xref: /openbmc/qemu/hw/intc/arm_gic.c (revision c5619bf9e8935aeb972c0bd935549e9ee0a739f2)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "hw/sysbus.h"
22 #include "gic_internal.h"
23 #include "qom/cpu.h"
24 
25 //#define DEBUG_GIC
26 
27 #ifdef DEBUG_GIC
28 #define DPRINTF(fmt, ...) \
29 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
30 #else
31 #define DPRINTF(fmt, ...) do {} while(0)
32 #endif
33 
34 static const uint8_t gic_id[] = {
35     0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
36 };
37 
38 #define NUM_CPU(s) ((s)->num_cpu)
39 
40 static inline int gic_get_current_cpu(GICState *s)
41 {
42     if (s->num_cpu > 1) {
43         return current_cpu->cpu_index;
44     }
45     return 0;
46 }
47 
48 /* Return true if this GIC config has interrupt groups, which is
49  * true if we're a GICv2, or a GICv1 with the security extensions.
50  */
51 static inline bool gic_has_groups(GICState *s)
52 {
53     return s->revision == 2 || s->security_extn;
54 }
55 
56 /* TODO: Many places that call this routine could be optimized.  */
57 /* Update interrupt status after enabled or pending bits have been changed.  */
58 void gic_update(GICState *s)
59 {
60     int best_irq;
61     int best_prio;
62     int irq;
63     int level;
64     int cpu;
65     int cm;
66 
67     for (cpu = 0; cpu < NUM_CPU(s); cpu++) {
68         cm = 1 << cpu;
69         s->current_pending[cpu] = 1023;
70         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
71             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
72             qemu_irq_lower(s->parent_irq[cpu]);
73             return;
74         }
75         best_prio = 0x100;
76         best_irq = 1023;
77         for (irq = 0; irq < s->num_irq; irq++) {
78             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
79                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
80                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
81                     best_prio = GIC_GET_PRIORITY(irq, cpu);
82                     best_irq = irq;
83                 }
84             }
85         }
86         level = 0;
87         if (best_prio < s->priority_mask[cpu]) {
88             s->current_pending[cpu] = best_irq;
89             if (best_prio < s->running_priority[cpu]) {
90                 DPRINTF("Raised pending IRQ %d (cpu %d)\n", best_irq, cpu);
91                 level = 1;
92             }
93         }
94         qemu_set_irq(s->parent_irq[cpu], level);
95     }
96 }
97 
98 void gic_set_pending_private(GICState *s, int cpu, int irq)
99 {
100     int cm = 1 << cpu;
101 
102     if (gic_test_pending(s, irq, cm)) {
103         return;
104     }
105 
106     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
107     GIC_SET_PENDING(irq, cm);
108     gic_update(s);
109 }
110 
111 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
112                                  int cm, int target)
113 {
114     if (level) {
115         GIC_SET_LEVEL(irq, cm);
116         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
117             DPRINTF("Set %d pending mask %x\n", irq, target);
118             GIC_SET_PENDING(irq, target);
119         }
120     } else {
121         GIC_CLEAR_LEVEL(irq, cm);
122     }
123 }
124 
125 static void gic_set_irq_generic(GICState *s, int irq, int level,
126                                 int cm, int target)
127 {
128     if (level) {
129         GIC_SET_LEVEL(irq, cm);
130         DPRINTF("Set %d pending mask %x\n", irq, target);
131         if (GIC_TEST_EDGE_TRIGGER(irq)) {
132             GIC_SET_PENDING(irq, target);
133         }
134     } else {
135         GIC_CLEAR_LEVEL(irq, cm);
136     }
137 }
138 
139 /* Process a change in an external IRQ input.  */
140 static void gic_set_irq(void *opaque, int irq, int level)
141 {
142     /* Meaning of the 'irq' parameter:
143      *  [0..N-1] : external interrupts
144      *  [N..N+31] : PPI (internal) interrupts for CPU 0
145      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
146      *  ...
