xref: /openbmc/qemu/hw/intc/arm_gic.c (revision c8c89a6a)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/irq.h"
23 #include "hw/sysbus.h"
24 #include "gic_internal.h"
25 #include "qapi/error.h"
26 #include "hw/core/cpu.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/qtest.h"
32 
33 /* #define DEBUG_GIC */
34 
35 #ifdef DEBUG_GIC
36 #define DEBUG_GIC_GATE 1
37 #else
38 #define DEBUG_GIC_GATE 0
39 #endif
40 
41 #define DPRINTF(fmt, ...) do {                                          \
42         if (DEBUG_GIC_GATE) {                                           \
43             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
44         }                                                               \
45     } while (0)
46 
47 static const uint8_t gic_id_11mpcore[] = {
48     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
49 };
50 
51 static const uint8_t gic_id_gicv1[] = {
52     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
53 };
54 
55 static const uint8_t gic_id_gicv2[] = {
56     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
57 };
58 
59 static inline int gic_get_current_cpu(GICState *s)
60 {
61     if (!qtest_enabled() && s->num_cpu > 1) {
62         return current_cpu->cpu_index;
63     }
64     return 0;
65 }
66 
67 static inline int gic_get_current_vcpu(GICState *s)
68 {
69     return gic_get_current_cpu(s) + GIC_NCPU;
70 }
71 
72 /* Return true if this GIC config has interrupt groups, which is
73  * true if we're a GICv2, or a GICv1 with the security extensions.
74  */
75 static inline bool gic_has_groups(GICState *s)
76 {
77     return s->revision == 2 || s->security_extn;
78 }
79 
80 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
81 {
82     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
83 }
84 
85 static inline void gic_get_best_irq(GICState *s, int cpu,
86                                     int *best_irq, int *best_prio, int *group)
87 {
88     int irq;
89     int cm = 1 << cpu;
90 
91     *best_irq = 1023;
92     *best_prio = 0x100;
93 
94     for (irq = 0; irq < s->num_irq; irq++) {
95         if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96             (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
97             (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
98             if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
99                 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
100                 *best_irq = irq;
101             }
102         }
103     }
104 
105     if (*best_irq < 1023) {
106         *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
107     }
108 }
109 
110 static inline void gic_get_best_virq(GICState *s, int cpu,
111                                      int *best_irq, int *best_prio, int *group)
112 {
113     int lr_idx = 0;
114 
115     *best_irq = 1023;
116     *best_prio = 0x100;
117 
118     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
119         uint32_t lr_entry = s->h_lr[lr_idx][cpu];
120         int state = GICH_LR_STATE(lr_entry);
121 
122         if (state == GICH_LR_STATE_PENDING) {
123             int prio = GICH_LR_PRIORITY(lr_entry);
124 
125             if (prio < *best_prio) {
126                 *best_prio = prio;
127                 *best_irq = GICH_LR_VIRT_ID(lr_entry);
128                 *group = GICH_LR_GROUP(lr_entry);
129             }
130         }
131     }
132 }
133 
134 /* Return true if IRQ signaling is enabled for the given cpu and at least one
135  * of the given groups:
136  *   - in the non-virt case, the distributor must be enabled for one of the
137  *   given groups
138  *   - in the virt case, the virtual interface must be enabled.
139  *   - in all cases, the (v)CPU interface must be enabled for one of the given
140  *   groups.
141  */
142 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
143                                     int group_mask)
144 {
145     int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
146 
147     if (!virt && !(s->ctlr & group_mask)) {
148         return false;
149     }
150 
151     if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
152         return false;
153     }
154 
155     if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
156         return false;
157     }
158 
159     return true;
160 }
161 
162 /* TODO: Many places that call this routine could be optimized.  */
163 /* Update interrupt status after enabled or pending bits have been changed.  */
164 static inline void gic_update_internal(GICState *s, bool virt)
165 {
166     int best_irq;
167     int best_prio;
168     int irq_level, fiq_level;
169     int cpu, cpu_iface;
170     int group = 0;
171     qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
172     qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
173 
174     for (cpu = 0; cpu < s->num_cpu; cpu++) {
175         cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
176 
177         s->current_pending[cpu_iface] = 1023;
178         if (!gic_irq_signaling_enabled(s, cpu, virt,
179                                        GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
180             qemu_irq_lower(irq_lines[cpu]);
181             qemu_irq_lower(fiq_lines[cpu]);
182             continue;
183         }
184 
185         if (virt) {
186             gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
187         } else {
188             gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
189         }
190 
191         if (best_irq != 1023) {
192             trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
193                                      best_irq, best_prio,
194                                      s->priority_mask[cpu_iface],
195                                      s->running_priority[cpu_iface]);
196         }
197 
198         irq_level = fiq_level = 0;
199 
200         if (best_prio < s->priority_mask[cpu_iface]) {
201             s->current_pending[cpu_iface] = best_irq;
202             if (best_prio < s->running_priority[cpu_iface]) {
203                 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
204                     if (group == 0 &&
205                         s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
206                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
207                                 best_irq, cpu_iface);
208                         fiq_level = 1;
209                         trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
210                                                  fiq_level);
211                     } else {
212                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
213                                 best_irq, cpu_iface);
214                         irq_level = 1;
215                         trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
216                                                  irq_level);
217                     }
218                 }
219             }
220         }
221 
222         qemu_set_irq(irq_lines[cpu], irq_level);
223         qemu_set_irq(fiq_lines[cpu], fiq_level);
224     }
225 }
226 
227 static void gic_update(GICState *s)
228 {
229     gic_update_internal(s, false);
230 }
231 
232 /* Return true if this LR is empty, i.e. the corresponding bit
233  * in ELRSR is set.
234  */
235 static inline bool gic_lr_entry_is_free(uint32_t entry)
236 {
237     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
238         && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
239 }
240 
241 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
242  * corrsponding bit in EISR is set.
