU(s) - 1) << 5)
498                     | (s->security_extn << 10);
499         if (offset < 0x08)
500             return 0;
501         if (offset >= 0x80) {
502             /* Interrupt Group Registers: these RAZ/WI if this is an NS
503              * access to a GIC with the security extensions, or if the GIC
504              * doesn't have groups at all.
505              */
506             res = 0;
507             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
508                 /* Every byte offset holds 8 group status bits */
509                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
510                 if (irq >= s->num_irq) {
511                     goto bad_reg;
512                 }
513                 for (i = 0; i < 8; i++) {
514                     if (GIC_TEST_GROUP(irq + i, cm)) {
515                         res |= (1 << i);
516                     }
517                 }
518             }
519             return res;
520         }
521         goto bad_reg;
522     } else if (offset < 0x200) {
523         /* Interrupt Set/Clear Enable.  */
524         if (offset < 0x180)
525             irq = (offset - 0x100) * 8;
526         else
527             irq = (offset - 0x180) * 8;
528         irq += GIC_BASE_IRQ;
529         if (irq >= s->num_irq)
530             goto bad_reg;
531         res = 0;
532         for (i = 0; i < 8; i++) {
533             if (GIC_TEST_ENABLED(irq + i, cm)) {
534                 res |= (1 << i);
535             }
536         }
537     } else if (offset < 0x300) {
538         /* Interrupt Set/Clear Pending.  */
539         if (offset < 0x280)
540             irq = (offset - 0x200) * 8;
541         else
542             irq = (offset - 0x280) * 8;
543         irq += GIC_BASE_IRQ;
544         if (irq >= s->num_irq)
545             goto bad_reg;
546         res = 0;
547         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
548         for (i = 0; i < 8; i++) {
549             if (gic_test_pending(s, irq + i, mask)) {
550                 res |= (1 << i);
551             }
552         }
553     } else if (offset < 0x400) {
554         /* Interrupt Active.  */
555         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
556         if (irq >= s->num_irq)
557             goto bad_reg;
558         res = 0;
559         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
560         for (i = 0; i < 8; i++) {
561             if (GIC_TEST_ACTIVE(irq + i, mask)) {
562                 res |= (1 << i);
563             }
564         }
565     } else if (offset < 0x800) {
566         /* Interrupt Priority.  */
567         irq = (offset - 0x400) + GIC_BASE_IRQ;
568         if (irq >= s->num_irq)
569             goto bad_reg;
570         res = gic_get_priority(s, cpu, irq, attrs);
571     } else if (offset < 0xc00) {
572         /* Interrupt CPU Target.  */
573         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
574             /* For uniprocessor GICs these RAZ/WI */
575             res = 0;
576         } else {
577             irq = (offset - 0x800) + GIC_BASE_IRQ;
578             if (irq >= s->num_irq) {
579                 goto bad_reg;
580             }
581             if (irq >= 29 && irq <= 31) {
582                 res = cm;
583             } else {
584                 res = GIC_TARGET(irq);
585             }
586         }
587     } else if (offset < 0xf00) {
588         /* Interrupt Configuration.  */
589         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
590         if (irq >= s->num_irq)
591             goto bad_reg;
592         res = 0;
593         for (i = 0; i < 4; i++) {
594             if (GIC_TEST_MODEL(irq + i))
595                 res |= (1 << (i * 2));
596             if (GIC_TEST_EDGE_TRIGGER(irq + i))
597                 res |= (2 << (i * 2));
598         }
599     } else if (offset < 0xf10) {
600         goto bad_reg;
601     } else if (offset < 0xf30) {
602         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
603             goto bad_reg;
604         }
605 
606         if (offset < 0xf20) {
607             /* GICD_CPENDSGIRn */
608             irq = (offset - 0xf10);
609         } else {
610             irq = (offset - 0xf20);
611             /* GICD_SPENDSGIRn */
612         }
613 
614         res = s->sgi_pending[irq][cpu];
615     } else if (offset < 0xfe0) {
616         goto bad_reg;
617     } else /* offset >= 0xfe0 */ {
618         if (offset & 3) {
619             res = 0;
620         } else {
621             res = gic_id[(offset - 0xfe0) >> 2];
622         }
623     }
624     return res;
625 bad_reg:
626     qemu_log_mask(LOG_GUEST_ERROR,
627                   "gic_dist_readb: Bad offset %x\n", (int)offset);
628     return 0;
629 }
630 
631 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
632                                  unsigned size, MemTxAttrs attrs)
633 {
634     switch (size) {
635     case 1:
636         *data = gic_dist_readb(opaque, offset, attrs);
637         return MEMTX_OK;
638     case 2:
639         *data = gic_dist_readb(opaque, offset, attrs);
640         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
641         return MEMTX_OK;
642     case 4:
643         *data = gic_dist_readb(opaque, offset, attrs);
644         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
645         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
646         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
647         return MEMTX_OK;
648     default:
649         return MEMTX_ERROR;
650     }
651 }
652 
653 static void gic_dist_writeb(void *opaque, hwaddr offset,
