xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 90ce6e26)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qom/cpu.h"
25 
26 //#define DEBUG_GIC
27 
28 #ifdef DEBUG_GIC
29 #define DPRINTF(fmt, ...) \
30 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
31 #else
32 #define DPRINTF(fmt, ...) do {} while(0)
33 #endif
34 
35 static const uint8_t gic_id_11mpcore[] = {
36     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
37 };
38 
39 static const uint8_t gic_id_gicv1[] = {
40     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
41 };
42 
43 static const uint8_t gic_id_gicv2[] = {
44     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
45 };
46 
47 static inline int gic_get_current_cpu(GICState *s)
48 {
49     if (s->num_cpu > 1) {
50         return current_cpu->cpu_index;
51     }
52     return 0;
53 }
54 
55 /* Return true if this GIC config has interrupt groups, which is
56  * true if we're a GICv2, or a GICv1 with the security extensions.
57  */
58 static inline bool gic_has_groups(GICState *s)
59 {
60     return s->revision == 2 || s->security_extn;
61 }
62 
63 /* TODO: Many places that call this routine could be optimized.  */
64 /* Update interrupt status after enabled or pending bits have been changed.  */
65 void gic_update(GICState *s)
66 {
67     int best_irq;
68     int best_prio;
69     int irq;
70     int irq_level, fiq_level;
71     int cpu;
72     int cm;
73 
74     for (cpu = 0; cpu < s->num_cpu; cpu++) {
75         cm = 1 << cpu;
76         s->current_pending[cpu] = 1023;
77         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
78             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
79             qemu_irq_lower(s->parent_irq[cpu]);
80             qemu_irq_lower(s->parent_fiq[cpu]);
81             continue;
82         }
83         best_prio = 0x100;
84         best_irq = 1023;
85         for (irq = 0; irq < s->num_irq; irq++) {
86             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
87                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
88                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
89                     best_prio = GIC_GET_PRIORITY(irq, cpu);
90                     best_irq = irq;
91                 }
92             }
93         }
94 
95         irq_level = fiq_level = 0;
96 
97         if (best_prio < s->priority_mask[cpu]) {
98             s->current_pending[cpu] = best_irq;
99             if (best_prio < s->running_priority[cpu]) {
100                 int group = GIC_TEST_GROUP(best_irq, cm);
101 
102                 if (extract32(s->ctlr, group, 1) &&
103                     extract32(s->cpu_ctlr[cpu], group, 1)) {
104                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
105                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
106                                 best_irq, cpu);
107                         fiq_level = 1;
108                     } else {
109                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
110                                 best_irq, cpu);
111                         irq_level = 1;
112                     }
113                 }
114             }
115         }
116 
117         qemu_set_irq(s->parent_irq[cpu], irq_level);
118         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
119     }
120 }
121 
122 void gic_set_pending_private(GICState *s, int cpu, int irq)
123 {
124     int cm = 1 << cpu;
125 
126     if (gic_test_pending(s, irq, cm)) {
127         return;
128     }
129 
130     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
131     GIC_SET_PENDING(irq, cm);
132     gic_update(s);
133 }
134 
135 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
136                                  int cm, int target)
137 {
138     if (level) {
139         GIC_SET_LEVEL(irq, cm);
140         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
141             DPRINTF("Set %d pending mask %x\n", irq, target);
142             GIC_SET_PENDING(irq, target);
143         }
144     } else {
145         GIC_CLEAR_LEVEL(irq, cm);
146     }
147 }
148 
149 static void gic_set_irq_generic(GICState *s, int irq, int level,
150                                 int cm, int target)
151 {
152     if (level) {
153         GIC_SET_LEVEL(irq, cm);
154         DPRINTF("Set %d pending mask %x\n", irq, target);
155         if (GIC_TEST_EDGE_TRIGGER(irq)) {
156             GIC_SET_PENDING(irq, target);
157         }
158     } else {
159         GIC_CLEAR_LEVEL(irq, cm);
160     }
161 }
162 
163 /* Process a change in an external IRQ input.  */
164 static void gic_set_irq(void *opaque, int irq, int level)
165 {
166     /* Meaning of the 'irq' parameter:
167      *  [0..N-1] : external interrupts
168      *  [N..N+31] : PPI (internal) interrupts for CPU 0
169      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
170      *  ...