243  */
244 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
245 {
246     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
247         && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
248 }
249 
250 static inline void gic_extract_lr_info(GICState *s, int cpu,
251                                 int *num_eoi, int *num_valid, int *num_pending)
252 {
253     int lr_idx;
254 
255     *num_eoi = 0;
256     *num_valid = 0;
257     *num_pending = 0;
258 
259     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
260         uint32_t *entry = &s->h_lr[lr_idx][cpu];
261 
262         if (gic_lr_entry_is_eoi(*entry)) {
263             (*num_eoi)++;
264         }
265 
266         if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
267             (*num_valid)++;
268         }
269 
270         if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
271             (*num_pending)++;
272         }
273     }
274 }
275 
276 static void gic_compute_misr(GICState *s, int cpu)
277 {
278     uint32_t value = 0;
279     int vcpu = cpu + GIC_NCPU;
280 
281     int num_eoi, num_valid, num_pending;
282 
283     gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
284 
285     /* EOI */
286     if (num_eoi) {
287         value |= R_GICH_MISR_EOI_MASK;
288     }
289 
290     /* U: true if only 0 or 1 LR entry is valid */
291     if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
292         value |= R_GICH_MISR_U_MASK;
293     }
294 
295     /* LRENP: EOICount is not 0 */
296     if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
297         ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
298         value |= R_GICH_MISR_LRENP_MASK;
299     }
300 
301     /* NP: no pending interrupts */
302     if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
303         value |= R_GICH_MISR_NP_MASK;
304     }
305 
306     /* VGrp0E: group0 virq signaling enabled */
307     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
308         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
309         value |= R_GICH_MISR_VGrp0E_MASK;
310     }
311 
312     /* VGrp0D: group0 virq signaling disabled */
313     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
314         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
315         value |= R_GICH_MISR_VGrp0D_MASK;
316     }
317 
318     /* VGrp1E: group1 virq signaling enabled */
319     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
320         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
321         value |= R_GICH_MISR_VGrp1E_MASK;
322     }
323 
324     /* VGrp1D: group1 virq signaling disabled */
325     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
326         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
327         value |= R_GICH_MISR_VGrp1D_MASK;
328     }
329 
330     s->h_misr[cpu] = value;
331 }
332 
333 static void gic_update_maintenance(GICState *s)
334 {
335     int cpu = 0;
336     int maint_level;
337 
338     for (cpu = 0; cpu < s->num_cpu; cpu++) {
339         gic_compute_misr(s, cpu);
340         maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
341 
342         trace_gic_update_maintenance_irq(cpu, maint_level);
343         qemu_set_irq(s->maintenance_irq[cpu], maint_level);
344     }
345 }
346 
347 static void gic_update_virt(GICState *s)
348 {
349     gic_update_internal(s, true);
350     gic_update_maintenance(s);
351 }
352 
353 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
354                                  int cm, int target)
355 {
356     if (level) {
357         GIC_DIST_SET_LEVEL(irq, cm);
358         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
359             DPRINTF("Set %d pending mask %x\n", irq, target);
360             GIC_DIST_SET_PENDING(irq, target);
361         }
362     } else {
363         GIC_DIST_CLEAR_LEVEL(irq, cm);
364     }
365 }
366 
367 static void gic_set_irq_generic(GICState *s, int irq, int level,
368                                 int cm, int target)
369 {
370     if (level) {
371         GIC_DIST_SET_LEVEL(irq, cm);
372         DPRINTF("Set %d pending mask %x\n", irq, target);
373         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
374             GIC_DIST_SET_PENDING(irq, target);
375         }
376     } else {
377         GIC_DIST_CLEAR_LEVEL(irq, cm);
378     }
379 }
380 
381 /* Process a change in an external IRQ input.  */
382 static void gic_set_irq(void *opaque, int irq, int level)
383 {
384     /* Meaning of the 'irq' parameter:
385      *  [0..N-1] : external interrupts
386      *  [N..N+31] : PPI (internal) interrupts for CPU 0
387      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
388      *  ...
389      */
390     GICState *s = (GICState *)opaque;
391     int cm, target;
392     if (irq < (s->num_irq - GIC_INTERNAL)) {
393         /* The first external input line is internal interrupt 32.  */
394         cm = ALL_CPU_MASK;
395         irq += GIC_INTERNAL;
396         target = GIC_DIST_TARGET(irq);
397     } else {
398         int cpu;
399         irq -= (s->num_irq - GIC_INTERNAL);
400         cpu = irq / GIC_INTERNAL;
401         irq %= GIC_INTERNAL;
402         cm = 1 << cpu;
403         target = cm;
404     }
405 
406     assert(irq >= GIC_NR_SGIS);
407 
408     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
409         return;
410     }
411 
412     if (s->revision == REV_11MPCORE) {
413         gic_set_irq_11mpcore(s, irq, level, cm, target);
414     } else {
415         gic_set_irq_generic(s, irq, level, cm, target);
416     }
417     trace_gic_set_irq(irq, level, cm, target);
418 
419     gic_update(s);
420 }
421 
422 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
423                                             MemTxAttrs attrs)
424 {
425     uint16_t pending_irq = s->current_pending[cpu];
426 
427     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
428         int group = gic_test_group(s, pending_irq, cpu);
429 
430         /* On a GIC without the security extensions, reading this register
431          * behaves in the same way as a secure access to a GIC with them.
432          */
433         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
434 
435         if (group == 0 && !secure) {
436             /* Group0 interrupts hidden from Non-secure access */
437             return 1023;
438         }
439         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
440             /* Group1 interrupts only seen by Secure access if
441              * AckCtl bit set.
442              */
443             return 1022;
444         }
445     }
446     return pending_irq;
447 }
448 
449 static int gic_get_group_priority(GICState *s, int cpu, int irq)
450 {
451     /* Return the group priority of the specified interrupt
452      * (which is the top bits of its priority, with the number
453      * of bits masked determined by the applicable binary point register).
454      */
455     int bpr;
456     uint32_t mask;
457 
458     if (gic_has_groups(s) &&
459         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
460         gic_test_group(s, irq, cpu)) {
461         bpr = s->abpr[cpu] - 1;
462         assert(bpr >= 0);
463     } else {
464         bpr = s->bpr[cpu];
465     }
466 
467     /* a BPR of 0 means the group priority bits are [7:1];
468      * a BPR of 1 means they are [7:2], and so on down to
469      * a BPR of 7 meaning no group priority bits at all.
470      */
471     mask = ~0U << ((bpr & 7) + 1);
472 
473     return gic_get_priority(s, irq, cpu) & mask;
474 }
475 
476 static void gic_activate_irq(GICState *s, int cpu, int irq)
477 {
478     /* Set the appropriate Active Priority Register bit for this IRQ,
479      * and update the running priority.
480      */
481     int prio = gic_get_group_priority(s, cpu, irq);
482     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
483     int preemption_level = prio >> (min_bpr + 1);
484     int regno = preemption_level / 32;
485     int bitno = preemption_level % 32;
486     uint32_t *papr = NULL;
487 
488     if (gic_is_vcpu(cpu)) {
489         assert(regno == 0);
490         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
491     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
492         papr = &s->nsapr[regno][cpu];
493     } else {
494         papr = &s->apr[regno][cpu];
495     }
496 
497     *papr |= (1 << bitno);
498 
499     s->running_priority[cpu] = prio;
500     gic_set_active(s, irq, cpu);
501 }
502 
503 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
504 {
505     /* Recalculate the current running priority for this CPU based
506      * on the set bits in the Active Priority Registers.
507      */
508     int i;
509 
510     if (gic_is_vcpu(cpu)) {
511         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
512         if (apr) {
513             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
514         } else {
515             return 0x100;
516         }
517     }
518 
519     for (i = 0; i < GIC_NR_APRS; i++) {
520         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
521         if (!apr) {
522             continue;
523         }
524         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
525     }
526     return 0x100;
527 }
528 
529 static void gic_drop_prio(GICState *s, int cpu, int group)
530 {
531     /* Drop the priority of the currently active interrupt in the
532      * specified group.
533      *
534      * Note that we can guarantee (because of the requirement to nest
535      * GICC_IAR reads [which activate an interrupt and raise priority]
536      * with GICC_EOIR writes [which drop the priority for the interrupt])
537      * that the interrupt we're being called for is the highest priority
538      * active interrupt, meaning that it has the lowest set bit in the
539      * APR registers.
540      *
541      * If the guest does not honour the ordering constraints then the
542      * behaviour of the GIC is UNPREDICTABLE, which for us means that
543      * the values of the APR registers might become incorrect and the
544      * running priority will be wrong, so interrupts that should preempt
545      * might not do so, and interrupts that should not preempt might do so.
546      */
547     if (gic_is_vcpu(cpu)) {
548         int rcpu = gic_get_vcpu_real_id(cpu);
549 
550         if (s->h_apr[rcpu]) {
551             /* Clear lowest set bit */
552             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
553         }
554     } else {
555         int i;
556 
557         for (i = 0; i < GIC_NR_APRS; i++) {
558             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
559             if (!*papr) {
560                 continue;
561             }
562             /* Clear lowest set bit */
563             *papr &= *papr - 1;
564             break;
565         }
566     }
567 
568     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
569 }
570 
571 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
572 {
573     int src;
574     uint32_t ret;
575 
576     if (!gic_is_vcpu(cpu)) {
577         /* Lookup the source CPU for the SGI and clear this in the
578          * sgi_pending map.  Return the src and clear the overall pending
579          * state on this CPU if the SGI is not pending from any CPUs.