147      */
148     GICState *s = (GICState *)opaque;
149     int cm, target;
150     if (irq < (s->num_irq - GIC_INTERNAL)) {
151         /* The first external input line is internal interrupt 32.  */
152         cm = ALL_CPU_MASK;
153         irq += GIC_INTERNAL;
154         target = GIC_TARGET(irq);
155     } else {
156         int cpu;
157         irq -= (s->num_irq - GIC_INTERNAL);
158         cpu = irq / GIC_INTERNAL;
159         irq %= GIC_INTERNAL;
160         cm = 1 << cpu;
161         target = cm;
162     }
163 
164     assert(irq >= GIC_NR_SGIS);
165 
166     if (level == GIC_TEST_LEVEL(irq, cm)) {
167         return;
168     }
169 
170     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
171         gic_set_irq_11mpcore(s, irq, level, cm, target);
172     } else {
173         gic_set_irq_generic(s, irq, level, cm, target);
174     }
175 
176     gic_update(s);
177 }
178 
179 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
180                                             MemTxAttrs attrs)
181 {
182     uint16_t pending_irq = s->current_pending[cpu];
183 
184     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
185         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
186         /* On a GIC without the security extensions, reading this register
187          * behaves in the same way as a secure access to a GIC with them.
188          */
189         bool secure = !s->security_extn || attrs.secure;
190 
191         if (group == 0 && !secure) {
192             /* Group0 interrupts hidden from Non-secure access */
193             return 1023;
194         }
195         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
196             /* Group1 interrupts only seen by Secure access if
197              * AckCtl bit set.
198              */
199             return 1022;
200         }
201     }
202     return pending_irq;
203 }
204 
205 static void gic_set_running_irq(GICState *s, int cpu, int irq)
206 {
207     s->running_irq[cpu] = irq;
208     if (irq == 1023) {
209         s->running_priority[cpu] = 0x100;
210     } else {
211         s->running_priority[cpu] = GIC_GET_PRIORITY(irq, cpu);
212     }
213     gic_update(s);
214 }
215 
216 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
217 {
218     int ret, irq, src;
219     int cm = 1 << cpu;
220 
221     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
222      * for the case where this GIC supports grouping and the pending interrupt
223      * is in the wrong group.
224      */
225     irq = gic_get_current_pending_irq(s, cpu, attrs);;
226 
227     if (irq >= GIC_MAXIRQ) {
228         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
229         return irq;
230     }
231 
232     if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
233         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
234         return 1023;
235     }
236     s->last_active[irq][cpu] = s->running_irq[cpu];
237 
238     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
239         /* Clear pending flags for both level and edge triggered interrupts.
240          * Level triggered IRQs will be reasserted once they become inactive.
241          */
242         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
243         ret = irq;
244     } else {
245         if (irq < GIC_NR_SGIS) {
246             /* Lookup the source CPU for the SGI and clear this in the
247              * sgi_pending map.  Return the src and clear the overall pending
248              * state on this CPU if the SGI is not pending from any CPUs.
249              */
250             assert(s->sgi_pending[irq][cpu] != 0);
251             src = ctz32(s->sgi_pending[irq][cpu]);
252             s->sgi_pending[irq][cpu] &= ~(1 << src);
253             if (s->sgi_pending[irq][cpu] == 0) {
254                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
255             }
256             ret = irq | ((src & 0x7) << 10);
257         } else {
258             /* Clear pending state for both level and edge triggered
259              * interrupts. (level triggered interrupts with an active line
260              * remain pending, see gic_test_pending)
261              */
262             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
263             ret = irq;
264         }
265     }
266 
267     gic_set_running_irq(s, cpu, irq);
268     DPRINTF("ACK %d\n", irq);
269     return ret;
270 }
271 
272 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
273                       MemTxAttrs attrs)
274 {
275     if (s->security_extn && !attrs.secure) {
276         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
277             return; /* Ignore Non-secure access of Group0 IRQ */
278         }
279         val = 0x80 | (val >> 1); /* Non-secure view */
280     }
281 
282     if (irq < GIC_INTERNAL) {
283         s->priority1[irq][cpu] = val;
284     } else {
285         s->priority2[(irq) - GIC_INTERNAL] = val;
286     }
287 }
288 
289 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
290                                  MemTxAttrs attrs)
291 {
292     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
293 
294     if (s->security_extn && !attrs.secure) {
295         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
296             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
297         }
298         prio = (prio << 1) & 0xff; /* Non-secure view */
299     }
300     return prio;
301 }
302 
303 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
304                                   MemTxAttrs attrs)
305 {
306     if (s->security_extn && !attrs.secure) {
307         if (s->priority_mask[cpu] & 0x80) {
308             /* Priority Mask in upper half */
309             pmask = 0x80 | (pmask >> 1);
310         } else {
311             /* Non-secure write ignored if priority mask is in lower half */
312             return;
313         }
314     }
315     s->priority_mask[cpu] = pmask;
316 }
317 
318 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
319 {
320     uint32_t pmask = s->priority_mask[cpu];
321 
322     if (s->security_extn && !attrs.secure) {
323         if (pmask & 0x80) {
324             /* Priority Mask in upper half, return Non-secure view */
325             pmask = (pmask << 1) & 0xff;
326         } else {
327             /* Priority Mask in lower half, RAZ */
328             pmask = 0;
329         }
330     }
331     return pmask;
332 }
333 
334 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
335 {
336     uint32_t ret = s->cpu_ctlr[cpu];
337 
338     if (s->security_extn && !attrs.secure) {
339         /* Construct the NS banked view of GICC_CTLR from the correct
340          * bits of the S banked view. We don't need to move the bypass
341          * control bits because we don't implement that (IMPDEF) part
342          * of the GIC architecture.
