xref: /openbmc/qemu/hw/intc/arm_gic.c (revision dc5bd18f)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 /* Return true if this GIC config has interrupt groups, which is
65  * true if we're a GICv2, or a GICv1 with the security extensions.
66  */
67 static inline bool gic_has_groups(GICState *s)
68 {
69     return s->revision == 2 || s->security_extn;
70 }
71 
72 /* TODO: Many places that call this routine could be optimized.  */
73 /* Update interrupt status after enabled or pending bits have been changed.  */
74 void gic_update(GICState *s)
75 {
76     int best_irq;
77     int best_prio;
78     int irq;
79     int irq_level, fiq_level;
80     int cpu;
81     int cm;
82 
83     for (cpu = 0; cpu < s->num_cpu; cpu++) {
84         cm = 1 << cpu;
85         s->current_pending[cpu] = 1023;
86         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
87             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
88             qemu_irq_lower(s->parent_irq[cpu]);
89             qemu_irq_lower(s->parent_fiq[cpu]);
90             continue;
91         }
92         best_prio = 0x100;
93         best_irq = 1023;
94         for (irq = 0; irq < s->num_irq; irq++) {
95             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96                 (!GIC_TEST_ACTIVE(irq, cm)) &&
97                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
98                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
99                     best_prio = GIC_GET_PRIORITY(irq, cpu);
100                     best_irq = irq;
101                 }
102             }
103         }
104 
105         if (best_irq != 1023) {
106             trace_gic_update_bestirq(cpu, best_irq, best_prio,
107                 s->priority_mask[cpu], s->running_priority[cpu]);
108         }
109 
110         irq_level = fiq_level = 0;
111 
112         if (best_prio < s->priority_mask[cpu]) {
113             s->current_pending[cpu] = best_irq;
114             if (best_prio < s->running_priority[cpu]) {
115                 int group = GIC_TEST_GROUP(best_irq, cm);
116 
117                 if (extract32(s->ctlr, group, 1) &&
118                     extract32(s->cpu_ctlr[cpu], group, 1)) {
119                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
120                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
121                                 best_irq, cpu);
122                         fiq_level = 1;
123                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
124                     } else {
125                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
126                                 best_irq, cpu);
127                         irq_level = 1;
128                         trace_gic_update_set_irq(cpu, "irq", irq_level);
129                     }
130                 }
131             }
132         }
133 
134         qemu_set_irq(s->parent_irq[cpu], irq_level);
135         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
136     }
137 }
138 
139 void gic_set_pending_private(GICState *s, int cpu, int irq)
140 {
141     int cm = 1 << cpu;
142 
143     if (gic_test_pending(s, irq, cm)) {
144         return;
145     }
146 
147     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
148     GIC_SET_PENDING(irq, cm);
149     gic_update(s);
150 }
151 
152 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
153                                  int cm, int target)
154 {
155     if (level) {
156         GIC_SET_LEVEL(irq, cm);
157         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
158             DPRINTF("Set %d pending mask %x\n", irq, target);
159             GIC_SET_PENDING(irq, target);
160         }
161     } else {
162         GIC_CLEAR_LEVEL(irq, cm);
163     }
164 }
165 
166 static void gic_set_irq_generic(GICState *s, int irq, int level,
167                                 int cm, int target)
168 {
169     if (level) {
170         GIC_SET_LEVEL(irq, cm);
171         DPRINTF("Set %d pending mask %x\n", irq, target);
172         if (GIC_TEST_EDGE_TRIGGER(irq)) {
173             GIC_SET_PENDING(irq, target);
174         }
175     } else {
176         GIC_CLEAR_LEVEL(irq, cm);
177     }
178 }
179 
180 /* Process a change in an external IRQ input.  */
181 static void gic_set_irq(void *opaque, int irq, int level)
182 {
183     /* Meaning of the 'irq' parameter:
184      *  [0..N-1] : external interrupts
185      *  [N..N+31] : PPI (internal) interrupts for CPU 0
186      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
187      *  ...
188      */
189     GICState *s = (GICState *)opaque;
190     int cm, target;
191     if (irq < (s->num_irq - GIC_INTERNAL)) {
192         /* The first external input line is internal interrupt 32.  */
193         cm = ALL_CPU_MASK;
194         irq += GIC_INTERNAL;
195         target = GIC_TARGET(irq);
196     } else {
197         int cpu;
198         irq -= (s->num_irq - GIC_INTERNAL);
199         cpu = irq / GIC_INTERNAL;
200         irq %= GIC_INTERNAL;
201         cm = 1 << cpu;
202         target = cm;
203     }
204 
205     assert(irq >= GIC_NR_SGIS);
206 
207     if (level == GIC_TEST_LEVEL(irq, cm)) {
208         return;
209     }
210 
211     if (s->revision == REV_11MPCORE) {
212         gic_set_irq_11mpcore(s, irq, level, cm, target);
213     } else {
214         gic_set_irq_generic(s, irq, level, cm, target);
215     }
216     trace_gic_set_irq(irq, level, cm, target);
217 
218     gic_update(s);
219 }
220 
221 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
222                                             MemTxAttrs attrs)
223 {
224     uint16_t pending_irq = s->current_pending[cpu];
225 
226     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
227         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
228         /* On a GIC without the security extensions, reading this register
229          * behaves in the same way as a secure access to a GIC with them.