171      */
172     GICState *s = (GICState *)opaque;
173     int cm, target;
174     if (irq < (s->num_irq - GIC_INTERNAL)) {
175         /* The first external input line is internal interrupt 32.  */
176         cm = ALL_CPU_MASK;
177         irq += GIC_INTERNAL;
178         target = GIC_TARGET(irq);
179     } else {
180         int cpu;
181         irq -= (s->num_irq - GIC_INTERNAL);
182         cpu = irq / GIC_INTERNAL;
183         irq %= GIC_INTERNAL;
184         cm = 1 << cpu;
185         target = cm;
186     }
187 
188     assert(irq >= GIC_NR_SGIS);
189 
190     if (level == GIC_TEST_LEVEL(irq, cm)) {
191         return;
192     }
193 
194     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
195         gic_set_irq_11mpcore(s, irq, level, cm, target);
196     } else {
197         gic_set_irq_generic(s, irq, level, cm, target);
198     }
199 
200     gic_update(s);
201 }
202 
203 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
204                                             MemTxAttrs attrs)
205 {
206     uint16_t pending_irq = s->current_pending[cpu];
207 
208     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
209         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
210         /* On a GIC without the security extensions, reading this register
211          * behaves in the same way as a secure access to a GIC with them.
212          */
213         bool secure = !s->security_extn || attrs.secure;
214 
215         if (group == 0 && !secure) {
216             /* Group0 interrupts hidden from Non-secure access */
217             return 1023;
218         }
219         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
220             /* Group1 interrupts only seen by Secure access if
221              * AckCtl bit set.
222              */
223             return 1022;
224         }
225     }
226     return pending_irq;
227 }
228 
229 static int gic_get_group_priority(GICState *s, int cpu, int irq)
230 {
231     /* Return the group priority of the specified interrupt
232      * (which is the top bits of its priority, with the number
233      * of bits masked determined by the applicable binary point register).
234      */
235     int bpr;
236     uint32_t mask;
237 
238     if (gic_has_groups(s) &&
239         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
240         GIC_TEST_GROUP(irq, (1 << cpu))) {
241         bpr = s->abpr[cpu];
242     } else {
243         bpr = s->bpr[cpu];
244     }
245 
246     /* a BPR of 0 means the group priority bits are [7:1];
247      * a BPR of 1 means they are [7:2], and so on down to
248      * a BPR of 7 meaning no group priority bits at all.
249      */
250     mask = ~0U << ((bpr & 7) + 1);
251 
252     return GIC_GET_PRIORITY(irq, cpu) & mask;
253 }
254 
255 static void gic_activate_irq(GICState *s, int cpu, int irq)
256 {
257     /* Set the appropriate Active Priority Register bit for this IRQ,
258      * and update the running priority.
259      */
260     int prio = gic_get_group_priority(s, cpu, irq);
261     int preemption_level = prio >> (GIC_MIN_BPR + 1);
262     int regno = preemption_level / 32;
263     int bitno = preemption_level % 32;
264 
265     if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
266         s->nsapr[regno][cpu] |= (1 << bitno);
267     } else {
268         s->apr[regno][cpu] |= (1 << bitno);
269     }
270 
271     s->running_priority[cpu] = prio;
272     GIC_SET_ACTIVE(irq, 1 << cpu);
273 }
274 
275 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
276 {
277     /* Recalculate the current running priority for this CPU based
278      * on the set bits in the Active Priority Registers.