343          */
344         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
345     }
346     return ret;
347 }
348 
349 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
350                                 MemTxAttrs attrs)
351 {
352     uint32_t mask;
353 
354     if (s->security_extn && !attrs.secure) {
355         /* The NS view can only write certain bits in the register;
356          * the rest are unchanged
357          */
358         mask = GICC_CTLR_EN_GRP1;
359         if (s->revision == 2) {
360             mask |= GICC_CTLR_EOIMODE_NS;
361         }
362         s->cpu_ctlr[cpu] &= ~mask;
363         s->cpu_ctlr[cpu] |= (value << 1) & mask;
364     } else {
365         if (s->revision == 2) {
366             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
367         } else {
368             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
369         }
370         s->cpu_ctlr[cpu] = value & mask;
371     }
372     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
373             "Group1 Interrupts %sabled\n", cpu,
374             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
375             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
376 }
377 
378 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
379 {
380     if (s->security_extn && !attrs.secure) {
381         if (s->running_priority[cpu] & 0x80) {
382             /* Running priority in upper half of range: return the Non-secure
383              * view of the priority.
384              */
385             return s->running_priority[cpu] << 1;
386         } else {
387             /* Running priority in lower half of range: RAZ */
388             return 0;
389         }
390     } else {
391         return s->running_priority[cpu];
392     }
393 }
394 
395 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
396 {
397     int update = 0;
398     int cm = 1 << cpu;
399     DPRINTF("EOI %d\n", irq);
400     if (irq >= s->num_irq) {
401         /* This handles two cases:
402          * 1. If software writes the ID of a spurious interrupt [ie 1023]
403          * to the GICC_EOIR, the GIC ignores that write.
404          * 2. If software writes the number of a non-existent interrupt
405          * this must be a subcase of "value written does not match the last
406          * valid interrupt value read from the Interrupt Acknowledge
407          * register" and so this is UNPREDICTABLE. We choose to ignore it.
408          */
409         return;
410     }
411     if (s->running_irq[cpu] == 1023)
412         return; /* No active IRQ.  */
413 
414     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
415         /* Mark level triggered interrupts as pending if they are still
416            raised.  */
417         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
418             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
419             DPRINTF("Set %d pending mask %x\n", irq, cm);
420             GIC_SET_PENDING(irq, cm);
421             update = 1;
422         }
423     }
424 
425     if (s->security_extn && !attrs.secure && !GIC_TEST_GROUP(irq, cm)) {
426         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
427         return;
428     }
429 
430     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
431      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
432      * i.e. go ahead and complete the irq anyway.
433      */
434 
435     if (irq != s->running_irq[cpu]) {
436         /* Complete an IRQ that is not currently running.  */
437         int tmp = s->running_irq[cpu];
438         while (s->last_active[tmp][cpu] != 1023) {
439             if (s->last_active[tmp][cpu] == irq) {
440                 s->last_active[tmp][cpu] = s->last_active[irq][cpu];
441                 break;
442             }
443             tmp = s->last_active[tmp][cpu];
444         }
445         if (update) {
446             gic_update(s);
447         }
448     } else {
449         /* Complete the current running IRQ.  */
450         gic_set_running_irq(s, cpu, s->last_active[s->running_irq[cpu]][cpu]);
451     }
452 }
453 
454 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
455 {
456     GICState *s = (GICState *)opaque;
457     uint32_t res;
458     int irq;
459     int i;
460     int cpu;
461     int cm;
462     int mask;
463 
464     cpu = gic_get_current_cpu(s);
465     cm = 1 << cpu;
466     if (offset < 0x100) {
467         if (offset == 0) {      /* GICD_CTLR */
468             if (s->security_extn && !attrs.secure) {
469                 /* The NS bank of this register is just an alias of the
470                  * EnableGrp1 bit in the S bank version.