580          */
581         assert(s->sgi_pending[irq][cpu] != 0);
582         src = ctz32(s->sgi_pending[irq][cpu]);
583         s->sgi_pending[irq][cpu] &= ~(1 << src);
584         if (s->sgi_pending[irq][cpu] == 0) {
585             gic_clear_pending(s, irq, cpu);
586         }
587         ret = irq | ((src & 0x7) << 10);
588     } else {
589         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
590         src = GICH_LR_CPUID(*lr_entry);
591 
592         gic_clear_pending(s, irq, cpu);
593         ret = irq | (src << 10);
594     }
595 
596     return ret;
597 }
598 
599 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
600 {
601     int ret, irq;
602 
603     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
604      * for the case where this GIC supports grouping and the pending interrupt
605      * is in the wrong group.
606      */
607     irq = gic_get_current_pending_irq(s, cpu, attrs);
608     trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
609                               gic_get_vcpu_real_id(cpu), irq);
610 
611     if (irq >= GIC_MAXIRQ) {
612         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
613         return irq;
614     }
615 
616     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
617         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
618         return 1023;
619     }
620 
621     gic_activate_irq(s, cpu, irq);
622 
623     if (s->revision == REV_11MPCORE) {
624         /* Clear pending flags for both level and edge triggered interrupts.
625          * Level triggered IRQs will be reasserted once they become inactive.
626          */
627         gic_clear_pending(s, irq, cpu);
628         ret = irq;
629     } else {
630         if (irq < GIC_NR_SGIS) {
631             ret = gic_clear_pending_sgi(s, irq, cpu);
632         } else {
633             gic_clear_pending(s, irq, cpu);
634             ret = irq;
635         }
636     }
637 
638     if (gic_is_vcpu(cpu)) {
639         gic_update_virt(s);
640     } else {
641         gic_update(s);
642     }
643     DPRINTF("ACK %d\n", irq);
644     return ret;
645 }
646 
647 static uint32_t gic_fullprio_mask(GICState *s, int cpu)
648 {
649     /*
650      * Return a mask word which clears the unimplemented priority
651      * bits from a priority value for an interrupt. (Not to be
652      * confused with the group priority, whose mask depends on BPR.)
653      */
654     int priBits;
655 
656     if (gic_is_vcpu(cpu)) {
657         priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
658     } else {
659         priBits = s->n_prio_bits;
660     }
661     return ~0U << (8 - priBits);
662 }
663 
664 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
665                       MemTxAttrs attrs)
666 {
667     if (s->security_extn && !attrs.secure) {
668         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
669             return; /* Ignore Non-secure access of Group0 IRQ */
670         }
671         val = 0x80 | (val >> 1); /* Non-secure view */
672     }
673 
674     val &= gic_fullprio_mask(s, cpu);
675 
676     if (irq < GIC_INTERNAL) {
677         s->priority1[irq][cpu] = val;
678     } else {
679         s->priority2[(irq) - GIC_INTERNAL] = val;
680     }
681 }
682 
683 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
684                                  MemTxAttrs attrs)
685 {
686     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
687 
688     if (s->security_extn && !attrs.secure) {
689         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
690             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
691         }
692         prio = (prio << 1) & 0xff; /* Non-secure view */
693     }
694     return prio & gic_fullprio_mask(s, cpu);
695 }
696 
697 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
698                                   MemTxAttrs attrs)
699 {
700     if (gic_cpu_ns_access(s, cpu, attrs)) {
701         if (s->priority_mask[cpu] & 0x80) {
702             /* Priority Mask in upper half */
703             pmask = 0x80 | (pmask >> 1);
704         } else {
705             /* Non-secure write ignored if priority mask is in lower half */
706             return;
707         }
708     }
709     s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
710 }
711 
712 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
713 {
714     uint32_t pmask = s->priority_mask[cpu];
715 
716     if (gic_cpu_ns_access(s, cpu, attrs)) {
717         if (pmask & 0x80) {
718             /* Priority Mask in upper half, return Non-secure view */
719             pmask = (pmask << 1) & 0xff;
720         } else {
721             /* Priority Mask in lower half, RAZ */
722             pmask = 0;
723         }
724     }
725     return pmask;
726 }
727 
728 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
729 {
730     uint32_t ret = s->cpu_ctlr[cpu];
731 
732     if (gic_cpu_ns_access(s, cpu, attrs)) {
733         /* Construct the NS banked view of GICC_CTLR from the correct
734          * bits of the S banked view. We don't need to move the bypass
735          * control bits because we don't implement that (IMPDEF) part
736          * of the GIC architecture.
737          */
738         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
739     }
740     return ret;
741 }
742 
743 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
744                                 MemTxAttrs attrs)
745 {
746     uint32_t mask;
747 
748     if (gic_cpu_ns_access(s, cpu, attrs)) {
749         /* The NS view can only write certain bits in the register;
750          * the rest are unchanged
751          */
752         mask = GICC_CTLR_EN_GRP1;
753         if (s->revision == 2) {
754             mask |= GICC_CTLR_EOIMODE_NS;
755         }
756         s->cpu_ctlr[cpu] &= ~mask;
757         s->cpu_ctlr[cpu] |= (value << 1) & mask;
758     } else {
759         if (s->revision == 2) {
760             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
761         } else {
762             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
763         }
764         s->cpu_ctlr[cpu] = value & mask;
765     }
766     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
767             "Group1 Interrupts %sabled\n", cpu,
768             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
769             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
770 }
771 
772 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
773 {
774     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
775         /* Idle priority */
776         return 0xff;
777     }
778 
779     if (gic_cpu_ns_access(s, cpu, attrs)) {
780         if (s->running_priority[cpu] & 0x80) {
781             /* Running priority in upper half of range: return the Non-secure
782              * view of the priority.
783              */
784             return s->running_priority[cpu] << 1;
785         } else {
786             /* Running priority in lower half of range: RAZ */
787             return 0;
788         }
789     } else {
790         return s->running_priority[cpu];
791     }
792 }
793 
794 /* Return true if we should split priority drop and interrupt deactivation,
795  * ie whether the relevant EOIMode bit is set.
796  */
797 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
798 {
799     if (s->revision != 2) {
800         /* Before GICv2 prio-drop and deactivate are not separable */
801         return false;
802     }
803     if (gic_cpu_ns_access(s, cpu, attrs)) {
804         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
805     }
806     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
807 }
808 
809 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
810 {
811     int group;
812 
813     if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
814         /*
815          * This handles two cases:
816          * 1. If software writes the ID of a spurious interrupt [ie 1023]
817          * to the GICC_DIR, the GIC ignores that write.
818          * 2. If software writes the number of a non-existent interrupt
819          * this must be a subcase of "value written is not an active interrupt"
820          * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
821          * all IRQs potentially exist, so this limit does not apply.
822          */
823         return;
824     }
825 
826     if (!gic_eoi_split(s, cpu, attrs)) {
827         /* This is UNPREDICTABLE; we choose to ignore it */
828         qemu_log_mask(LOG_GUEST_ERROR,
829                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
830         return;
831     }
832 
833     if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
834         /* This vIRQ does not have an LR entry which is either active or
835          * pending and active. Increment EOICount and ignore the write.
836          */
837         int rcpu = gic_get_vcpu_real_id(cpu);
838         s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
839 
840         /* Update the virtual interface in case a maintenance interrupt should
841          * be raised.
842          */
843         gic_update_virt(s);
844         return;
845     }
846 
847     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
848 
849     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
850         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
851         return;
852     }
853 
854     gic_clear_active(s, irq, cpu);
855 }
856 
857 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
858 {
859     int cm = 1 << cpu;
860     int group;
861 
862     DPRINTF("EOI %d\n", irq);
863     if (gic_is_vcpu(cpu)) {
864         /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
865          * running prio is < 0x100.