279      */
280     int i;
281     for (i = 0; i < GIC_NR_APRS; i++) {
282         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
283         if (!apr) {
284             continue;
285         }
286         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
287     }
288     return 0x100;
289 }
290 
291 static void gic_drop_prio(GICState *s, int cpu, int group)
292 {
293     /* Drop the priority of the currently active interrupt in the
294      * specified group.
295      *
296      * Note that we can guarantee (because of the requirement to nest
297      * GICC_IAR reads [which activate an interrupt and raise priority]
298      * with GICC_EOIR writes [which drop the priority for the interrupt])
299      * that the interrupt we're being called for is the highest priority
300      * active interrupt, meaning that it has the lowest set bit in the
301      * APR registers.
302      *
303      * If the guest does not honour the ordering constraints then the
304      * behaviour of the GIC is UNPREDICTABLE, which for us means that
305      * the values of the APR registers might become incorrect and the
306      * running priority will be wrong, so interrupts that should preempt
307      * might not do so, and interrupts that should not preempt might do so.
308      */
309     int i;
310 
311     for (i = 0; i < GIC_NR_APRS; i++) {
312         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
313         if (!*papr) {
314             continue;
315         }
316         /* Clear lowest set bit */
317         *papr &= *papr - 1;
318         break;
319     }
320 
321     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
322 }
323 
324 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
325 {
326     int ret, irq, src;
327     int cm = 1 << cpu;
328 
329     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
330      * for the case where this GIC supports grouping and the pending interrupt
331      * is in the wrong group.
332      */
333     irq = gic_get_current_pending_irq(s, cpu, attrs);
334 
335     if (irq >= GIC_MAXIRQ) {
336         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
337         return irq;
338     }
339 
340     if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
341         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
342         return 1023;
343     }
344 
345     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
346         /* Clear pending flags for both level and edge triggered interrupts.
347          * Level triggered IRQs will be reasserted once they become inactive.
348          */
349         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
350         ret = irq;
351     } else {
352         if (irq < GIC_NR_SGIS) {
353             /* Lookup the source CPU for the SGI and clear this in the
354              * sgi_pending map.  Return the src and clear the overall pending
355              * state on this CPU if the SGI is not pending from any CPUs.
356              */
357             assert(s->sgi_pending[irq][cpu] != 0);
358             src = ctz32(s->sgi_pending[irq][cpu]);
359             s->sgi_pending[irq][cpu] &= ~(1 << src);
360             if (s->sgi_pending[irq][cpu] == 0) {
361                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
362             }
363             ret = irq | ((src & 0x7) << 10);
364         } else {
365             /* Clear pending state for both level and edge triggered
366              * interrupts. (level triggered interrupts with an active line
367              * remain pending, see gic_test_pending)
368              */
369             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
370             ret = irq;
371         }
372     }
373 
374     gic_activate_irq(s, cpu, irq);
375     gic_update(s);
376     DPRINTF("ACK %d\n", irq);
377     return ret;
378 }
379 
380 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
381                       MemTxAttrs attrs)
382 {
383     if (s->security_extn && !attrs.secure) {
384         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
385             return; /* Ignore Non-secure access of Group0 IRQ */
386         }
387         val = 0x80 | (val >> 1); /* Non-secure view */
388     }
389 
390     if (irq < GIC_INTERNAL) {
391         s->priority1[irq][cpu] = val;
392     } else {
393         s->priority2[(irq) - GIC_INTERNAL] = val;
394     }
395 }
396 
397 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
398                                  MemTxAttrs attrs)
399 {
400     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
401 
402     if (s->security_extn && !attrs.secure) {
403         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
404             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
405         }
406         prio = (prio << 1) & 0xff; /* Non-secure view */
407     }
408     return prio;
409 }
410 
411 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
412                                   MemTxAttrs attrs)
413 {
414     if (s->security_extn && !attrs.secure) {
415         if (s->priority_mask[cpu] & 0x80) {
416             /* Priority Mask in upper half */
417             pmask = 0x80 | (pmask >> 1);
418         } else {
419             /* Non-secure write ignored if priority mask is in lower half */
420             return;
421         }
422     }
423     s->priority_mask[cpu] = pmask;
424 }
425 
426 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
427 {
428     uint32_t pmask = s->priority_mask[cpu];
429 
430     if (s->security_extn && !attrs.secure) {
431         if (pmask & 0x80) {
432             /* Priority Mask in upper half, return Non-secure view */
433             pmask = (pmask << 1) & 0xff;
434         } else {
435             /* Priority Mask in lower half, RAZ */
436             pmask = 0;
437         }
438     }
439     return pmask;
440 }
441 
442 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
443 {
444     uint32_t ret = s->cpu_ctlr[cpu];
445 
446     if (s->security_extn && !attrs.secure) {
447         /* Construct the NS banked view of GICC_CTLR from the correct
448          * bits of the S banked view. We don't need to move the bypass
449          * control bits because we don't implement that (IMPDEF) part
450          * of the GIC architecture.