654                             uint32_t value, MemTxAttrs attrs)
655 {
656     GICState *s = (GICState *)opaque;
657     int irq;
658     int i;
659     int cpu;
660 
661     cpu = gic_get_current_cpu(s);
662     if (offset < 0x100) {
663         if (offset == 0) {
664             if (s->security_extn && !attrs.secure) {
665                 /* NS version is just an alias of the S version's bit 1 */
666                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
667             } else if (gic_has_groups(s)) {
668                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
669             } else {
670                 s->ctlr = value & GICD_CTLR_EN_GRP0;
671             }
672             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
673                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
674                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
675         } else if (offset < 4) {
676             /* ignored.  */
677         } else if (offset >= 0x80) {
678             /* Interrupt Group Registers: RAZ/WI for NS access to secure
679              * GIC, or for GICs without groups.
680              */
681             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
682                 /* Every byte offset holds 8 group status bits */
683                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
684                 if (irq >= s->num_irq) {
685                     goto bad_reg;
686                 }
687                 for (i = 0; i < 8; i++) {
688                     /* Group bits are banked for private interrupts */
689                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
690                     if (value & (1 << i)) {
691                         /* Group1 (Non-secure) */
692                         GIC_SET_GROUP(irq + i, cm);
693                     } else {
694                         /* Group0 (Secure) */
695                         GIC_CLEAR_GROUP(irq + i, cm);
696                     }
697                 }
698             }
699         } else {
700             goto bad_reg;
701         }
702     } else if (offset < 0x180) {
703         /* Interrupt Set Enable.  */
704         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
705         if (irq >= s->num_irq)
706             goto bad_reg;
707         if (irq < GIC_NR_SGIS) {
708             value = 0xff;
709         }
710 
711         for (i = 0; i < 8; i++) {
712             if (value & (1 << i)) {
713                 int mask =
714                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
715                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
716 
717                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
718                     DPRINTF("Enabled IRQ %d\n", irq + i);
719                 }
720                 GIC_SET_ENABLED(irq + i, cm);
721                 /* If a raised level triggered IRQ enabled then mark
722                    is as pending.  */
723                 if (GIC_TEST_LEVEL(irq + i, mask)
724                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
725                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
726                     GIC_SET_PENDING(irq + i, mask);
727                 }
728             }
729         }
730     } else if (offset < 0x200) {
731         /* Interrupt Clear Enable.  */
732         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
733         if (irq >= s->num_irq)
734             goto bad_reg;
735         if (irq < GIC_NR_SGIS) {
736             value = 0;
737         }
738 
739         for (i = 0; i < 8; i++) {
740             if (value & (1 << i)) {
741                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
742 
743                 if (GIC_TEST_ENABLED(irq + i, cm)) {
744                     DPRINTF("Disabled IRQ %d\n", irq + i);
745                 }
746                 GIC_CLEAR_ENABLED(irq + i, cm);
747             }
748         }
749     } else if (offset < 0x280) {
750         /* Interrupt Set Pending.  */
751         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
752         if (irq >= s->num_irq)
753             goto bad_reg;
754         if (irq < GIC_NR_SGIS) {
755             value = 0;
756         }
757 
758         for (i = 0; i < 8; i++) {
759             if (value & (1 << i)) {
760                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
761             }
762         }
763     } else if (offset < 0x300) {
764         /* Interrupt Clear Pending.  */
765         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
766         if (irq >= s->num_irq)
767             goto bad_reg;
768         if (irq < GIC_NR_SGIS) {
769             value = 0;
770         }
771 
772         for (i = 0; i < 8; i++) {
773             /* ??? This currently clears the pending bit for all CPUs, even
774                for per-CPU interrupts.  It's unclear whether this is the
775                corect behavior.  */
776             if (value & (1 << i)) {
777                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
778             }
779         }
780     } else if (offset < 0x400) {
781         /* Interrupt Active.  */
782         goto bad_reg;
783     } else if (offset < 0x800) {
784         /* Interrupt Priority.  */
785         irq = (offset - 0x400) + GIC_BASE_IRQ;
786         if (irq >= s->num_irq)
787             goto bad_reg;
788         gic_set_priority(s, cpu, irq, value, attrs);
789     } else if (offset < 0xc00) {
790         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
791          * annoying exception of the 11MPCore's GIC.