230          */
231         bool secure = !s->security_extn || attrs.secure;
232 
233         if (group == 0 && !secure) {
234             /* Group0 interrupts hidden from Non-secure access */
235             return 1023;
236         }
237         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
238             /* Group1 interrupts only seen by Secure access if
239              * AckCtl bit set.
240              */
241             return 1022;
242         }
243     }
244     return pending_irq;
245 }
246 
247 static int gic_get_group_priority(GICState *s, int cpu, int irq)
248 {
249     /* Return the group priority of the specified interrupt
250      * (which is the top bits of its priority, with the number
251      * of bits masked determined by the applicable binary point register).
252      */
253     int bpr;
254     uint32_t mask;
255 
256     if (gic_has_groups(s) &&
257         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
258         GIC_TEST_GROUP(irq, (1 << cpu))) {
259         bpr = s->abpr[cpu] - 1;
260         assert(bpr >= 0);
261     } else {
262         bpr = s->bpr[cpu];
263     }
264 
265     /* a BPR of 0 means the group priority bits are [7:1];
266      * a BPR of 1 means they are [7:2], and so on down to
267      * a BPR of 7 meaning no group priority bits at all.
268      */
269     mask = ~0U << ((bpr & 7) + 1);
270 
271     return GIC_GET_PRIORITY(irq, cpu) & mask;
272 }
273 
274 static void gic_activate_irq(GICState *s, int cpu, int irq)
275 {
276     /* Set the appropriate Active Priority Register bit for this IRQ,
277      * and update the running priority.
278      */
279     int prio = gic_get_group_priority(s, cpu, irq);
280     int preemption_level = prio >> (GIC_MIN_BPR + 1);
281     int regno = preemption_level / 32;
282     int bitno = preemption_level % 32;
283 
284     if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
285         s->nsapr[regno][cpu] |= (1 << bitno);
286     } else {
287         s->apr[regno][cpu] |= (1 << bitno);
288     }
289 
290     s->running_priority[cpu] = prio;
291     GIC_SET_ACTIVE(irq, 1 << cpu);
292 }
293 
294 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
295 {
296     /* Recalculate the current running priority for this CPU based
297      * on the set bits in the Active Priority Registers.
298      */
299     int i;
300     for (i = 0; i < GIC_NR_APRS; i++) {
301         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
302         if (!apr) {
303             continue;
304         }
305         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
306     }
307     return 0x100;
308 }
309 
310 static void gic_drop_prio(GICState *s, int cpu, int group)
311 {
312     /* Drop the priority of the currently active interrupt in the
313      * specified group.
314      *
315      * Note that we can guarantee (because of the requirement to nest
316      * GICC_IAR reads [which activate an interrupt and raise priority]
317      * with GICC_EOIR writes [which drop the priority for the interrupt])
318      * that the interrupt we're being called for is the highest priority
319      * active interrupt, meaning that it has the lowest set bit in the
320      * APR registers.
321      *
322      * If the guest does not honour the ordering constraints then the
323      * behaviour of the GIC is UNPREDICTABLE, which for us means that
324      * the values of the APR registers might become incorrect and the
325      * running priority will be wrong, so interrupts that should preempt
326      * might not do so, and interrupts that should not preempt might do so.
327      */
328     int i;
329 
330     for (i = 0; i < GIC_NR_APRS; i++) {
331         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
332         if (!*papr) {
333             continue;
334         }
335         /* Clear lowest set bit */
336         *papr &= *papr - 1;
337         break;
338     }
339 
340     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
341 }
342 
343 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
344 {
345     int ret, irq, src;
346     int cm = 1 << cpu;
347 
348     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
349      * for the case where this GIC supports grouping and the pending interrupt
350      * is in the wrong group.
351      */
352     irq = gic_get_current_pending_irq(s, cpu, attrs);
353     trace_gic_acknowledge_irq(cpu, irq);
354 
355     if (irq >= GIC_MAXIRQ) {
356         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
357         return irq;
358     }
359 
360     if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
361         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
362         return 1023;
363     }
364 
365     if (s->revision == REV_11MPCORE) {
366         /* Clear pending flags for both level and edge triggered interrupts.
367          * Level triggered IRQs will be reasserted once they become inactive.
368          */
369         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
370         ret = irq;
371     } else {
372         if (irq < GIC_NR_SGIS) {
373             /* Lookup the source CPU for the SGI and clear this in the
374              * sgi_pending map.  Return the src and clear the overall pending
375              * state on this CPU if the SGI is not pending from any CPUs.