451          */
452         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
453     }
454     return ret;
455 }
456 
457 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
458                                 MemTxAttrs attrs)
459 {
460     uint32_t mask;
461 
462     if (s->security_extn && !attrs.secure) {
463         /* The NS view can only write certain bits in the register;
464          * the rest are unchanged
465          */
466         mask = GICC_CTLR_EN_GRP1;
467         if (s->revision == 2) {
468             mask |= GICC_CTLR_EOIMODE_NS;
469         }
470         s->cpu_ctlr[cpu] &= ~mask;
471         s->cpu_ctlr[cpu] |= (value << 1) & mask;
472     } else {
473         if (s->revision == 2) {
474             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
475         } else {
476             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
477         }
478         s->cpu_ctlr[cpu] = value & mask;
479     }
480     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
481             "Group1 Interrupts %sabled\n", cpu,
482             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
483             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
484 }
485 
486 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
487 {
488     if (s->security_extn && !attrs.secure) {
489         if (s->running_priority[cpu] & 0x80) {
490             /* Running priority in upper half of range: return the Non-secure
491              * view of the priority.
492              */
493             return s->running_priority[cpu] << 1;
494         } else {
495             /* Running priority in lower half of range: RAZ */
496             return 0;
497         }
498     } else {
499         return s->running_priority[cpu];
500     }
501 }
502 
503 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
504 {
505     int cm = 1 << cpu;
506     int group;
507 
508     DPRINTF("EOI %d\n", irq);
509     if (irq >= s->num_irq) {
510         /* This handles two cases:
511          * 1. If software writes the ID of a spurious interrupt [ie 1023]
512          * to the GICC_EOIR, the GIC ignores that write.
513          * 2. If software writes the number of a non-existent interrupt
514          * this must be a subcase of "value written does not match the last
515          * valid interrupt value read from the Interrupt Acknowledge
516          * register" and so this is UNPREDICTABLE. We choose to ignore it.
517          */
518         return;
519     }
520     if (s->running_priority[cpu] == 0x100) {
521         return; /* No active IRQ.  */
522     }
523 
524     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
525         /* Mark level triggered interrupts as pending if they are still
526            raised.  */
527         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
528             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
529             DPRINTF("Set %d pending mask %x\n", irq, cm);
530             GIC_SET_PENDING(irq, cm);
531         }
532     }
533 
534     group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
535 
536     if (s->security_extn && !attrs.secure && !group) {
537         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
538         return;
539     }
540 
541     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
542      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
543      * i.e. go ahead and complete the irq anyway.
544      */
545 
546     gic_drop_prio(s, cpu, group);
547     GIC_CLEAR_ACTIVE(irq, cm);
548     gic_update(s);
549 }
550 
551 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
552 {
553     GICState *s = (GICState *)opaque;
554     uint32_t res;
555     int irq;
556     int i;
557     int cpu;
558     int cm;
559     int mask;
560 
561     cpu = gic_get_current_cpu(s);
562     cm = 1 << cpu;
563     if (offset < 0x100) {
564         if (offset == 0) {      /* GICD_CTLR */
565             if (s->security_extn && !attrs.secure) {
566                 /* The NS bank of this register is just an alias of the
567                  * EnableGrp1 bit in the S bank version.