792          */
793         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
794             irq = (offset - 0x800) + GIC_BASE_IRQ;
795             if (irq >= s->num_irq) {
796                 goto bad_reg;
797             }
798             if (irq < 29) {
799                 value = 0;
800             } else if (irq < GIC_INTERNAL) {
801                 value = ALL_CPU_MASK;
802             }
803             s->irq_target[irq] = value & ALL_CPU_MASK;
804         }
805     } else if (offset < 0xf00) {
806         /* Interrupt Configuration.  */
807         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
808         if (irq >= s->num_irq)
809             goto bad_reg;
810         if (irq < GIC_NR_SGIS)
811             value |= 0xaa;
812         for (i = 0; i < 4; i++) {
813             if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
814                 if (value & (1 << (i * 2))) {
815                     GIC_SET_MODEL(irq + i);
816                 } else {
817                     GIC_CLEAR_MODEL(irq + i);
818                 }
819             }
820             if (value & (2 << (i * 2))) {
821                 GIC_SET_EDGE_TRIGGER(irq + i);
822             } else {
823                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
824             }
825         }
826     } else if (offset < 0xf10) {
827         /* 0xf00 is only handled for 32-bit writes.  */
828         goto bad_reg;
829     } else if (offset < 0xf20) {
830         /* GICD_CPENDSGIRn */
831         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
832             goto bad_reg;
833         }
834         irq = (offset - 0xf10);
835 
836         s->sgi_pending[irq][cpu] &= ~value;
837         if (s->sgi_pending[irq][cpu] == 0) {
838             GIC_CLEAR_PENDING(irq, 1 << cpu);
839         }
840     } else if (offset < 0xf30) {
841         /* GICD_SPENDSGIRn */
842         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
843             goto bad_reg;
844         }
845         irq = (offset - 0xf20);
846 
847         GIC_SET_PENDING(irq, 1 << cpu);
848         s->sgi_pending[irq][cpu] |= value;
849     } else {
850         goto bad_reg;
851     }
852     gic_update(s);
853     return;
854 bad_reg:
855     qemu_log_mask(LOG_GUEST_ERROR,
856                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
857 }
858 
859 static void gic_dist_writew(void *opaque, hwaddr offset,
860                             uint32_t value, MemTxAttrs attrs)
861 {
862     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
863     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
864 }
865 
866 static void gic_dist_writel(void *opaque, hwaddr offset,
867                             uint32_t value, MemTxAttrs attrs)
868 {
869     GICState *s = (GICState *)opaque;
870     if (offset == 0xf00) {
871         int cpu;
872         int irq;
873         int mask;
874         int target_cpu;
875 
876         cpu = gic_get_current_cpu(s);
877         irq = value & 0x3ff;
878         switch ((value >> 24) & 3) {
879         case 0:
880             mask = (value >> 16) & ALL_CPU_MASK;
881             break;
882         case 1:
883             mask = ALL_CPU_MASK ^ (1 << cpu);
884             break;
885         case 2:
886             mask = 1 << cpu;
887             break;
888         default:
889             DPRINTF("Bad Soft Int target filter\n");
890             mask = ALL_CPU_MASK;
891             break;
892         }
893         GIC_SET_PENDING(irq, mask);
894         target_cpu = ctz32(mask);
895         while (target_cpu < GIC_NCPU) {
896             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
897             mask &= ~(1 << target_cpu);
898             target_cpu = ctz32(mask);
899         }
900         gic_update(s);
901         return;
902     }
903     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
904     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
905 }
906 
907 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
908                                   unsigned size, MemTxAttrs attrs)
909 {
910     switch (size) {
911     case 1:
912         gic_dist_writeb(opaque, offset, data, attrs);
913         return MEMTX_OK;
914     case 2:
915         gic_dist_writew(opaque, offset, data, attrs);
916         return MEMTX_OK;
917     case 4:
918         gic_dist_writel(opaque, offset, data, attrs);
919         return MEMTX_OK;
920     default:
921         return MEMTX_ERROR;
922     }
923 }
924 
925 static const MemoryRegionOps gic_dist_ops = {
926     .read_with_attrs = gic_dist_read,
927     .write_with_attrs = gic_dist_write,
928     .endianness = DEVICE_NATIVE_ENDIAN,
929 };
930 
931 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
932                                 uint64_t *data, MemTxAttrs attrs)
933 {
934     switch (offset) {
935     case 0x00: /* Control */
936         *data = gic_get_cpu_control(s, cpu, attrs);
937         break;
938     case 0x04: /* Priority mask */
939         *data = gic_get_priority_mask(s, cpu, attrs);
940         break;
941     case 0x08: /* Binary Point */
942         if (s->security_extn && !attrs.secure) {
943             /* BPR is banked. Non-secure copy stored in ABPR. */
944             *data = s->abpr[cpu];
945         } else {
946             *data = s->bpr[cpu];
947         }
948         break;
949     case 0x0c: /* Acknowledge */
950         *data = gic_acknowledge_irq(s, cpu, attrs);
951         break;
952     case 0x14: /* Running Priority */
953         *data = gic_get_running_priority(s, cpu, attrs);
954         break;
955     case 0x18: /* Highest Pending Interrupt */
956         *data = gic_get_current_pending_irq(s, cpu, attrs);
957         break;
958     case 0x1c: /* Aliased Binary Point */
959         /* GIC v2, no security: ABPR
960          * GIC v1, no security: not implemented (RAZ/WI)
961          * With security extensions, secure access: ABPR (alias of NS BPR)
962          * With security extensions, nonsecure access: RAZ/WI
963          */
964         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
965             *data = 0;
966         } else {
967             *data = s->abpr[cpu];
968         }
969         break;
970     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
971         *data = s->apr[(offset - 0xd0) / 4][cpu];
972         break;
973     default:
974         qemu_log_mask(LOG_GUEST_ERROR,
975                       "gic_cpu_read: Bad offset %x\n", (int)offset);
976         return MEMTX_ERROR;
977     }
978     return MEMTX_OK;
979 }
980 
981 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
982                                  uint32_t value, MemTxAttrs attrs)
983 {
984     switch (offset) {
985     case 0x00: /* Control */
986         gic_set_cpu_control(s, cpu, value, attrs);
987         break;
988     case 0x04: /* Priority mask */
989         gic_set_priority_mask(s, cpu, value, attrs);
990         break;
991     case 0x08: /* Binary Point */
992         if (s->security_extn && !attrs.secure) {
993             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
994         } else {
995             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
996         }
997         break;
998     case 0x10: /* End Of Interrupt */
999         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1000         return MEMTX_OK;
1001     case 0x1c: /* Aliased Binary Point */
1002         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1003             /* unimplemented, or NS access: RAZ/WI */
1004             return MEMTX_OK;
1005         } else {
1006             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1007         }
1008         break;
1009     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1010         qemu_log_mask(LOG_UNIMP, "Writing APR not implemented\n");
1011         break;
1012     default:
1013         qemu_log_mask(LOG_GUEST_ERROR,
1014                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1015         return MEMTX_ERROR;
1016     }
1017     gic_update(s);
1018     return MEMTX_OK;
1019 }
1020 
1021 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1022 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1023                                     unsigned size, MemTxAttrs attrs)
1024 {
1025     GICState *s = (GICState *)opaque;
1026     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1027 }
1028 
1029 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1030                                      uint64_t value, unsigned size,
1031                                      MemTxAttrs attrs)
1032 {
1033     GICState *s = (GICState *)opaque;
1034     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1035 }
1036 
1037 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1038  * These just decode the opaque pointer into GICState* + cpu id.