376              */
377             assert(s->sgi_pending[irq][cpu] != 0);
378             src = ctz32(s->sgi_pending[irq][cpu]);
379             s->sgi_pending[irq][cpu] &= ~(1 << src);
380             if (s->sgi_pending[irq][cpu] == 0) {
381                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
382             }
383             ret = irq | ((src & 0x7) << 10);
384         } else {
385             /* Clear pending state for both level and edge triggered
386              * interrupts. (level triggered interrupts with an active line
387              * remain pending, see gic_test_pending)
388              */
389             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
390             ret = irq;
391         }
392     }
393 
394     gic_activate_irq(s, cpu, irq);
395     gic_update(s);
396     DPRINTF("ACK %d\n", irq);
397     return ret;
398 }
399 
400 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
401                       MemTxAttrs attrs)
402 {
403     if (s->security_extn && !attrs.secure) {
404         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
405             return; /* Ignore Non-secure access of Group0 IRQ */
406         }
407         val = 0x80 | (val >> 1); /* Non-secure view */
408     }
409 
410     if (irq < GIC_INTERNAL) {
411         s->priority1[irq][cpu] = val;
412     } else {
413         s->priority2[(irq) - GIC_INTERNAL] = val;
414     }
415 }
416 
417 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
418                                  MemTxAttrs attrs)
419 {
420     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
421 
422     if (s->security_extn && !attrs.secure) {
423         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
424             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
425         }
426         prio = (prio << 1) & 0xff; /* Non-secure view */
427     }
428     return prio;
429 }
430 
431 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
432                                   MemTxAttrs attrs)
433 {
434     if (s->security_extn && !attrs.secure) {
435         if (s->priority_mask[cpu] & 0x80) {
436             /* Priority Mask in upper half */
437             pmask = 0x80 | (pmask >> 1);
438         } else {
439             /* Non-secure write ignored if priority mask is in lower half */
440             return;
441         }
442     }
443     s->priority_mask[cpu] = pmask;
444 }
445 
446 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
447 {
448     uint32_t pmask = s->priority_mask[cpu];
449 
450     if (s->security_extn && !attrs.secure) {
451         if (pmask & 0x80) {
452             /* Priority Mask in upper half, return Non-secure view */
453             pmask = (pmask << 1) & 0xff;
454         } else {
455             /* Priority Mask in lower half, RAZ */
456             pmask = 0;
457         }
458     }
459     return pmask;
460 }
461 
462 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
463 {
464     uint32_t ret = s->cpu_ctlr[cpu];
465 
466     if (s->security_extn && !attrs.secure) {
467         /* Construct the NS banked view of GICC_CTLR from the correct
468          * bits of the S banked view. We don't need to move the bypass
469          * control bits because we don't implement that (IMPDEF) part
470          * of the GIC architecture.
471          */
472         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
473     }
474     return ret;
475 }
476 
477 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
478                                 MemTxAttrs attrs)
479 {
480     uint32_t mask;
481 
482     if (s->security_extn && !attrs.secure) {
483         /* The NS view can only write certain bits in the register;
484          * the rest are unchanged
485          */
486         mask = GICC_CTLR_EN_GRP1;
487         if (s->revision == 2) {
488             mask |= GICC_CTLR_EOIMODE_NS;
489         }
490         s->cpu_ctlr[cpu] &= ~mask;
491         s->cpu_ctlr[cpu] |= (value << 1) & mask;
492     } else {
493         if (s->revision == 2) {
494             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
495         } else {
496             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
497         }
498         s->cpu_ctlr[cpu] = value & mask;
499     }
500     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
501             "Group1 Interrupts %sabled\n", cpu,
502             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
503             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
504 }
505 
506 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
507 {
508     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
509         /* Idle priority */
510         return 0xff;
511     }
512 
513     if (s->security_extn && !attrs.secure) {
514         if (s->running_priority[cpu] & 0x80) {
515             /* Running priority in upper half of range: return the Non-secure
516              * view of the priority.
517              */
518             return s->running_priority[cpu] << 1;
519         } else {
520             /* Running priority in lower half of range: RAZ */
521             return 0;
522         }
523     } else {
524         return s->running_priority[cpu];
525     }
526 }
527 
528 /* Return true if we should split priority drop and interrupt deactivation,
529  * ie whether the relevant EOIMode bit is set.
530  */
531 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
532 {
533     if (s->revision != 2) {
534         /* Before GICv2 prio-drop and deactivate are not separable */
535         return false;
536     }
537     if (s->security_extn && !attrs.secure) {
538         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
539     }
540     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
541 }
542 
543 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
544 {
545     int cm = 1 << cpu;
546     int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
547 
548     if (!gic_eoi_split(s, cpu, attrs)) {
549         /* This is UNPREDICTABLE; we choose to ignore it */
550         qemu_log_mask(LOG_GUEST_ERROR,
551                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
552         return;
553     }
554 
555     if (s->security_extn && !attrs.secure && !group) {
556         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
557         return;
558     }
559 
560     GIC_CLEAR_ACTIVE(irq, cm);
561 }
562 
563 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
564 {
565     int cm = 1 << cpu;
566     int group;
567 
568     DPRINTF("EOI %d\n", irq);
569     if (irq >= s->num_irq) {
570         /* This handles two cases:
571          * 1. If software writes the ID of a spurious interrupt [ie 1023]
572          * to the GICC_EOIR, the GIC ignores that write.
573          * 2. If software writes the number of a non-existent interrupt
574          * this must be a subcase of "value written does not match the last
575          * valid interrupt value read from the Interrupt Acknowledge
576          * register" and so this is UNPREDICTABLE. We choose to ignore it.
577          */
578         return;
579     }
580     if (s->running_priority[cpu] == 0x100) {
581         return; /* No active IRQ.  */
582     }
583 
584     if (s->revision == REV_11MPCORE) {
585         /* Mark level triggered interrupts as pending if they are still
586            raised.  */
587         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
588             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
589             DPRINTF("Set %d pending mask %x\n", irq, cm);
590             GIC_SET_PENDING(irq, cm);
591         }
592     }
593 
594     group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
595 
596     if (s->security_extn && !attrs.secure && !group) {
597         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
598         return;
599     }
600 
601     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
602      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
603      * i.e. go ahead and complete the irq anyway.