471                  */
472                 return extract32(s->ctlr, 1, 1);
473             } else {
474                 return s->ctlr;
475             }
476         }
477         if (offset == 4)
478             /* Interrupt Controller Type Register */
479             return ((s->num_irq / 32) - 1)
480                     | ((NUM_CPU(s) - 1) << 5)
481                     | (s->security_extn << 10);
482         if (offset < 0x08)
483             return 0;
484         if (offset >= 0x80) {
485             /* Interrupt Group Registers: these RAZ/WI if this is an NS
486              * access to a GIC with the security extensions, or if the GIC
487              * doesn't have groups at all.
488              */
489             res = 0;
490             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
491                 /* Every byte offset holds 8 group status bits */
492                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
493                 if (irq >= s->num_irq) {
494                     goto bad_reg;
495                 }
496                 for (i = 0; i < 8; i++) {
497                     if (GIC_TEST_GROUP(irq + i, cm)) {
498                         res |= (1 << i);
499                     }
500                 }
501             }
502             return res;
503         }
504         goto bad_reg;
505     } else if (offset < 0x200) {
506         /* Interrupt Set/Clear Enable.  */
507         if (offset < 0x180)
508             irq = (offset - 0x100) * 8;
509         else
510             irq = (offset - 0x180) * 8;
511         irq += GIC_BASE_IRQ;
512         if (irq >= s->num_irq)
513             goto bad_reg;
514         res = 0;
515         for (i = 0; i < 8; i++) {
516             if (GIC_TEST_ENABLED(irq + i, cm)) {
517                 res |= (1 << i);
518             }
519         }
520     } else if (offset < 0x300) {
521         /* Interrupt Set/Clear Pending.  */
522         if (offset < 0x280)
523             irq = (offset - 0x200) * 8;
524         else
525             irq = (offset - 0x280) * 8;
526         irq += GIC_BASE_IRQ;
527         if (irq >= s->num_irq)
528             goto bad_reg;
529         res = 0;
530         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
531         for (i = 0; i < 8; i++) {
532             if (gic_test_pending(s, irq + i, mask)) {
533                 res |= (1 << i);
534             }
535         }
536     } else if (offset < 0x400) {
537         /* Interrupt Active.  */
538         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
539         if (irq >= s->num_irq)
540             goto bad_reg;
541         res = 0;
542         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
543         for (i = 0; i < 8; i++) {
544             if (GIC_TEST_ACTIVE(irq + i, mask)) {
545                 res |= (1 << i);
546             }
547         }
548     } else if (offset < 0x800) {
549         /* Interrupt Priority.  */
550         irq = (offset - 0x400) + GIC_BASE_IRQ;
551         if (irq >= s->num_irq)
552             goto bad_reg;
553         res = gic_get_priority(s, cpu, irq, attrs);
554     } else if (offset < 0xc00) {
555         /* Interrupt CPU Target.  */
556         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
557             /* For uniprocessor GICs these RAZ/WI */
558             res = 0;
559         } else {
560             irq = (offset - 0x800) + GIC_BASE_IRQ;
561             if (irq >= s->num_irq) {
562                 goto bad_reg;
563             }
564             if (irq >= 29 && irq <= 31) {
565                 res = cm;
566             } else {
567                 res = GIC_TARGET(irq);
568             }
569         }
570     } else if (offset < 0xf00) {
571         /* Interrupt Configuration.  */
572         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
573         if (irq >= s->num_irq)
574             goto bad_reg;
575         res = 0;
576         for (i = 0; i < 4; i++) {
577             if (GIC_TEST_MODEL(irq + i))
578                 res |= (1 << (i * 2));
579             if (GIC_TEST_EDGE_TRIGGER(irq + i))
580                 res |= (2 << (i * 2));
581         }
582     } else if (offset < 0xf10) {
583         goto bad_reg;
584     } else if (offset < 0xf30) {
585         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
586             goto bad_reg;
587         }
588 
589         if (offset < 0xf20) {
590             /* GICD_CPENDSGIRn */
591             irq = (offset - 0xf10);
592         } else {
593             irq = (offset - 0xf20);
594             /* GICD_SPENDSGIRn */
595         }
596 
597         res = s->sgi_pending[irq][cpu];
598     } else if (offset < 0xfe0) {
599         goto bad_reg;
600     } else /* offset >= 0xfe0 */ {
601         if (offset & 3) {
602             res = 0;
603         } else {
604             res = gic_id[(offset - 0xfe0) >> 2];
605         }
606     }
607     return res;
608 bad_reg:
609     qemu_log_mask(LOG_GUEST_ERROR,
610                   "gic_dist_readb: Bad offset %x\n", (int)offset);
611     return 0;
612 }
613 
614 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
615                                  unsigned size, MemTxAttrs attrs)
616 {
617     switch (size) {
618     case 1:
619         *data = gic_dist_readb(opaque, offset, attrs);
620         return MEMTX_OK;
621     case 2:
622         *data = gic_dist_readb(opaque, offset, attrs);
623         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
624         return MEMTX_OK;
625     case 4:
626         *data = gic_dist_readb(opaque, offset, attrs);
627         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
628         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
629         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