866          */
867         bool prio_drop = s->running_priority[cpu] < 0x100;
868 
869         if (irq >= GIC_MAXIRQ) {
870             /* Ignore spurious interrupt */
871             return;
872         }
873 
874         gic_drop_prio(s, cpu, 0);
875 
876         if (!gic_eoi_split(s, cpu, attrs)) {
877             bool valid = gic_virq_is_valid(s, irq, cpu);
878             if (prio_drop && !valid) {
879                 /* We are in a situation where:
880                  *   - V_CTRL.EOIMode is false (no EOI split),
881                  *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
882                  *   - This vIRQ does not have an LR entry which is either
883                  *     active or pending and active.
884                  * In that case, we must increment EOICount.
885                  */
886                 int rcpu = gic_get_vcpu_real_id(cpu);
887                 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
888             } else if (valid) {
889                 gic_clear_active(s, irq, cpu);
890             }
891         }
892 
893         gic_update_virt(s);
894         return;
895     }
896 
897     if (irq >= s->num_irq) {
898         /* This handles two cases:
899          * 1. If software writes the ID of a spurious interrupt [ie 1023]
900          * to the GICC_EOIR, the GIC ignores that write.
901          * 2. If software writes the number of a non-existent interrupt
902          * this must be a subcase of "value written does not match the last
903          * valid interrupt value read from the Interrupt Acknowledge
904          * register" and so this is UNPREDICTABLE. We choose to ignore it.
905          */
906         return;
907     }
908     if (s->running_priority[cpu] == 0x100) {
909         return; /* No active IRQ.  */
910     }
911 
912     if (s->revision == REV_11MPCORE) {
913         /* Mark level triggered interrupts as pending if they are still
914            raised.  */
915         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
916             && GIC_DIST_TEST_LEVEL(irq, cm)
917             && (GIC_DIST_TARGET(irq) & cm) != 0) {
918             DPRINTF("Set %d pending mask %x\n", irq, cm);
919             GIC_DIST_SET_PENDING(irq, cm);
920         }
921     }
922 
923     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
924 
925     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
926         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
927         return;
928     }
929 
930     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
931      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
932      * i.e. go ahead and complete the irq anyway.
933      */
934 
935     gic_drop_prio(s, cpu, group);
936 
937     /* In GICv2 the guest can choose to split priority-drop and deactivate */
938     if (!gic_eoi_split(s, cpu, attrs)) {
939         gic_clear_active(s, irq, cpu);
940     }
941     gic_update(s);
942 }
943 
944 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
945 {
946     GICState *s = (GICState *)opaque;
947     uint32_t res;
948     int irq;
949     int i;
950     int cpu;
951     int cm;
952     int mask;
953 
954     cpu = gic_get_current_cpu(s);
955     cm = 1 << cpu;
956     if (offset < 0x100) {
957         if (offset == 0) {      /* GICD_CTLR */
958             if (s->security_extn && !attrs.secure) {
959                 /* The NS bank of this register is just an alias of the
960                  * EnableGrp1 bit in the S bank version.
961                  */
962                 return extract32(s->ctlr, 1, 1);
963             } else {
964                 return s->ctlr;
965             }
966         }
967         if (offset == 4)
968             /* Interrupt Controller Type Register */
969             return ((s->num_irq / 32) - 1)
970                     | ((s->num_cpu - 1) << 5)
971                     | (s->security_extn << 10);
972         if (offset < 0x08)
973             return 0;
974         if (offset >= 0x80) {
975             /* Interrupt Group Registers: these RAZ/WI if this is an NS
976              * access to a GIC with the security extensions, or if the GIC
977              * doesn't have groups at all.
978              */
979             res = 0;
980             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
981                 /* Every byte offset holds 8 group status bits */
982                 irq = (offset - 0x080) * 8;
983                 if (irq >= s->num_irq) {
984                     goto bad_reg;
985                 }
986                 for (i = 0; i < 8; i++) {
987                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
988                         res |= (1 << i);
989                     }
990                 }
991             }
992             return res;
993         }
994         goto bad_reg;
995     } else if (offset < 0x200) {
996         /* Interrupt Set/Clear Enable.  */
997         if (offset < 0x180)
998             irq = (offset - 0x100) * 8;
999         else
1000             irq = (offset - 0x180) * 8;
1001         if (irq >= s->num_irq)
1002             goto bad_reg;
1003         res = 0;
1004         for (i = 0; i < 8; i++) {
1005             if (s->security_extn && !attrs.secure &&
1006                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1007                 continue; /* Ignore Non-secure access of Group0 IRQ */
1008             }
1009 
1010             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1011                 res |= (1 << i);
1012             }
1013         }
1014     } else if (offset < 0x300) {
1015         /* Interrupt Set/Clear Pending.  */
1016         if (offset < 0x280)
1017             irq = (offset - 0x200) * 8;
1018         else
1019             irq = (offset - 0x280) * 8;
1020         if (irq >= s->num_irq)
1021             goto bad_reg;
1022         res = 0;
1023         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1024         for (i = 0; i < 8; i++) {
1025             if (s->security_extn && !attrs.secure &&
1026                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1027                 continue; /* Ignore Non-secure access of Group0 IRQ */
1028             }
1029 
1030             if (gic_test_pending(s, irq + i, mask)) {
1031                 res |= (1 << i);
1032             }
1033         }
1034     } else if (offset < 0x400) {
1035         /* Interrupt Set/Clear Active.  */
1036         if (offset < 0x380) {
1037             irq = (offset - 0x300) * 8;
1038         } else if (s->revision == 2) {
1039             irq = (offset - 0x380) * 8;
1040         } else {
1041             goto bad_reg;
1042         }
1043 
1044         if (irq >= s->num_irq)
1045             goto bad_reg;
1046         res = 0;
1047         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1048         for (i = 0; i < 8; i++) {
1049             if (s->security_extn && !attrs.secure &&
1050                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1051                 continue; /* Ignore Non-secure access of Group0 IRQ */
1052             }
1053 
1054             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1055                 res |= (1 << i);
1056             }
1057         }
1058     } else if (offset < 0x800) {
1059         /* Interrupt Priority.  */
1060         irq = (offset - 0x400);
1061         if (irq >= s->num_irq)
1062             goto bad_reg;
1063         res = gic_dist_get_priority(s, cpu, irq, attrs);
1064     } else if (offset < 0xc00) {
1065         /* Interrupt CPU Target.  */
1066         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1067             /* For uniprocessor GICs these RAZ/WI */
1068             res = 0;
1069         } else {
1070             irq = (offset - 0x800);
1071             if (irq >= s->num_irq) {
1072                 goto bad_reg;
1073             }
1074             if (irq < 29 && s->revision == REV_11MPCORE) {
1075                 res = 0;
1076             } else if (irq < GIC_INTERNAL) {
1077                 res = cm;
1078             } else {
1079                 res = GIC_DIST_TARGET(irq);
1080             }
1081         }
1082     } else if (offset < 0xf00) {
1083         /* Interrupt Configuration.  */
1084         irq = (offset - 0xc00) * 4;
1085         if (irq >= s->num_irq)
1086             goto bad_reg;
1087         res = 0;
1088         for (i = 0; i < 4; i++) {
1089             if (s->security_extn && !attrs.secure &&
1090                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1091                 continue; /* Ignore Non-secure access of Group0 IRQ */
1092             }
1093 
1094             if (GIC_DIST_TEST_MODEL(irq + i)) {
1095                 res |= (1 << (i * 2));
1096             }
1097             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1098                 res |= (2 << (i * 2));
1099             }
1100         }
1101     } else if (offset < 0xf10) {
1102         goto bad_reg;
1103     } else if (offset < 0xf30) {
1104         if (s->revision == REV_11MPCORE) {
1105             goto bad_reg;
1106         }
1107 
1108         if (offset < 0xf20) {
1109             /* GICD_CPENDSGIRn */
1110             irq = (offset - 0xf10);
1111         } else {
1112             irq = (offset - 0xf20);
1113             /* GICD_SPENDSGIRn */
1114         }
1115 
1116         if (s->security_extn && !attrs.secure &&
1117             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1118             res = 0; /* Ignore Non-secure access of Group0 IRQ */
1119         } else {
1120             res = s->sgi_pending[irq][cpu];
1121         }
1122     } else if (offset < 0xfd0) {
1123         goto bad_reg;
1124     } else if (offset < 0x1000) {
1125         if (offset & 3) {
1126             res = 0;
1127         } else {
1128             switch (s->revision) {
1129             case REV_11MPCORE:
1130                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1131                 break;