604      */
605 
606     gic_drop_prio(s, cpu, group);
607 
608     /* In GICv2 the guest can choose to split priority-drop and deactivate */
609     if (!gic_eoi_split(s, cpu, attrs)) {
610         GIC_CLEAR_ACTIVE(irq, cm);
611     }
612     gic_update(s);
613 }
614 
615 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
616 {
617     GICState *s = (GICState *)opaque;
618     uint32_t res;
619     int irq;
620     int i;
621     int cpu;
622     int cm;
623     int mask;
624 
625     cpu = gic_get_current_cpu(s);
626     cm = 1 << cpu;
627     if (offset < 0x100) {
628         if (offset == 0) {      /* GICD_CTLR */
629             if (s->security_extn && !attrs.secure) {
630                 /* The NS bank of this register is just an alias of the
631                  * EnableGrp1 bit in the S bank version.
632                  */
633                 return extract32(s->ctlr, 1, 1);
634             } else {
635                 return s->ctlr;
636             }
637         }
638         if (offset == 4)
639             /* Interrupt Controller Type Register */
640             return ((s->num_irq / 32) - 1)
641                     | ((s->num_cpu - 1) << 5)
642                     | (s->security_extn << 10);
643         if (offset < 0x08)
644             return 0;
645         if (offset >= 0x80) {
646             /* Interrupt Group Registers: these RAZ/WI if this is an NS
647              * access to a GIC with the security extensions, or if the GIC
648              * doesn't have groups at all.
649              */
650             res = 0;
651             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
652                 /* Every byte offset holds 8 group status bits */
653                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
654                 if (irq >= s->num_irq) {
655                     goto bad_reg;
656                 }
657                 for (i = 0; i < 8; i++) {
658                     if (GIC_TEST_GROUP(irq + i, cm)) {
659                         res |= (1 << i);
660                     }
661                 }
662             }
663             return res;
664         }
665         goto bad_reg;
666     } else if (offset < 0x200) {
667         /* Interrupt Set/Clear Enable.  */
668         if (offset < 0x180)
669             irq = (offset - 0x100) * 8;
670         else
671             irq = (offset - 0x180) * 8;
672         irq += GIC_BASE_IRQ;
673         if (irq >= s->num_irq)
674             goto bad_reg;
675         res = 0;
676         for (i = 0; i < 8; i++) {
677             if (s->security_extn && !attrs.secure &&
678                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
679                 continue; /* Ignore Non-secure access of Group0 IRQ */
680             }
681 
682             if (GIC_TEST_ENABLED(irq + i, cm)) {
683                 res |= (1 << i);
684             }
685         }
686     } else if (offset < 0x300) {
687         /* Interrupt Set/Clear Pending.  */
688         if (offset < 0x280)
689             irq = (offset - 0x200) * 8;
690         else
691             irq = (offset - 0x280) * 8;
692         irq += GIC_BASE_IRQ;
693         if (irq >= s->num_irq)
694             goto bad_reg;
695         res = 0;
696         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
697         for (i = 0; i < 8; i++) {
698             if (s->security_extn && !attrs.secure &&
699                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
700                 continue; /* Ignore Non-secure access of Group0 IRQ */
701             }
702 
703             if (gic_test_pending(s, irq + i, mask)) {
704                 res |= (1 << i);
705             }
706         }
707     } else if (offset < 0x400) {
708         /* Interrupt Active.  */
709         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
710         if (irq >= s->num_irq)
711             goto bad_reg;
712         res = 0;
713         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
714         for (i = 0; i < 8; i++) {
715             if (s->security_extn && !attrs.secure &&
716                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
717                 continue; /* Ignore Non-secure access of Group0 IRQ */
718             }
719 
720             if (GIC_TEST_ACTIVE(irq + i, mask)) {
721                 res |= (1 << i);
722             }
723         }
724     } else if (offset < 0x800) {
725         /* Interrupt Priority.  */
726         irq = (offset - 0x400) + GIC_BASE_IRQ;
727         if (irq >= s->num_irq)
728             goto bad_reg;
729         res = gic_get_priority(s, cpu, irq, attrs);
730     } else if (offset < 0xc00) {
731         /* Interrupt CPU Target.  */
732         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
733             /* For uniprocessor GICs these RAZ/WI */
734             res = 0;
735         } else {
736             irq = (offset - 0x800) + GIC_BASE_IRQ;
737             if (irq >= s->num_irq) {
738                 goto bad_reg;
739             }
740             if (irq >= 29 && irq <= 31) {
741                 res = cm;
742             } else {
743                 res = GIC_TARGET(irq);
744             }
745         }
746     } else if (offset < 0xf00) {
747         /* Interrupt Configuration.  */
748         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
749         if (irq >= s->num_irq)
750             goto bad_reg;
751         res = 0;
752         for (i = 0; i < 4; i++) {
753             if (s->security_extn && !attrs.secure &&
754                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
755                 continue; /* Ignore Non-secure access of Group0 IRQ */
756             }
757 
758             if (GIC_TEST_MODEL(irq + i))
759                 res |= (1 << (i * 2));
760             if (GIC_TEST_EDGE_TRIGGER(irq + i))
761                 res |= (2 << (i * 2));
762         }
763     } else if (offset < 0xf10) {
764         goto bad_reg;
765     } else if (offset < 0xf30) {
766         if (s->revision == REV_11MPCORE) {
767             goto bad_reg;
768         }
769 
770         if (offset < 0xf20) {
771             /* GICD_CPENDSGIRn */
772             irq = (offset - 0xf10);
773         } else {
774             irq = (offset - 0xf20);
775             /* GICD_SPENDSGIRn */
776         }
777 
778         if (s->security_extn && !attrs.secure &&
779             !GIC_TEST_GROUP(irq, 1 << cpu)) {
780             res = 0; /* Ignore Non-secure access of Group0 IRQ */
781         } else {
782             res = s->sgi_pending[irq][cpu];
783         }
784     } else if (offset < 0xfd0) {
785         goto bad_reg;
786     } else if (offset < 0x1000) {
787         if (offset & 3) {
788             res = 0;
789         } else {
790             switch (s->revision) {
791             case REV_11MPCORE:
792                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
793                 break;
794             case 1:
795                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
796                 break;
797             case 2:
798                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
799                 break;
800             default:
801                 res = 0;
802             }
803         }
804     } else {
805         g_assert_not_reached();
806     }
807     return res;
808 bad_reg:
809     qemu_log_mask(LOG_GUEST_ERROR,
810                   "gic_dist_readb: Bad offset %x\n", (int)offset);
811     return 0;
812 }
813 
814 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