630         return MEMTX_OK;
631     default:
632         return MEMTX_ERROR;
633     }
634 }
635 
636 static void gic_dist_writeb(void *opaque, hwaddr offset,
637                             uint32_t value, MemTxAttrs attrs)
638 {
639     GICState *s = (GICState *)opaque;
640     int irq;
641     int i;
642     int cpu;
643 
644     cpu = gic_get_current_cpu(s);
645     if (offset < 0x100) {
646         if (offset == 0) {
647             if (s->security_extn && !attrs.secure) {
648                 /* NS version is just an alias of the S version's bit 1 */
649                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
650             } else if (gic_has_groups(s)) {
651                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
652             } else {
653                 s->ctlr = value & GICD_CTLR_EN_GRP0;
654             }
655             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
656                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
657                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
658         } else if (offset < 4) {
659             /* ignored.  */
660         } else if (offset >= 0x80) {
661             /* Interrupt Group Registers: RAZ/WI for NS access to secure
662              * GIC, or for GICs without groups.
663              */
664             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
665                 /* Every byte offset holds 8 group status bits */
666                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
667                 if (irq >= s->num_irq) {
668                     goto bad_reg;
669                 }
670                 for (i = 0; i < 8; i++) {
671                     /* Group bits are banked for private interrupts */
672                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
673                     if (value & (1 << i)) {
674                         /* Group1 (Non-secure) */
675                         GIC_SET_GROUP(irq + i, cm);
676                     } else {
677                         /* Group0 (Secure) */
678                         GIC_CLEAR_GROUP(irq + i, cm);
679                     }
680                 }
681             }
682         } else {
683             goto bad_reg;
684         }
685     } else if (offset < 0x180) {
686         /* Interrupt Set Enable.  */
687         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
688         if (irq >= s->num_irq)
689             goto bad_reg;
690         if (irq < GIC_NR_SGIS) {
691             value = 0xff;
692         }
693 
694         for (i = 0; i < 8; i++) {
695             if (value & (1 << i)) {
696                 int mask =
697                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
698                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
699 
700                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
701                     DPRINTF("Enabled IRQ %d\n", irq + i);
702                 }
703                 GIC_SET_ENABLED(irq + i, cm);
704                 /* If a raised level triggered IRQ enabled then mark
705                    is as pending.  */
706                 if (GIC_TEST_LEVEL(irq + i, mask)
707                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
708                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
709                     GIC_SET_PENDING(irq + i, mask);
710                 }
711             }
712         }
713     } else if (offset < 0x200) {
714         /* Interrupt Clear Enable.  */
715         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
716         if (irq >= s->num_irq)
717             goto bad_reg;
718         if (irq < GIC_NR_SGIS) {
719             value = 0;
720         }
721 
722         for (i = 0; i < 8; i++) {
723             if (value & (1 << i)) {
724                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
725 
726                 if (GIC_TEST_ENABLED(irq + i, cm)) {
727                     DPRINTF("Disabled IRQ %d\n", irq + i);
728                 }
729                 GIC_CLEAR_ENABLED(irq + i, cm);
730             }
731         }
732     } else if (offset < 0x280) {
733         /* Interrupt Set Pending.  */
734         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
735         if (irq >= s->num_irq)
736             goto bad_reg;
737         if (irq < GIC_NR_SGIS) {
738             value = 0;
739         }
740 
741         for (i = 0; i < 8; i++) {
742             if (value & (1 << i)) {
743                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
744             }
745         }
746     } else if (offset < 0x300) {
747         /* Interrupt Clear Pending.  */
748         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
749         if (irq >= s->num_irq)
750             goto bad_reg;
751         if (irq < GIC_NR_SGIS) {
752             value = 0;
753         }
754 
755         for (i = 0; i < 8; i++) {
756             /* ??? This currently clears the pending bit for all CPUs, even
757                for per-CPU interrupts.  It's unclear whether this is the
758                corect behavior.  */
759             if (value & (1 << i)) {
760                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
761             }
762         }
763     } else if (offset < 0x400) {
764         /* Interrupt Active.  */
765         goto bad_reg;
766     } else if (offset < 0x800) {
767         /* Interrupt Priority.  */
768         irq = (offset - 0x400) + GIC_BASE_IRQ;
769         if (irq >= s->num_irq)
770             goto bad_reg;
771         gic_set_priority(s, cpu, irq, value, attrs);
772     } else if (offset < 0xc00) {
773         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
774          * annoying exception of the 11MPCore's GIC.