1132             case 1:
1133                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1134                 break;
1135             case 2:
1136                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1137                 break;
1138             default:
1139                 res = 0;
1140             }
1141         }
1142     } else {
1143         g_assert_not_reached();
1144     }
1145     return res;
1146 bad_reg:
1147     qemu_log_mask(LOG_GUEST_ERROR,
1148                   "gic_dist_readb: Bad offset %x\n", (int)offset);
1149     return 0;
1150 }
1151 
1152 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1153                                  unsigned size, MemTxAttrs attrs)
1154 {
1155     switch (size) {
1156     case 1:
1157         *data = gic_dist_readb(opaque, offset, attrs);
1158         break;
1159     case 2:
1160         *data = gic_dist_readb(opaque, offset, attrs);
1161         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1162         break;
1163     case 4:
1164         *data = gic_dist_readb(opaque, offset, attrs);
1165         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1166         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1167         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1168         break;
1169     default:
1170         return MEMTX_ERROR;
1171     }
1172 
1173     trace_gic_dist_read(offset, size, *data);
1174     return MEMTX_OK;
1175 }
1176 
1177 static void gic_dist_writeb(void *opaque, hwaddr offset,
1178                             uint32_t value, MemTxAttrs attrs)
1179 {
1180     GICState *s = (GICState *)opaque;
1181     int irq;
1182     int i;
1183     int cpu;
1184 
1185     cpu = gic_get_current_cpu(s);
1186     if (offset < 0x100) {
1187         if (offset == 0) {
1188             if (s->security_extn && !attrs.secure) {
1189                 /* NS version is just an alias of the S version's bit 1 */
1190                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1191             } else if (gic_has_groups(s)) {
1192                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1193             } else {
1194                 s->ctlr = value & GICD_CTLR_EN_GRP0;
1195             }
1196             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1197                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1198                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1199         } else if (offset < 4) {
1200             /* ignored.  */
1201         } else if (offset >= 0x80) {
1202             /* Interrupt Group Registers: RAZ/WI for NS access to secure
1203              * GIC, or for GICs without groups.
1204              */
1205             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1206                 /* Every byte offset holds 8 group status bits */
1207                 irq = (offset - 0x80) * 8;
1208                 if (irq >= s->num_irq) {
1209                     goto bad_reg;
1210                 }
1211                 for (i = 0; i < 8; i++) {
1212                     /* Group bits are banked for private interrupts */
1213                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1214                     if (value & (1 << i)) {
1215                         /* Group1 (Non-secure) */
1216                         GIC_DIST_SET_GROUP(irq + i, cm);
1217                     } else {
1218                         /* Group0 (Secure) */
1219                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
1220                     }
1221                 }
1222             }
1223         } else {
1224             goto bad_reg;
1225         }
1226     } else if (offset < 0x180) {
1227         /* Interrupt Set Enable.  */
1228         irq = (offset - 0x100) * 8;
1229         if (irq >= s->num_irq)
1230             goto bad_reg;
1231         if (irq < GIC_NR_SGIS) {
1232             value = 0xff;
1233         }
1234 
1235         for (i = 0; i < 8; i++) {
1236             if (value & (1 << i)) {
1237                 int mask =
1238                     (irq < GIC_INTERNAL) ? (1 << cpu)
1239                                          : GIC_DIST_TARGET(irq + i);
1240                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1241 
1242                 if (s->security_extn && !attrs.secure &&
1243                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1244                     continue; /* Ignore Non-secure access of Group0 IRQ */
1245                 }
1246 
1247                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1248                     DPRINTF("Enabled IRQ %d\n", irq + i);
1249                     trace_gic_enable_irq(irq + i);
1250                 }
1251                 GIC_DIST_SET_ENABLED(irq + i, cm);
1252                 /* If a raised level triggered IRQ enabled then mark
1253                    is as pending.  */
1254                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1255                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1256                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1257                     GIC_DIST_SET_PENDING(irq + i, mask);
1258                 }
1259             }
1260         }
1261     } else if (offset < 0x200) {
1262         /* Interrupt Clear Enable.  */
1263         irq = (offset - 0x180) * 8;
1264         if (irq >= s->num_irq)
1265             goto bad_reg;
1266         if (irq < GIC_NR_SGIS) {
1267             value = 0;
1268         }
1269 
1270         for (i = 0; i < 8; i++) {
1271             if (value & (1 << i)) {
1272                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1273 
1274                 if (s->security_extn && !attrs.secure &&
1275                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1276                     continue; /* Ignore Non-secure access of Group0 IRQ */
1277                 }
1278 
1279                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1280                     DPRINTF("Disabled IRQ %d\n", irq + i);
1281                     trace_gic_disable_irq(irq + i);
1282                 }
1283                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1284             }
1285         }
1286     } else if (offset < 0x280) {
1287         /* Interrupt Set Pending.  */
1288         irq = (offset - 0x200) * 8;
1289         if (irq >= s->num_irq)
1290             goto bad_reg;
1291         if (irq < GIC_NR_SGIS) {
1292             value = 0;
1293         }
1294 
1295         for (i = 0; i < 8; i++) {
1296             if (value & (1 << i)) {
1297                 if (s->security_extn && !attrs.secure &&
1298                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1299                     continue; /* Ignore Non-secure access of Group0 IRQ */
1300                 }
1301 
1302                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1303             }
1304         }
1305     } else if (offset < 0x300) {
1306         /* Interrupt Clear Pending.  */
1307         irq = (offset - 0x280) * 8;
1308         if (irq >= s->num_irq)
1309             goto bad_reg;
1310         if (irq < GIC_NR_SGIS) {
1311             value = 0;
1312         }
1313 
1314         for (i = 0; i < 8; i++) {
1315             if (s->security_extn && !attrs.secure &&
1316                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1317                 continue; /* Ignore Non-secure access of Group0 IRQ */
1318             }
1319 
1320             /* ??? This currently clears the pending bit for all CPUs, even
1321                for per-CPU interrupts.  It's unclear whether this is the
1322                corect behavior.  */
1323             if (value & (1 << i)) {
1324                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1325             }
1326         }
1327     } else if (offset < 0x380) {
1328         /* Interrupt Set Active.  */
1329         if (s->revision != 2) {
1330             goto bad_reg;
1331         }
1332 
1333         irq = (offset - 0x300) * 8;
1334         if (irq >= s->num_irq) {
1335             goto bad_reg;
1336         }
1337 
1338         /* This register is banked per-cpu for PPIs */
1339         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1340 
1341         for (i = 0; i < 8; i++) {
1342             if (s->security_extn && !attrs.secure &&
1343                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1344                 continue; /* Ignore Non-secure access of Group0 IRQ */
1345             }
1346 
1347             if (value & (1 << i)) {
1348                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1349             }
1350         }
1351     } else if (offset < 0x400) {
1352         /* Interrupt Clear Active.  */
1353         if (s->revision != 2) {
1354             goto bad_reg;
1355         }
1356 
1357         irq = (offset - 0x380) * 8;
1358         if (irq >= s->num_irq) {
1359             goto bad_reg;
1360         }
1361 
1362         /* This register is banked per-cpu for PPIs */
1363         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1364 
1365         for (i = 0; i < 8; i++) {
1366             if (s->security_extn && !attrs.secure &&
1367                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1368                 continue; /* Ignore Non-secure access of Group0 IRQ */
1369             }
1370 
1371             if (value & (1 << i)) {
1372                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1373             }
1374         }
1375     } else if (offset < 0x800) {
1376         /* Interrupt Priority.  */
1377         irq = (offset - 0x400);
1378         if (irq >= s->num_irq)
1379             goto bad_reg;
1380         gic_dist_set_priority(s, cpu, irq, value, attrs);
1381     } else if (offset < 0xc00) {
1382         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1383          * annoying exception of the 11MPCore's GIC.