568                  */
569                 return extract32(s->ctlr, 1, 1);
570             } else {
571                 return s->ctlr;
572             }
573         }
574         if (offset == 4)
575             /* Interrupt Controller Type Register */
576             return ((s->num_irq / 32) - 1)
577                     | ((s->num_cpu - 1) << 5)
578                     | (s->security_extn << 10);
579         if (offset < 0x08)
580             return 0;
581         if (offset >= 0x80) {
582             /* Interrupt Group Registers: these RAZ/WI if this is an NS
583              * access to a GIC with the security extensions, or if the GIC
584              * doesn't have groups at all.
585              */
586             res = 0;
587             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
588                 /* Every byte offset holds 8 group status bits */
589                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
590                 if (irq >= s->num_irq) {
591                     goto bad_reg;
592                 }
593                 for (i = 0; i < 8; i++) {
594                     if (GIC_TEST_GROUP(irq + i, cm)) {
595                         res |= (1 << i);
596                     }
597                 }
598             }
599             return res;
600         }
601         goto bad_reg;
602     } else if (offset < 0x200) {
603         /* Interrupt Set/Clear Enable.  */
604         if (offset < 0x180)
605             irq = (offset - 0x100) * 8;
606         else
607             irq = (offset - 0x180) * 8;
608         irq += GIC_BASE_IRQ;
609         if (irq >= s->num_irq)
610             goto bad_reg;
611         res = 0;
612         for (i = 0; i < 8; i++) {
613             if (GIC_TEST_ENABLED(irq + i, cm)) {
614                 res |= (1 << i);
615             }
616         }
617     } else if (offset < 0x300) {
618         /* Interrupt Set/Clear Pending.  */
619         if (offset < 0x280)
620             irq = (offset - 0x200) * 8;
621         else
622             irq = (offset - 0x280) * 8;
623         irq += GIC_BASE_IRQ;
624         if (irq >= s->num_irq)
625             goto bad_reg;
626         res = 0;
627         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
628         for (i = 0; i < 8; i++) {
629             if (gic_test_pending(s, irq + i, mask)) {
630                 res |= (1 << i);
631             }
632         }
633     } else if (offset < 0x400) {
634         /* Interrupt Active.  */
635         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
636         if (irq >= s->num_irq)
637             goto bad_reg;
638         res = 0;
639         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
640         for (i = 0; i < 8; i++) {
641             if (GIC_TEST_ACTIVE(irq + i, mask)) {
642                 res |= (1 << i);
643             }
644         }
645     } else if (offset < 0x800) {
646         /* Interrupt Priority.  */
647         irq = (offset - 0x400) + GIC_BASE_IRQ;
648         if (irq >= s->num_irq)
649             goto bad_reg;
650         res = gic_get_priority(s, cpu, irq, attrs);
651     } else if (offset < 0xc00) {
652         /* Interrupt CPU Target.  */
653         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
654             /* For uniprocessor GICs these RAZ/WI */
655             res = 0;
656         } else {
657             irq = (offset - 0x800) + GIC_BASE_IRQ;
658             if (irq >= s->num_irq) {
659                 goto bad_reg;
660             }
661             if (irq >= 29 && irq <= 31) {
662                 res = cm;
663             } else {
664                 res = GIC_TARGET(irq);
665             }
666         }
667     } else if (offset < 0xf00) {
668         /* Interrupt Configuration.  */
669         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