775          */
776         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
777             irq = (offset - 0x800) + GIC_BASE_IRQ;
778             if (irq >= s->num_irq) {
779                 goto bad_reg;
780             }
781             if (irq < 29) {
782                 value = 0;
783             } else if (irq < GIC_INTERNAL) {
784                 value = ALL_CPU_MASK;
785             }
786             s->irq_target[irq] = value & ALL_CPU_MASK;
787         }
788     } else if (offset < 0xf00) {
789         /* Interrupt Configuration.  */
790         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
791         if (irq >= s->num_irq)
792             goto bad_reg;
793         if (irq < GIC_NR_SGIS)
794             value |= 0xaa;
795         for (i = 0; i < 4; i++) {
796             if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
797                 if (value & (1 << (i * 2))) {
798                     GIC_SET_MODEL(irq + i);
799                 } else {
800                     GIC_CLEAR_MODEL(irq + i);
801                 }
802             }
803             if (value & (2 << (i * 2))) {
804                 GIC_SET_EDGE_TRIGGER(irq + i);
805             } else {
806                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
807             }
808         }
809     } else if (offset < 0xf10) {
810         /* 0xf00 is only handled for 32-bit writes.  */
811         goto bad_reg;
812     } else if (offset < 0xf20) {
813         /* GICD_CPENDSGIRn */
814         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
815             goto bad_reg;
816         }
817         irq = (offset - 0xf10);
818 
819         s->sgi_pending[irq][cpu] &= ~value;
820         if (s->sgi_pending[irq][cpu] == 0) {
821             GIC_CLEAR_PENDING(irq, 1 << cpu);
822         }
823     } else if (offset < 0xf30) {
824         /* GICD_SPENDSGIRn */
825         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
826             goto bad_reg;
827         }
828         irq = (offset - 0xf20);
829 
830         GIC_SET_PENDING(irq, 1 << cpu);
831         s->sgi_pending[irq][cpu] |= value;
832     } else {
833         goto bad_reg;
834     }
835     gic_update(s);
836     return;
837 bad_reg:
838     qemu_log_mask(LOG_GUEST_ERROR,
839                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
840 }
841 
842 static void gic_dist_writew(void *opaque, hwaddr offset,
843                             uint32_t value, MemTxAttrs attrs)
844 {
845     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
846     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
847 }
848 
849 static void gic_dist_writel(void *opaque, hwaddr offset,
850                             uint32_t value, MemTxAttrs attrs)
851 {
852     GICState *s = (GICState *)opaque;
853     if (offset == 0xf00) {
854         int cpu;
855         int irq;
856         int mask;
857         int target_cpu;
858 
859         cpu = gic_get_current_cpu(s);
860         irq = value & 0x3ff;
861         switch ((value >> 24) & 3) {
862         case 0:
863             mask = (value >> 16) & ALL_CPU_MASK;
864             break;
865         case 1:
866             mask = ALL_CPU_MASK ^ (1 << cpu);
867             break;
868         case 2:
869             mask = 1 << cpu;
870             break;
871         default:
872             DPRINTF("Bad Soft Int target filter\n");
873             mask = ALL_CPU_MASK;
874             break;
875         }
876         GIC_SET_PENDING(irq, mask);
877         target_cpu = ctz32(mask);
878         while (target_cpu < GIC_NCPU) {
879             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
880             mask &= ~(1 << target_cpu);
881             target_cpu = ctz32(mask);
882         }
883         gic_update(s);
884         return;
885     }
886     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
887     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
888 }
889 
890 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
891                                   unsigned size, MemTxAttrs attrs)
892 {
893     switch (size) {
894     case 1:
895         gic_dist_writeb(opaque, offset, data, attrs);
896         return MEMTX_OK;
897     case 2:
898         gic_dist_writew(opaque, offset, data, attrs);
899         return MEMTX_OK;
900     case 4:
901         gic_dist_writel(opaque, offset, data, attrs);
902         return MEMTX_OK;