815                                  unsigned size, MemTxAttrs attrs)
816 {
817     switch (size) {
818     case 1:
819         *data = gic_dist_readb(opaque, offset, attrs);
820         return MEMTX_OK;
821     case 2:
822         *data = gic_dist_readb(opaque, offset, attrs);
823         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
824         return MEMTX_OK;
825     case 4:
826         *data = gic_dist_readb(opaque, offset, attrs);
827         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
828         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
829         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
830         return MEMTX_OK;
831     default:
832         return MEMTX_ERROR;
833     }
834 }
835 
836 static void gic_dist_writeb(void *opaque, hwaddr offset,
837                             uint32_t value, MemTxAttrs attrs)
838 {
839     GICState *s = (GICState *)opaque;
840     int irq;
841     int i;
842     int cpu;
843 
844     cpu = gic_get_current_cpu(s);
845     if (offset < 0x100) {
846         if (offset == 0) {
847             if (s->security_extn && !attrs.secure) {
848                 /* NS version is just an alias of the S version's bit 1 */
849                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
850             } else if (gic_has_groups(s)) {
851                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
852             } else {
853                 s->ctlr = value & GICD_CTLR_EN_GRP0;
854             }
855             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
856                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
857                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
858         } else if (offset < 4) {
859             /* ignored.  */
860         } else if (offset >= 0x80) {
861             /* Interrupt Group Registers: RAZ/WI for NS access to secure
862              * GIC, or for GICs without groups.
863              */
864             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
865                 /* Every byte offset holds 8 group status bits */
866                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
867                 if (irq >= s->num_irq) {
868                     goto bad_reg;
869                 }
870                 for (i = 0; i < 8; i++) {
871                     /* Group bits are banked for private interrupts */
872                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
873                     if (value & (1 << i)) {
874                         /* Group1 (Non-secure) */
875                         GIC_SET_GROUP(irq + i, cm);
876                     } else {
877                         /* Group0 (Secure) */
878                         GIC_CLEAR_GROUP(irq + i, cm);
879                     }
880                 }
881             }
882         } else {
883             goto bad_reg;
884         }
885     } else if (offset < 0x180) {
886         /* Interrupt Set Enable.  */
887         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
888         if (irq >= s->num_irq)
889             goto bad_reg;
890         if (irq < GIC_NR_SGIS) {
891             value = 0xff;
892         }
893 
894         for (i = 0; i < 8; i++) {
895             if (value & (1 << i)) {
896                 int mask =
897                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
898                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
899 
900                 if (s->security_extn && !attrs.secure &&
901                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
902                     continue; /* Ignore Non-secure access of Group0 IRQ */
903                 }
904 
905                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
906                     DPRINTF("Enabled IRQ %d\n", irq + i);
907                     trace_gic_enable_irq(irq + i);
908                 }
909                 GIC_SET_ENABLED(irq + i, cm);
910                 /* If a raised level triggered IRQ enabled then mark
911                    is as pending.  */
912                 if (GIC_TEST_LEVEL(irq + i, mask)
913                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
914                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
915                     GIC_SET_PENDING(irq + i, mask);
916                 }
917             }
918         }
919     } else if (offset < 0x200) {
920         /* Interrupt Clear Enable.  */
921         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
922         if (irq >= s->num_irq)
923             goto bad_reg;
924         if (irq < GIC_NR_SGIS) {
925             value = 0;
926         }
927 
928         for (i = 0; i < 8; i++) {
929             if (value & (1 << i)) {
930                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
931 
932                 if (s->security_extn && !attrs.secure &&
933                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
934                     continue; /* Ignore Non-secure access of Group0 IRQ */
935                 }
936 
937                 if (GIC_TEST_ENABLED(irq + i, cm)) {
938                     DPRINTF("Disabled IRQ %d\n", irq + i);
939                     trace_gic_disable_irq(irq + i);
940                 }
941                 GIC_CLEAR_ENABLED(irq + i, cm);
942             }
943         }
944     } else if (offset < 0x280) {
945         /* Interrupt Set Pending.  */
946         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
947         if (irq >= s->num_irq)
948             goto bad_reg;
949         if (irq < GIC_NR_SGIS) {
950             value = 0;
951         }
952 
953         for (i = 0; i < 8; i++) {
954             if (value & (1 << i)) {
955                 if (s->security_extn && !attrs.secure &&
956                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
957                     continue; /* Ignore Non-secure access of Group0 IRQ */
958                 }
959 
960                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
961             }
962         }
963     } else if (offset < 0x300) {
964         /* Interrupt Clear Pending.  */
965         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
966         if (irq >= s->num_irq)
967             goto bad_reg;
968         if (irq < GIC_NR_SGIS) {
969             value = 0;
970         }
971 
972         for (i = 0; i < 8; i++) {
973             if (s->security_extn && !attrs.secure &&
974                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
975                 continue; /* Ignore Non-secure access of Group0 IRQ */
976             }
977 
978             /* ??? This currently clears the pending bit for all CPUs, even
979                for per-CPU interrupts.  It's unclear whether this is the
980                corect behavior.  */
981             if (value & (1 << i)) {
982                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
983             }
984         }
985     } else if (offset < 0x400) {
986         /* Interrupt Active.  */
987         goto bad_reg;
988     } else if (offset < 0x800) {
989         /* Interrupt Priority.  */
990         irq = (offset - 0x400) + GIC_BASE_IRQ;
991         if (irq >= s->num_irq)
992             goto bad_reg;
993         gic_set_priority(s, cpu, irq, value, attrs);
994     } else if (offset < 0xc00) {
995         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
996          * annoying exception of the 11MPCore's GIC.