1039  */
1040 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1041                                    unsigned size, MemTxAttrs attrs)
1042 {
1043     GICState **backref = (GICState **)opaque;
1044     GICState *s = *backref;
1045     int id = (backref - s->backref);
1046     return gic_cpu_read(s, id, addr, data, attrs);
1047 }
1048 
1049 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1050                                     uint64_t value, unsigned size,
1051                                     MemTxAttrs attrs)
1052 {
1053     GICState **backref = (GICState **)opaque;
1054     GICState *s = *backref;
1055     int id = (backref - s->backref);
1056     return gic_cpu_write(s, id, addr, value, attrs);
1057 }
1058 
1059 static const MemoryRegionOps gic_thiscpu_ops = {
1060     .read_with_attrs = gic_thiscpu_read,
1061     .write_with_attrs = gic_thiscpu_write,
1062     .endianness = DEVICE_NATIVE_ENDIAN,
1063 };
1064 
1065 static const MemoryRegionOps gic_cpu_ops = {
1066     .read_with_attrs = gic_do_cpu_read,
1067     .write_with_attrs = gic_do_cpu_write,
1068     .endianness = DEVICE_NATIVE_ENDIAN,
1069 };
1070 
1071 void gic_init_irqs_and_distributor(GICState *s)
1072 {
1073     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
1074     int i;
1075 
1076     i = s->num_irq - GIC_INTERNAL;
1077     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
1078      * GPIO array layout is thus:
1079      *  [0..N-1] SPIs
1080      *  [N..N+31] PPIs for CPU 0
1081      *  [N+32..N+63] PPIs for CPU 1
1082      *   ...
1083      */
1084     if (s->revision != REV_NVIC) {
1085         i += (GIC_INTERNAL * s->num_cpu);
1086     }
1087     qdev_init_gpio_in(DEVICE(s), gic_set_irq, i);
1088     for (i = 0; i < NUM_CPU(s); i++) {
1089         sysbus_init_irq(sbd, &s->parent_irq[i]);
1090     }
1091     for (i = 0; i < NUM_CPU(s); i++) {
1092         sysbus_init_irq(sbd, &s->parent_fiq[i]);
1093     }
1094     memory_region_init_io(&s->iomem, OBJECT(s), &gic_dist_ops, s,
1095                           "gic_dist", 0x1000);
1096 }
1097 
1098 static void arm_gic_realize(DeviceState *dev, Error **errp)
1099 {
1100     /* Device instance realize function for the GIC sysbus device */
1101     int i;
1102     GICState *s = ARM_GIC(dev);
1103     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1104     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1105     Error *local_err = NULL;
1106 
1107     agc->parent_realize(dev, &local_err);
1108     if (local_err) {
1109         error_propagate(errp, local_err);
1110         return;
1111     }
1112 
1113     gic_init_irqs_and_distributor(s);
1114 
1115     /* Memory regions for the CPU interfaces (NVIC doesn't have these):
1116      * a region for "CPU interface for this core", then a region for
1117      * "CPU interface for core 0", "for core 1", ...
1118      * NB that the memory region size of 0x100 applies for the 11MPCore
1119      * and also cores following the GIC v1 spec (ie A9).
1120      * GIC v2 defines a larger memory region (0x1000) so this will need
1121      * to be extended when we implement A15.
1122      */
1123     memory_region_init_io(&s->cpuiomem[0], OBJECT(s), &gic_thiscpu_ops, s,
1124                           "gic_cpu", 0x100);
1125     for (i = 0; i < NUM_CPU(s); i++) {
1126         s->backref[i] = s;
1127         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1128                               &s->backref[i], "gic_cpu", 0x100);
1129     }
1130     /* Distributor */
1131     sysbus_init_mmio(sbd, &s->iomem);
1132     /* cpu interfaces (one for "current cpu" plus one per cpu) */
1133     for (i = 0; i <= NUM_CPU(s); i++) {
1134         sysbus_init_mmio(sbd, &s->cpuiomem[i]);
1135     }
1136 }
1137 
1138 static void arm_gic_class_init(ObjectClass *klass, void *data)
1139 {
1140     DeviceClass *dc = DEVICE_CLASS(klass);
1141     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1142 
1143     agc->parent_realize = dc->realize;
1144     dc->realize = arm_gic_realize;
1145 }
1146 
1147 static const TypeInfo arm_gic_info = {
1148     .name = TYPE_ARM_GIC,
1149     .parent = TYPE_ARM_GIC_COMMON,
1150     .instance_size = sizeof(GICState),
1151     .class_init = arm_gic_class_init,
1152     .class_size = sizeof(ARMGICClass),
1153 };
1154 
1155 static void arm_gic_register_types(void)
1156 {
1157     type_register_static(&arm_gic_info);
1158 }
1159 
1160 type_init(arm_gic_register_types)
1161