903     default:
904         return MEMTX_ERROR;
905     }
906 }
907 
908 static const MemoryRegionOps gic_dist_ops = {
909     .read_with_attrs = gic_dist_read,
910     .write_with_attrs = gic_dist_write,
911     .endianness = DEVICE_NATIVE_ENDIAN,
912 };
913 
914 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
915                                 uint64_t *data, MemTxAttrs attrs)
916 {
917     switch (offset) {
918     case 0x00: /* Control */
919         *data = gic_get_cpu_control(s, cpu, attrs);
920         break;
921     case 0x04: /* Priority mask */
922         *data = gic_get_priority_mask(s, cpu, attrs);
923         break;
924     case 0x08: /* Binary Point */
925         if (s->security_extn && !attrs.secure) {
926             /* BPR is banked. Non-secure copy stored in ABPR. */
927             *data = s->abpr[cpu];
928         } else {
929             *data = s->bpr[cpu];
930         }
931         break;
932     case 0x0c: /* Acknowledge */
933         *data = gic_acknowledge_irq(s, cpu, attrs);
934         break;
935     case 0x14: /* Running Priority */
936         *data = gic_get_running_priority(s, cpu, attrs);
937         break;
938     case 0x18: /* Highest Pending Interrupt */
939         *data = gic_get_current_pending_irq(s, cpu, attrs);
940         break;
941     case 0x1c: /* Aliased Binary Point */
942         /* GIC v2, no security: ABPR
943          * GIC v1, no security: not implemented (RAZ/WI)
944          * With security extensions, secure access: ABPR (alias of NS BPR)
945          * With security extensions, nonsecure access: RAZ/WI
946          */
947         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
948             *data = 0;
949         } else {
950             *data = s->abpr[cpu];
951         }
952         break;
953     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
954         *data = s->apr[(offset - 0xd0) / 4][cpu];
955         break;
956     default:
957         qemu_log_mask(LOG_GUEST_ERROR,
958                       "gic_cpu_read: Bad offset %x\n", (int)offset);
959         return MEMTX_ERROR;
960     }
961     return MEMTX_OK;
962 }
963 
964 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
965                                  uint32_t value, MemTxAttrs attrs)
966 {
967     switch (offset) {
968     case 0x00: /* Control */
969         gic_set_cpu_control(s, cpu, value, attrs);
970         break;
971     case 0x04: /* Priority mask */
972         gic_set_priority_mask(s, cpu, value, attrs);
973         break;
974     case 0x08: /* Binary Point */
975         if (s->security_extn && !attrs.secure) {
976             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
977         } else {
978             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
979         }
980         break;
981     case 0x10: /* End Of Interrupt */
982         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
983         return MEMTX_OK;
984     case 0x1c: /* Aliased Binary Point */
985         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
986             /* unimplemented, or NS access: RAZ/WI */
987             return MEMTX_OK;
988         } else {
989             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
990         }
991         break;
992     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
993         qemu_log_mask(LOG_UNIMP, "Writing APR not implemented\n");
994         break;
995     default:
996         qemu_log_mask(LOG_GUEST_ERROR,
997                       "gic_cpu_write: Bad offset %x\n", (int)offset);
998         return MEMTX_ERROR;
999     }
1000     gic_update(s);
1001     return MEMTX_OK;
1002 }
1003 
1004 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1005 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1006                                     unsigned size, MemTxAttrs attrs)
1007 {
1008     GICState *s = (GICState *)opaque;
1009     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1010 }
1011 
1012 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1013                                      uint64_t value, unsigned size,
1014                                      MemTxAttrs attrs)
1015 {
1016     GICState *s = (GICState *)opaque;
1017     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1018 }
1019 
1020 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1021  * These just decode the opaque pointer into GICState* + cpu id.