997          */
998         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
999             irq = (offset - 0x800) + GIC_BASE_IRQ;
1000             if (irq >= s->num_irq) {
1001                 goto bad_reg;
1002             }
1003             if (irq < 29) {
1004                 value = 0;
1005             } else if (irq < GIC_INTERNAL) {
1006                 value = ALL_CPU_MASK;
1007             }
1008             s->irq_target[irq] = value & ALL_CPU_MASK;
1009         }
1010     } else if (offset < 0xf00) {
1011         /* Interrupt Configuration.  */
1012         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1013         if (irq >= s->num_irq)
1014             goto bad_reg;
1015         if (irq < GIC_NR_SGIS)
1016             value |= 0xaa;
1017         for (i = 0; i < 4; i++) {
1018             if (s->security_extn && !attrs.secure &&
1019                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
1020                 continue; /* Ignore Non-secure access of Group0 IRQ */
1021             }
1022 
1023             if (s->revision == REV_11MPCORE) {
1024                 if (value & (1 << (i * 2))) {
1025                     GIC_SET_MODEL(irq + i);
1026                 } else {
1027                     GIC_CLEAR_MODEL(irq + i);
1028                 }
1029             }
1030             if (value & (2 << (i * 2))) {
1031                 GIC_SET_EDGE_TRIGGER(irq + i);
1032             } else {
1033                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
1034             }
1035         }
1036     } else if (offset < 0xf10) {
1037         /* 0xf00 is only handled for 32-bit writes.  */
1038         goto bad_reg;
1039     } else if (offset < 0xf20) {
1040         /* GICD_CPENDSGIRn */
1041         if (s->revision == REV_11MPCORE) {
1042             goto bad_reg;
1043         }
1044         irq = (offset - 0xf10);
1045 
1046         if (!s->security_extn || attrs.secure ||
1047             GIC_TEST_GROUP(irq, 1 << cpu)) {
1048             s->sgi_pending[irq][cpu] &= ~value;
1049             if (s->sgi_pending[irq][cpu] == 0) {
1050                 GIC_CLEAR_PENDING(irq, 1 << cpu);
1051             }
1052         }
1053     } else if (offset < 0xf30) {
1054         /* GICD_SPENDSGIRn */
1055         if (s->revision == REV_11MPCORE) {
1056             goto bad_reg;
1057         }
1058         irq = (offset - 0xf20);
1059 
1060         if (!s->security_extn || attrs.secure ||
1061             GIC_TEST_GROUP(irq, 1 << cpu)) {
1062             GIC_SET_PENDING(irq, 1 << cpu);
1063             s->sgi_pending[irq][cpu] |= value;
1064         }
1065     } else {
1066         goto bad_reg;
1067     }
1068     gic_update(s);
1069     return;
1070 bad_reg:
1071     qemu_log_mask(LOG_GUEST_ERROR,
1072                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1073 }
1074 
1075 static void gic_dist_writew(void *opaque, hwaddr offset,
1076                             uint32_t value, MemTxAttrs attrs)
1077 {
1078     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1079     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1080 }
1081 
1082 static void gic_dist_writel(void *opaque, hwaddr offset,
1083                             uint32_t value, MemTxAttrs attrs)
1084 {
1085     GICState *s = (GICState *)opaque;
1086     if (offset == 0xf00) {
1087         int cpu;
1088         int irq;
1089         int mask;
1090         int target_cpu;
1091 
1092         cpu = gic_get_current_cpu(s);
1093         irq = value & 0x3ff;
1094         switch ((value >> 24) & 3) {
1095         case 0:
1096             mask = (value >> 16) & ALL_CPU_MASK;
1097             break;
1098         case 1:
1099             mask = ALL_CPU_MASK ^ (1 << cpu);
1100             break;
1101         case 2:
1102             mask = 1 << cpu;
1103             break;
1104         default:
1105             DPRINTF("Bad Soft Int target filter\n");
1106             mask = ALL_CPU_MASK;
1107             break;
1108         }
1109         GIC_SET_PENDING(irq, mask);
1110         target_cpu = ctz32(mask);
1111         while (target_cpu < GIC_NCPU) {
1112             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1113             mask &= ~(1 << target_cpu);
1114             target_cpu = ctz32(mask);
1115         }
1116         gic_update(s);
1117         return;
1118     }
1119     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1120     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1121 }
1122 
1123 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1124                                   unsigned size, MemTxAttrs attrs)
1125 {
1126     switch (size) {
1127     case 1:
1128         gic_dist_writeb(opaque, offset, data, attrs);
1129         return MEMTX_OK;
1130     case 2:
1131         gic_dist_writew(opaque, offset, data, attrs);
1132         return MEMTX_OK;
1133     case 4:
1134         gic_dist_writel(opaque, offset, data, attrs);
1135         return MEMTX_OK;
1136     default:
1137         return MEMTX_ERROR;
1138     }
1139 }
1140 
1141 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1142 {
1143     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1144      * second half of GICC_NSAPR.