1384          */
1385         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1386             irq = (offset - 0x800);
1387             if (irq >= s->num_irq) {
1388                 goto bad_reg;
1389             }
1390             if (irq < 29 && s->revision == REV_11MPCORE) {
1391                 value = 0;
1392             } else if (irq < GIC_INTERNAL) {
1393                 value = ALL_CPU_MASK;
1394             }
1395             s->irq_target[irq] = value & ALL_CPU_MASK;
1396         }
1397     } else if (offset < 0xf00) {
1398         /* Interrupt Configuration.  */
1399         irq = (offset - 0xc00) * 4;
1400         if (irq >= s->num_irq)
1401             goto bad_reg;
1402         if (irq < GIC_NR_SGIS)
1403             value |= 0xaa;
1404         for (i = 0; i < 4; i++) {
1405             if (s->security_extn && !attrs.secure &&
1406                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1407                 continue; /* Ignore Non-secure access of Group0 IRQ */
1408             }
1409 
1410             if (s->revision == REV_11MPCORE) {
1411                 if (value & (1 << (i * 2))) {
1412                     GIC_DIST_SET_MODEL(irq + i);
1413                 } else {
1414                     GIC_DIST_CLEAR_MODEL(irq + i);
1415                 }
1416             }
1417             if (value & (2 << (i * 2))) {
1418                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1419             } else {
1420                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1421             }
1422         }
1423     } else if (offset < 0xf10) {
1424         /* 0xf00 is only handled for 32-bit writes.  */
1425         goto bad_reg;
1426     } else if (offset < 0xf20) {
1427         /* GICD_CPENDSGIRn */
1428         if (s->revision == REV_11MPCORE) {
1429             goto bad_reg;
1430         }
1431         irq = (offset - 0xf10);
1432 
1433         if (!s->security_extn || attrs.secure ||
1434             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1435             s->sgi_pending[irq][cpu] &= ~value;
1436             if (s->sgi_pending[irq][cpu] == 0) {
1437                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1438             }
1439         }
1440     } else if (offset < 0xf30) {
1441         /* GICD_SPENDSGIRn */
1442         if (s->revision == REV_11MPCORE) {
1443             goto bad_reg;
1444         }
1445         irq = (offset - 0xf20);
1446 
1447         if (!s->security_extn || attrs.secure ||
1448             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1449             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1450             s->sgi_pending[irq][cpu] |= value;
1451         }
1452     } else {
1453         goto bad_reg;
1454     }
1455     gic_update(s);
1456     return;
1457 bad_reg:
1458     qemu_log_mask(LOG_GUEST_ERROR,
1459                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1460 }
1461 
1462 static void gic_dist_writew(void *opaque, hwaddr offset,
1463                             uint32_t value, MemTxAttrs attrs)
1464 {
1465     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1466     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1467 }
1468 
1469 static void gic_dist_writel(void *opaque, hwaddr offset,
1470                             uint32_t value, MemTxAttrs attrs)
1471 {
1472     GICState *s = (GICState *)opaque;
1473     if (offset == 0xf00) {
1474         int cpu;
1475         int irq;
1476         int mask;
1477         int target_cpu;
1478 
1479         cpu = gic_get_current_cpu(s);
1480         irq = value & 0xf;
1481         switch ((value >> 24) & 3) {
1482         case 0:
1483             mask = (value >> 16) & ALL_CPU_MASK;
1484             break;
1485         case 1:
1486             mask = ALL_CPU_MASK ^ (1 << cpu);
1487             break;
1488         case 2:
1489             mask = 1 << cpu;
1490             break;
1491         default:
1492             DPRINTF("Bad Soft Int target filter\n");
1493             mask = ALL_CPU_MASK;
1494             break;
1495         }
1496         GIC_DIST_SET_PENDING(irq, mask);
1497         target_cpu = ctz32(mask);
1498         while (target_cpu < GIC_NCPU) {
1499             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1500             mask &= ~(1 << target_cpu);
1501             target_cpu = ctz32(mask);
1502         }
1503         gic_update(s);
1504         return;
1505     }
1506     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1507     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1508 }
1509 
1510 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1511                                   unsigned size, MemTxAttrs attrs)
1512 {
1513     trace_gic_dist_write(offset, size, data);
1514 
1515     switch (size) {
1516     case 1:
1517         gic_dist_writeb(opaque, offset, data, attrs);
1518         return MEMTX_OK;
1519     case 2:
1520         gic_dist_writew(opaque, offset, data, attrs);
1521         return MEMTX_OK;
1522     case 4:
1523         gic_dist_writel(opaque, offset, data, attrs);
1524         return MEMTX_OK;
1525     default:
1526         return MEMTX_ERROR;
1527     }
1528 }
1529 
1530 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1531 {
1532     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1533      * second half of GICC_NSAPR.
1534      */
1535     switch (GIC_MIN_BPR) {
1536     case 0:
1537         if (regno < 2) {
1538             return s->nsapr[regno + 2][cpu];
1539         }
1540         break;
1541     case 1:
1542         if (regno == 0) {
1543             return s->nsapr[regno + 1][cpu];
1544         }
1545         break;
1546     case 2:
1547         if (regno == 0) {
1548             return extract32(s->nsapr[0][cpu], 16, 16);
1549         }
1550         break;
1551     case 3:
1552         if (regno == 0) {
1553             return extract32(s->nsapr[0][cpu], 8, 8);
1554         }
1555         break;
1556     default:
1557         g_assert_not_reached();
1558     }
1559     return 0;
1560 }
1561 
1562 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1563                                          uint32_t value)
1564 {
1565     /* Write the Nonsecure view of GICC_APR<regno>. */
1566     switch (GIC_MIN_BPR) {
1567     case 0:
1568         if (regno < 2) {
1569             s->nsapr[regno + 2][cpu] = value;
1570         }
1571         break;
1572     case 1:
1573         if (regno == 0) {
1574             s->nsapr[regno + 1][cpu] = value;
1575         }
1576         break;
1577     case 2:
1578         if (regno == 0) {
1579             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1580         }
1581         break;
1582     case 3:
1583         if (regno == 0) {
1584             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1585         }
1586         break;
1587     default:
1588         g_assert_not_reached();
1589     }
1590 }
1591 
1592 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1593                                 uint64_t *data, MemTxAttrs attrs)
1594 {
1595     switch (offset) {
1596     case 0x00: /* Control */
1597         *data = gic_get_cpu_control(s, cpu, attrs);
1598         break;
1599     case 0x04: /* Priority mask */
1600         *data = gic_get_priority_mask(s, cpu, attrs);
1601         break;
1602     case 0x08: /* Binary Point */
1603         if (gic_cpu_ns_access(s, cpu, attrs)) {
1604             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1605                 /* NS view of BPR when CBPR is 1 */
1606                 *data = MIN(s->bpr[cpu] + 1, 7);
1607             } else {
1608                 /* BPR is banked. Non-secure copy stored in ABPR. */
1609                 *data = s->abpr[cpu];
1610             }
1611         } else {
1612             *data = s->bpr[cpu];
1613         }
1614         break;
1615     case 0x0c: /* Acknowledge */
1616         *data = gic_acknowledge_irq(s, cpu, attrs);
1617         break;
1618     case 0x14: /* Running Priority */
1619         *data = gic_get_running_priority(s, cpu, attrs);
1620         break;
1621     case 0x18: /* Highest Pending Interrupt */
1622         *data = gic_get_current_pending_irq(s, cpu, attrs);
1623         break;
1624     case 0x1c: /* Aliased Binary Point */
1625         /* GIC v2, no security: ABPR
1626          * GIC v1, no security: not implemented (RAZ/WI)
1627          * With security extensions, secure access: ABPR (alias of NS BPR)
1628          * With security extensions, nonsecure access: RAZ/WI
1629          */
1630         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1631             *data = 0;
1632         } else {
1633             *data = s->abpr[cpu];
1634         }
1635         break;
1636     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1637     {
1638         int regno = (offset - 0xd0) / 4;
1639         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1640 
1641         if (regno >= nr_aprs || s->revision != 2) {
1642             *data = 0;
1643         } else if (gic_is_vcpu(cpu)) {