1022  */
1023 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1024                                    unsigned size, MemTxAttrs attrs)
1025 {
1026     GICState **backref = (GICState **)opaque;
1027     GICState *s = *backref;
1028     int id = (backref - s->backref);
1029     return gic_cpu_read(s, id, addr, data, attrs);
1030 }
1031 
1032 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1033                                     uint64_t value, unsigned size,
1034                                     MemTxAttrs attrs)
1035 {
1036     GICState **backref = (GICState **)opaque;
1037     GICState *s = *backref;
1038     int id = (backref - s->backref);
1039     return gic_cpu_write(s, id, addr, value, attrs);
1040 }
1041 
1042 static const MemoryRegionOps gic_thiscpu_ops = {
1043     .read_with_attrs = gic_thiscpu_read,
1044     .write_with_attrs = gic_thiscpu_write,
1045     .endianness = DEVICE_NATIVE_ENDIAN,
1046 };
1047 
1048 static const MemoryRegionOps gic_cpu_ops = {
1049     .read_with_attrs = gic_do_cpu_read,
1050     .write_with_attrs = gic_do_cpu_write,
1051     .endianness = DEVICE_NATIVE_ENDIAN,
1052 };
1053 
1054 void gic_init_irqs_and_distributor(GICState *s)
1055 {
1056     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
1057     int i;
1058 
1059     i = s->num_irq - GIC_INTERNAL;
1060     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
1061      * GPIO array layout is thus:
1062      *  [0..N-1] SPIs
1063      *  [N..N+31] PPIs for CPU 0
1064      *  [N+32..N+63] PPIs for CPU 1
1065      *   ...
1066      */
1067     if (s->revision != REV_NVIC) {
1068         i += (GIC_INTERNAL * s->num_cpu);
1069     }
1070     qdev_init_gpio_in(DEVICE(s), gic_set_irq, i);
1071     for (i = 0; i < NUM_CPU(s); i++) {
1072         sysbus_init_irq(sbd, &s->parent_irq[i]);
1073     }
1074     for (i = 0; i < NUM_CPU(s); i++) {
1075         sysbus_init_irq(sbd, &s->parent_fiq[i]);
1076     }
1077     memory_region_init_io(&s->iomem, OBJECT(s), &gic_dist_ops, s,
1078                           "gic_dist", 0x1000);
1079 }
1080 
1081 static void arm_gic_realize(DeviceState *dev, Error **errp)
1082 {
1083     /* Device instance realize function for the GIC sysbus device */
1084     int i;
1085     GICState *s = ARM_GIC(dev);
1086     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1087     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1088     Error *local_err = NULL;
1089 
1090     agc->parent_realize(dev, &local_err);
1091     if (local_err) {
1092         error_propagate(errp, local_err);
1093         return;
1094     }
1095 
1096     gic_init_irqs_and_distributor(s);
1097 
1098     /* Memory regions for the CPU interfaces (NVIC doesn't have these):
1099      * a region for "CPU interface for this core", then a region for
1100      * "CPU interface for core 0", "for core 1", ...
1101      * NB that the memory region size of 0x100 applies for the 11MPCore
1102      * and also cores following the GIC v1 spec (ie A9).
1103      * GIC v2 defines a larger memory region (0x1000) so this will need
1104      * to be extended when we implement A15.
1105      */
1106     memory_region_init_io(&s->cpuiomem[0], OBJECT(s), &gic_thiscpu_ops, s,
1107                           "gic_cpu", 0x100);
1108     for (i = 0; i < NUM_CPU(s); i++) {
1109         s->backref[i] = s;
1110         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1111                               &s->backref[i], "gic_cpu", 0x100);
1112     }
1113     /* Distributor */
1114     sysbus_init_mmio(sbd, &s->iomem);
1115     /* cpu interfaces (one for "current cpu" plus one per cpu) */
1116     for (i = 0; i <= NUM_CPU(s); i++) {
1117         sysbus_init_mmio(sbd, &s->cpuiomem[i]);
1118     }
1119 }
1120 
1121 static void arm_gic_class_init(ObjectClass *klass, void *data)
1122 {
1123     DeviceClass *dc = DEVICE_CLASS(klass);
1124     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1125 
1126     agc->parent_realize = dc->realize;
1127     dc->realize = arm_gic_realize;
1128 }
1129 
1130 static const TypeInfo arm_gic_info = {
1131     .name = TYPE_ARM_GIC,
1132     .parent = TYPE_ARM_GIC_COMMON,
1133     .instance_size = sizeof(GICState),
1134     .class_init = arm_gic_class_init,
1135     .class_size = sizeof(ARMGICClass),
1136 };
1137 
1138 static void arm_gic_register_types(void)
1139 {
1140     type_register_static(&arm_gic_info);
1141 }
1142 
1143 type_init(arm_gic_register_types)
1144