1145      */
1146     switch (GIC_MIN_BPR) {
1147     case 0:
1148         if (regno < 2) {
1149             return s->nsapr[regno + 2][cpu];
1150         }
1151         break;
1152     case 1:
1153         if (regno == 0) {
1154             return s->nsapr[regno + 1][cpu];
1155         }
1156         break;
1157     case 2:
1158         if (regno == 0) {
1159             return extract32(s->nsapr[0][cpu], 16, 16);
1160         }
1161         break;
1162     case 3:
1163         if (regno == 0) {
1164             return extract32(s->nsapr[0][cpu], 8, 8);
1165         }
1166         break;
1167     default:
1168         g_assert_not_reached();
1169     }
1170     return 0;
1171 }
1172 
1173 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1174                                          uint32_t value)
1175 {
1176     /* Write the Nonsecure view of GICC_APR<regno>. */
1177     switch (GIC_MIN_BPR) {
1178     case 0:
1179         if (regno < 2) {
1180             s->nsapr[regno + 2][cpu] = value;
1181         }
1182         break;
1183     case 1:
1184         if (regno == 0) {
1185             s->nsapr[regno + 1][cpu] = value;
1186         }
1187         break;
1188     case 2:
1189         if (regno == 0) {
1190             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1191         }
1192         break;
1193     case 3:
1194         if (regno == 0) {
1195             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1196         }
1197         break;
1198     default:
1199         g_assert_not_reached();
1200     }
1201 }
1202 
1203 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1204                                 uint64_t *data, MemTxAttrs attrs)
1205 {
1206     switch (offset) {
1207     case 0x00: /* Control */
1208         *data = gic_get_cpu_control(s, cpu, attrs);
1209         break;
1210     case 0x04: /* Priority mask */
1211         *data = gic_get_priority_mask(s, cpu, attrs);
1212         break;
1213     case 0x08: /* Binary Point */
1214         if (s->security_extn && !attrs.secure) {
1215             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1216                 /* NS view of BPR when CBPR is 1 */
1217                 *data = MIN(s->bpr[cpu] + 1, 7);
1218             } else {
1219                 /* BPR is banked. Non-secure copy stored in ABPR. */
1220                 *data = s->abpr[cpu];
1221             }
1222         } else {
1223             *data = s->bpr[cpu];
1224         }
1225         break;
1226     case 0x0c: /* Acknowledge */
1227         *data = gic_acknowledge_irq(s, cpu, attrs);
1228         break;
1229     case 0x14: /* Running Priority */
1230         *data = gic_get_running_priority(s, cpu, attrs);
1231         break;
1232     case 0x18: /* Highest Pending Interrupt */
1233         *data = gic_get_current_pending_irq(s, cpu, attrs);
1234         break;
1235     case 0x1c: /* Aliased Binary Point */
1236         /* GIC v2, no security: ABPR
1237          * GIC v1, no security: not implemented (RAZ/WI)
1238          * With security extensions, secure access: ABPR (alias of NS BPR)
1239          * With security extensions, nonsecure access: RAZ/WI
1240          */
1241         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1242             *data = 0;
1243         } else {
1244             *data = s->abpr[cpu];
1245         }
1246         break;
1247     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1248     {
1249         int regno = (offset - 0xd0) / 4;
1250 
1251         if (regno >= GIC_NR_APRS || s->revision != 2) {
1252             *data = 0;
1253         } else if (s->security_extn && !attrs.secure) {
1254             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1255             *data = gic_apr_ns_view(s, regno, cpu);
1256         } else {
1257             *data = s->apr[regno][cpu];
1258         }
1259         break;
1260     }
1261     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1262     {
1263         int regno = (offset - 0xe0) / 4;
1264 
1265         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1266             (s->security_extn && !attrs.secure)) {
1267             *data = 0;
1268         } else {
1269             *data = s->nsapr[regno][cpu];
1270         }
1271         break;
1272     }
1273     default:
1274         qemu_log_mask(LOG_GUEST_ERROR,
1275                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1276         *data = 0;
1277         break;
1278     }
1279     return MEMTX_OK;
1280 }
1281 
1282 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1283                                  uint32_t value, MemTxAttrs attrs)
1284 {
1285     switch (offset) {
1286     case 0x00: /* Control */
1287         gic_set_cpu_control(s, cpu, value, attrs);
1288         break;
1289     case 0x04: /* Priority mask */
1290         gic_set_priority_mask(s, cpu, value, attrs);
1291         break;
1292     case 0x08: /* Binary Point */
1293         if (s->security_extn && !attrs.secure) {
1294             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1295                 /* WI when CBPR is 1 */
1296                 return MEMTX_OK;
1297             } else {
1298                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1299             }
1300         } else {
1301             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1302         }
1303         break;
1304     case 0x10: /* End Of Interrupt */
1305         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1306         return MEMTX_OK;
1307     case 0x1c: /* Aliased Binary Point */
1308         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1309             /* unimplemented, or NS access: RAZ/WI */
1310             return MEMTX_OK;
1311         } else {
1312             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1313         }
1314         break;
1315     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1316     {