670         if (irq >= s->num_irq)
671             goto bad_reg;
672         res = 0;
673         for (i = 0; i < 4; i++) {
674             if (GIC_TEST_MODEL(irq + i))
675                 res |= (1 << (i * 2));
676             if (GIC_TEST_EDGE_TRIGGER(irq + i))
677                 res |= (2 << (i * 2));
678         }
679     } else if (offset < 0xf10) {
680         goto bad_reg;
681     } else if (offset < 0xf30) {
682         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
683             goto bad_reg;
684         }
685 
686         if (offset < 0xf20) {
687             /* GICD_CPENDSGIRn */
688             irq = (offset - 0xf10);
689         } else {
690             irq = (offset - 0xf20);
691             /* GICD_SPENDSGIRn */
692         }
693 
694         res = s->sgi_pending[irq][cpu];
695     } else if (offset < 0xfd0) {
696         goto bad_reg;
697     } else if (offset < 0x1000) {
698         if (offset & 3) {
699             res = 0;
700         } else {
701             switch (s->revision) {
702             case REV_11MPCORE:
703                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
704                 break;
705             case 1:
706                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
707                 break;
708             case 2:
709                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
710                 break;
711             case REV_NVIC:
712                 /* Shouldn't be able to get here */
713                 abort();
714             default:
715                 res = 0;
716             }
717         }
718     } else {
719         g_assert_not_reached();
720     }
721     return res;
722 bad_reg:
723     qemu_log_mask(LOG_GUEST_ERROR,
724                   "gic_dist_readb: Bad offset %x\n", (int)offset);
725     return 0;
726 }
727 
728 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
729                                  unsigned size, MemTxAttrs attrs)
730 {
731     switch (size) {
732     case 1:
733         *data = gic_dist_readb(opaque, offset, attrs);
734         return MEMTX_OK;
735     case 2:
736         *data = gic_dist_readb(opaque, offset, attrs);
737         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
738         return MEMTX_OK;
739     case 4:
740         *data = gic_dist_readb(opaque, offset, attrs);
741         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
742         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
743         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
744         return MEMTX_OK;
745     default:
746         return MEMTX_ERROR;
747     }
748 }
749 
750 static void gic_dist_writeb(void *opaque, hwaddr offset,
751                             uint32_t value, MemTxAttrs attrs)
752 {
753     GICState *s = (GICState *)opaque;
754     int irq;
755     int i;
756     int cpu;
757 
758     cpu = gic_get_current_cpu(s);
759     if (offset < 0x100) {
760         if (offset == 0) {
761             if (s->security_extn && !attrs.secure) {
762                 /* NS version is just an alias of the S version's bit 1 */
763                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
764             } else if (gic_has_groups(s)) {
765                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
766             } else {
767                 s->ctlr = value & GICD_CTLR_EN_GRP0;
768             }
769             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
770                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
771                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
772         } else if (offset < 4) {
773             /* ignored.  */
774         } else if (offset >= 0x80) {
775             /* Interrupt Group Registers: RAZ/WI for NS access to secure
776              * GIC, or for GICs without groups.