1644             *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1645         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1646             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1647             *data = gic_apr_ns_view(s, regno, cpu);
1648         } else {
1649             *data = s->apr[regno][cpu];
1650         }
1651         break;
1652     }
1653     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1654     {
1655         int regno = (offset - 0xe0) / 4;
1656 
1657         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1658             gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1659             *data = 0;
1660         } else {
1661             *data = s->nsapr[regno][cpu];
1662         }
1663         break;
1664     }
1665     case 0xfc:
1666         if (s->revision == REV_11MPCORE) {
1667             /* Reserved on 11MPCore */
1668             *data = 0;
1669         } else {
1670             /* GICv1 or v2; Arm implementation */
1671             *data = (s->revision << 16) | 0x43b;
1672         }
1673         break;
1674     default:
1675         qemu_log_mask(LOG_GUEST_ERROR,
1676                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1677         *data = 0;
1678         break;
1679     }
1680 
1681     trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1682                        gic_get_vcpu_real_id(cpu), offset, *data);
1683     return MEMTX_OK;
1684 }
1685 
1686 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1687                                  uint32_t value, MemTxAttrs attrs)
1688 {
1689     trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1690                         gic_get_vcpu_real_id(cpu), offset, value);
1691 
1692     switch (offset) {
1693     case 0x00: /* Control */
1694         gic_set_cpu_control(s, cpu, value, attrs);
1695         break;
1696     case 0x04: /* Priority mask */
1697         gic_set_priority_mask(s, cpu, value, attrs);
1698         break;
1699     case 0x08: /* Binary Point */
1700         if (gic_cpu_ns_access(s, cpu, attrs)) {
1701             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1702                 /* WI when CBPR is 1 */
1703                 return MEMTX_OK;
1704             } else {
1705                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1706             }
1707         } else {
1708             int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1709             s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1710         }
1711         break;
1712     case 0x10: /* End Of Interrupt */
1713         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1714         return MEMTX_OK;
1715     case 0x1c: /* Aliased Binary Point */
1716         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1717             /* unimplemented, or NS access: RAZ/WI */
1718             return MEMTX_OK;
1719         } else {
1720             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1721         }
1722         break;
1723     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1724     {
1725         int regno = (offset - 0xd0) / 4;
1726         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1727 
1728         if (regno >= nr_aprs || s->revision != 2) {
1729             return MEMTX_OK;
1730         }
1731         if (gic_is_vcpu(cpu)) {
1732             s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1733         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1734             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1735             gic_apr_write_ns_view(s, regno, cpu, value);
1736         } else {
1737             s->apr[regno][cpu] = value;
1738         }
1739         s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1740         break;
1741     }
1742     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1743     {
1744         int regno = (offset - 0xe0) / 4;
1745 
1746         if (regno >= GIC_NR_APRS || s->revision != 2) {
1747             return MEMTX_OK;
1748         }
1749         if (gic_is_vcpu(cpu)) {
1750             return MEMTX_OK;
1751         }
1752         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1753             return MEMTX_OK;
1754         }
1755         s->nsapr[regno][cpu] = value;
1756         s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1757         break;
1758     }
1759     case 0x1000:
1760         /* GICC_DIR */
1761         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1762         break;
1763     default:
1764         qemu_log_mask(LOG_GUEST_ERROR,
1765                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1766         return MEMTX_OK;
1767     }
1768 
1769     if (gic_is_vcpu(cpu)) {
1770         gic_update_virt(s);
1771     } else {
1772         gic_update(s);
1773     }
1774 
1775     return MEMTX_OK;
1776 }
1777 
1778 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1779 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1780                                     unsigned size, MemTxAttrs attrs)
1781 {
1782     GICState *s = (GICState *)opaque;
1783     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1784 }
1785 
1786 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1787                                      uint64_t value, unsigned size,
1788                                      MemTxAttrs attrs)
1789 {
1790     GICState *s = (GICState *)opaque;
1791     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1792 }
1793 
1794 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1795  * These just decode the opaque pointer into GICState* + cpu id.
1796  */
1797 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1798                                    unsigned size, MemTxAttrs attrs)
1799 {
1800     GICState **backref = (GICState **)opaque;
1801     GICState *s = *backref;
1802     int id = (backref - s->backref);
1803     return gic_cpu_read(s, id, addr, data, attrs);
1804 }
1805 
1806 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1807                                     uint64_t value, unsigned size,
1808                                     MemTxAttrs attrs)
1809 {
1810     GICState **backref = (GICState **)opaque;
1811     GICState *s = *backref;
1812     int id = (backref - s->backref);
1813     return gic_cpu_write(s, id, addr, value, attrs);
1814 }
1815 
1816 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1817                                     unsigned size, MemTxAttrs attrs)
1818 {
1819     GICState *s = (GICState *)opaque;
1820 
1821     return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1822 }
1823 
1824 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1825                                      uint64_t value, unsigned size,
1826                                      MemTxAttrs attrs)
1827 {
1828     GICState *s = (GICState *)opaque;
1829 
1830     return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1831 }
1832 
1833 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1834 {
1835     int lr_idx;
1836     uint32_t ret = 0;
1837 
1838     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1839         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1840         ret = deposit32(ret, lr_idx - lr_start, 1,
1841                         gic_lr_entry_is_eoi(*entry));
1842     }
1843 
1844     return ret;
1845 }
1846 
1847 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1848 {
1849     int lr_idx;
1850     uint32_t ret = 0;
1851 
1852     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1853         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1854         ret = deposit32(ret, lr_idx - lr_start, 1,
1855                         gic_lr_entry_is_free(*entry));
1856     }
1857 
1858     return ret;
1859 }
1860 
1861 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1862 {
1863     int vcpu = gic_get_current_vcpu(s);
1864     uint32_t ctlr;
1865     uint32_t abpr;
1866     uint32_t bpr;
1867     uint32_t prio_mask;
1868 
1869     ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1870     abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1871     bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1872     prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1873 
1874     gic_set_cpu_control(s, vcpu, ctlr, attrs);
1875     s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1876     s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1877     gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1878 }
1879 
1880 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1881                                 uint64_t *data, MemTxAttrs attrs)
1882 {
1883     GICState *s = ARM_GIC(opaque);
1884     int vcpu = cpu + GIC_NCPU;
1885 
1886     switch (addr) {
1887     case A_GICH_HCR: /* Hypervisor Control */
1888         *data = s->h_hcr[cpu];
1889         break;
1890 
1891     case A_GICH_VTR: /* VGIC Type */
1892         *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1893         *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1894                            GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1895         *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1896                            (7 - GIC_VIRT_MIN_BPR) - 1);
1897         break;
1898 