1317         int regno = (offset - 0xd0) / 4;
1318 
1319         if (regno >= GIC_NR_APRS || s->revision != 2) {
1320             return MEMTX_OK;
1321         }
1322         if (s->security_extn && !attrs.secure) {
1323             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1324             gic_apr_write_ns_view(s, regno, cpu, value);
1325         } else {
1326             s->apr[regno][cpu] = value;
1327         }
1328         break;
1329     }
1330     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1331     {
1332         int regno = (offset - 0xe0) / 4;
1333 
1334         if (regno >= GIC_NR_APRS || s->revision != 2) {
1335             return MEMTX_OK;
1336         }
1337         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1338             return MEMTX_OK;
1339         }
1340         s->nsapr[regno][cpu] = value;
1341         break;
1342     }
1343     case 0x1000:
1344         /* GICC_DIR */
1345         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1346         break;
1347     default:
1348         qemu_log_mask(LOG_GUEST_ERROR,
1349                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1350         return MEMTX_OK;
1351     }
1352     gic_update(s);
1353     return MEMTX_OK;
1354 }
1355 
1356 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1357 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1358                                     unsigned size, MemTxAttrs attrs)
1359 {
1360     GICState *s = (GICState *)opaque;
1361     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1362 }
1363 
1364 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1365                                      uint64_t value, unsigned size,
1366                                      MemTxAttrs attrs)
1367 {
1368     GICState *s = (GICState *)opaque;
1369     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1370 }
1371 
1372 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1373  * These just decode the opaque pointer into GICState* + cpu id.
1374  */
1375 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1376                                    unsigned size, MemTxAttrs attrs)
1377 {
1378     GICState **backref = (GICState **)opaque;
1379     GICState *s = *backref;
1380     int id = (backref - s->backref);
1381     return gic_cpu_read(s, id, addr, data, attrs);
1382 }
1383 
1384 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1385                                     uint64_t value, unsigned size,
1386                                     MemTxAttrs attrs)
1387 {
1388     GICState **backref = (GICState **)opaque;
1389     GICState *s = *backref;
1390     int id = (backref - s->backref);
1391     return gic_cpu_write(s, id, addr, value, attrs);
1392 }
1393 
1394 static const MemoryRegionOps gic_ops[2] = {
1395     {
1396         .read_with_attrs = gic_dist_read,
1397         .write_with_attrs = gic_dist_write,
1398         .endianness = DEVICE_NATIVE_ENDIAN,
1399     },
1400     {
1401         .read_with_attrs = gic_thiscpu_read,
1402         .write_with_attrs = gic_thiscpu_write,
1403         .endianness = DEVICE_NATIVE_ENDIAN,
1404     }
1405 };
1406 
1407 static const MemoryRegionOps gic_cpu_ops = {
1408     .read_with_attrs = gic_do_cpu_read,
1409     .write_with_attrs = gic_do_cpu_write,
1410     .endianness = DEVICE_NATIVE_ENDIAN,
1411 };
1412 
1413 /* This function is used by nvic model */
1414 void gic_init_irqs_and_distributor(GICState *s)
1415 {
1416     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1417 }
1418 
1419 static void arm_gic_realize(DeviceState *dev, Error **errp)
1420 {
1421     /* Device instance realize function for the GIC sysbus device */
1422     int i;
1423     GICState *s = ARM_GIC(dev);
1424     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1425     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1426     Error *local_err = NULL;
1427 
1428     agc->parent_realize(dev, &local_err);
1429     if (local_err) {
1430         error_propagate(errp, local_err);
1431         return;
1432     }
1433 
1434     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1435         error_setg(errp, "KVM with user space irqchip only works when the "
1436                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
1437         return;
1438     }
1439 
1440     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1441     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1442 
1443     /* Extra core-specific regions for the CPU interfaces. This is
1444      * necessary for "franken-GIC" implementations, for example on
1445      * Exynos 4.
1446      * NB that the memory region size of 0x100 applies for the 11MPCore
1447      * and also cores following the GIC v1 spec (ie A9).
1448      * GIC v2 defines a larger memory region (0x1000) so this will need
1449      * to be extended when we implement A15.
1450      */
1451     for (i = 0; i < s->num_cpu; i++) {
1452         s->backref[i] = s;
1453         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1454                               &s->backref[i], "gic_cpu", 0x100);
1455         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1456     }
1457 }
1458 
1459 static void arm_gic_class_init(ObjectClass *klass, void *data)
1460 {
1461     DeviceClass *dc = DEVICE_CLASS(klass);
1462     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1463 
1464     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1465 }
1466 
1467 static const TypeInfo arm_gic_info = {
1468     .name = TYPE_ARM_GIC,
1469     .parent = TYPE_ARM_GIC_COMMON,
1470     .instance_size = sizeof(GICState),
1471     .class_init = arm_gic_class_init,
1472     .class_size = sizeof(ARMGICClass),
1473 };
1474 
1475 static void arm_gic_register_types(void)
1476 {
1477     type_register_static(&arm_gic_info);
1478 }
1479 
1480 type_init(arm_gic_register_types)
1481