1899     case A_GICH_VMCR: /* Virtual Machine Control */
1900         *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1901                            extract32(s->cpu_ctlr[vcpu], 0, 10));
1902         *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1903         *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1904         *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1905                            extract32(s->priority_mask[vcpu], 3, 5));
1906         break;
1907 
1908     case A_GICH_MISR: /* Maintenance Interrupt Status */
1909         *data = s->h_misr[cpu];
1910         break;
1911 
1912     case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1913     case A_GICH_EISR1:
1914         *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1915         break;
1916 
1917     case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1918     case A_GICH_ELRSR1:
1919         *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1920         break;
1921 
1922     case A_GICH_APR: /* Active Priorities */
1923         *data = s->h_apr[cpu];
1924         break;
1925 
1926     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1927     {
1928         int lr_idx = (addr - A_GICH_LR0) / 4;
1929 
1930         if (lr_idx > s->num_lrs) {
1931             *data = 0;
1932         } else {
1933             *data = s->h_lr[lr_idx][cpu];
1934         }
1935         break;
1936     }
1937 
1938     default:
1939         qemu_log_mask(LOG_GUEST_ERROR,
1940                       "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1941         return MEMTX_OK;
1942     }
1943 
1944     trace_gic_hyp_read(addr, *data);
1945     return MEMTX_OK;
1946 }
1947 
1948 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1949                                  uint64_t value, MemTxAttrs attrs)
1950 {
1951     GICState *s = ARM_GIC(opaque);
1952     int vcpu = cpu + GIC_NCPU;
1953 
1954     trace_gic_hyp_write(addr, value);
1955 
1956     switch (addr) {
1957     case A_GICH_HCR: /* Hypervisor Control */
1958         s->h_hcr[cpu] = value & GICH_HCR_MASK;
1959         break;
1960 
1961     case A_GICH_VMCR: /* Virtual Machine Control */
1962         gic_vmcr_write(s, value, attrs);
1963         break;
1964 
1965     case A_GICH_APR: /* Active Priorities */
1966         s->h_apr[cpu] = value;
1967         s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1968         break;
1969 
1970     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1971     {
1972         int lr_idx = (addr - A_GICH_LR0) / 4;
1973 
1974         if (lr_idx > s->num_lrs) {
1975             return MEMTX_OK;
1976         }
1977 
1978         s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1979         trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1980         break;
1981     }
1982 
1983     default:
1984         qemu_log_mask(LOG_GUEST_ERROR,
1985                       "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1986         return MEMTX_OK;
1987     }
1988 
1989     gic_update_virt(s);
1990     return MEMTX_OK;
1991 }
1992 
1993 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1994                                     unsigned size, MemTxAttrs attrs)
1995 {
1996     GICState *s = (GICState *)opaque;
1997 
1998     return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1999 }
2000 
2001 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
2002                                      uint64_t value, unsigned size,
2003                                      MemTxAttrs attrs)
2004 {
2005     GICState *s = (GICState *)opaque;
2006 
2007     return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
2008 }
2009 
2010 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2011                                     unsigned size, MemTxAttrs attrs)
2012 {
2013     GICState **backref = (GICState **)opaque;
2014     GICState *s = *backref;
2015     int id = (backref - s->backref);
2016 
2017     return gic_hyp_read(s, id, addr, data, attrs);
2018 }
2019 
2020 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2021                                      uint64_t value, unsigned size,
2022                                      MemTxAttrs attrs)
2023 {
2024     GICState **backref = (GICState **)opaque;
2025     GICState *s = *backref;
2026     int id = (backref - s->backref);
2027 
2028     return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2029 
2030 }
2031 
2032 static const MemoryRegionOps gic_ops[2] = {
2033     {
2034         .read_with_attrs = gic_dist_read,
2035         .write_with_attrs = gic_dist_write,
2036         .endianness = DEVICE_NATIVE_ENDIAN,
2037     },
2038     {
2039         .read_with_attrs = gic_thiscpu_read,
2040         .write_with_attrs = gic_thiscpu_write,
2041         .endianness = DEVICE_NATIVE_ENDIAN,
2042     }
2043 };
2044 
2045 static const MemoryRegionOps gic_cpu_ops = {
2046     .read_with_attrs = gic_do_cpu_read,
2047     .write_with_attrs = gic_do_cpu_write,
2048     .endianness = DEVICE_NATIVE_ENDIAN,
2049 };
2050 
2051 static const MemoryRegionOps gic_virt_ops[2] = {
2052     {
2053         .read_with_attrs = gic_thiscpu_hyp_read,
2054         .write_with_attrs = gic_thiscpu_hyp_write,
2055         .endianness = DEVICE_NATIVE_ENDIAN,
2056     },
2057     {
2058         .read_with_attrs = gic_thisvcpu_read,
2059         .write_with_attrs = gic_thisvcpu_write,
2060         .endianness = DEVICE_NATIVE_ENDIAN,
2061     }
2062 };
2063 
2064 static const MemoryRegionOps gic_viface_ops = {
2065     .read_with_attrs = gic_do_hyp_read,
2066     .write_with_attrs = gic_do_hyp_write,
2067     .endianness = DEVICE_NATIVE_ENDIAN,
2068 };
2069 
2070 static void arm_gic_realize(DeviceState *dev, Error **errp)
2071 {
2072     /* Device instance realize function for the GIC sysbus device */
2073     int i;
2074     GICState *s = ARM_GIC(dev);
2075     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2076     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2077     Error *local_err = NULL;
2078 
2079     agc->parent_realize(dev, &local_err);
2080     if (local_err) {
2081         error_propagate(errp, local_err);
2082         return;
2083     }
2084 
2085     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2086         error_setg(errp, "KVM with user space irqchip only works when the "
2087                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
2088         return;
2089     }
2090 
2091     if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2092        (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2093         s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2094         error_setg(errp, "num-priority-bits cannot be greater than %d"
2095                    " or less than %d", GIC_MAX_PRIORITY_BITS,
2096                    s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2097                    GIC_MIN_PRIORITY_BITS);
2098         return;
2099     }
2100 
2101     /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2102      * enabled, virtualization extensions related interfaces (main virtual
2103      * interface (s->vifaceiomem[0]) and virtual CPU interface).
2104      */
2105     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2106 
2107     /* Extra core-specific regions for the CPU interfaces. This is
2108      * necessary for "franken-GIC" implementations, for example on
2109      * Exynos 4.
2110      * NB that the memory region size of 0x100 applies for the 11MPCore
2111      * and also cores following the GIC v1 spec (ie A9).
2112      * GIC v2 defines a larger memory region (0x1000) so this will need
2113      * to be extended when we implement A15.
2114      */
2115     for (i = 0; i < s->num_cpu; i++) {
2116         s->backref[i] = s;
2117         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2118                               &s->backref[i], "gic_cpu", 0x100);
2119         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2120     }
2121 
2122     /* Extra core-specific regions for virtual interfaces. This is required by
2123      * the GICv2 specification.
2124      */
2125     if (s->virt_extn) {
2126         for (i = 0; i < s->num_cpu; i++) {
2127             memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2128                                   &gic_viface_ops, &s->backref[i],
2129                                   "gic_viface", 0x200);
2130             sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2131         }
2132     }
2133 
2134 }
2135 
2136 static void arm_gic_class_init(ObjectClass *klass, void *data)
2137 {
2138     DeviceClass *dc = DEVICE_CLASS(klass);
2139     ARMGICClass *agc = ARM_GIC_CLASS(klass);
2140 
2141     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2142 }
2143 
2144 static const TypeInfo arm_gic_info = {
2145     .name = TYPE_ARM_GIC,
2146     .parent = TYPE_ARM_GIC_COMMON,
2147     .instance_size = sizeof(GICState),
2148     .class_init = arm_gic_class_init,
2149     .class_size = sizeof(ARMGICClass),
2150 };
2151 
2152 static void arm_gic_register_types(void)
2153 {
2154     type_register_static(&arm_gic_info);
2155 }
2156 
2157 type_init(arm_gic_register_types)
2158