777              */
778             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
779                 /* Every byte offset holds 8 group status bits */
780                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
781                 if (irq >= s->num_irq) {
782                     goto bad_reg;
783                 }
784                 for (i = 0; i < 8; i++) {
785                     /* Group bits are banked for private interrupts */
786                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
787                     if (value & (1 << i)) {
788                         /* Group1 (Non-secure) */
789                         GIC_SET_GROUP(irq + i, cm);
790                     } else {
791                         /* Group0 (Secure) */
792                         GIC_CLEAR_GROUP(irq + i, cm);
793                     }
794                 }
795             }
796         } else {
797             goto bad_reg;
798         }
799     } else if (offset < 0x180) {
800         /* Interrupt Set Enable.  */
801         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
802         if (irq >= s->num_irq)
803             goto bad_reg;
804         if (irq < GIC_NR_SGIS) {
805             value = 0xff;
806         }
807 
808         for (i = 0; i < 8; i++) {
809             if (value & (1 << i)) {
810                 int mask =
811                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
812                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
813 
814                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
815                     DPRINTF("Enabled IRQ %d\n", irq + i);
816                 }
817                 GIC_SET_ENABLED(irq + i, cm);
818                 /* If a raised level triggered IRQ enabled then mark
819                    is as pending.  */
820                 if (GIC_TEST_LEVEL(irq + i, mask)
821                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
822                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
823                     GIC_SET_PENDING(irq + i, mask);
824                 }
825             }
826         }
827     } else if (offset < 0x200) {
828         /* Interrupt Clear Enable.  */
829         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
830         if (irq >= s->num_irq)
831             goto bad_reg;
832         if (irq < GIC_NR_SGIS) {
833             value = 0;
834         }
835 
836         for (i = 0; i < 8; i++) {
837             if (value & (1 << i)) {
838                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
839 
840                 if (GIC_TEST_ENABLED(irq + i, cm)) {
841                     DPRINTF("Disabled IRQ %d\n", irq + i);
842                 }
843                 GIC_CLEAR_ENABLED(irq + i, cm);
844             }
845         }
846     } else if (offset < 0x280) {
847         /* Interrupt Set Pending.  */
848         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
849         if (irq >= s->num_irq)
850             goto bad_reg;
851         if (irq < GIC_NR_SGIS) {
852             value = 0;
853         }
854 
855         for (i = 0; i < 8; i++) {
856             if (value & (1 << i)) {
857                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
858             }
859         }
860     } else if (offset < 0x300) {
861         /* Interrupt Clear Pending.  */
862         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
863         if (irq >= s->num_irq)
864             goto bad_reg;
865         if (irq < GIC_NR_SGIS) {
866             value = 0;
867         }
868 
869         for (i = 0; i < 8; i++) {
870             /* ??? This currently clears the pending bit for all CPUs, even
871                for per-CPU interrupts.  It's unclear whether this is the
872                corect behavior.  */
873             if (value & (1 << i)) {
874                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
875             }
876         }
877     } else if (offset < 0x400) {
878         /* Interrupt Active.  */
879         goto bad_reg;
880     } else if (offset < 0x800) {
881         /* Interrupt Priority.  */
882         irq = (offset - 0x400) + GIC_BASE_IRQ;
883         if (irq >= s->num_irq)
884             goto bad_reg;
885         gic_set_priority(s, cpu, irq, value, attrs);
886     } else if (offset < 0xc00) {
887         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
888          * annoying exception of the 11MPCore's GIC.
889          */
890         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
891             irq = (offset - 0x800) + GIC_BASE_IRQ;
892             if (irq >= s->num_irq) {
893                 goto bad_reg;
894             }
895             if (irq < 29) {
896                 value = 0;
897             } else if (irq < GIC_INTERNAL) {
898                 value = ALL_CPU_MASK;
899             }
900             s->irq_target[irq] = value & ALL_CPU_MASK;
901         }
902     } else if (offset < 0xf00) {
903         /* Interrupt Configuration.  */
904         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
905         if (irq >= s->num_irq)
906             goto bad_reg;
907         if (irq < GIC_NR_SGIS)
908             value |= 0xaa;
909         for (i = 0; i < 4; i++) {
910             if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
911                 if (value & (1 << (i * 2))) {
912                     GIC_SET_MODEL(irq + i);
913                 } else {
914                     GIC_CLEAR_MODEL(irq + i);
915                 }
916             }
917             if (value & (2 << (i * 2))) {
918                 GIC_SET_EDGE_TRIGGER(irq + i);
919             } else {
920                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
921             }
922         }
923     } else if (offset < 0xf10) {
924         /* 0xf00 is only handled for 32-bit writes.  */
925         goto bad_reg;
926     } else if (offset < 0xf20) {
927         /* GICD_CPENDSGIRn */
928         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
929             goto bad_reg;
930         }
931         irq = (offset - 0xf10);
932 
933         s->sgi_pending[irq][cpu] &= ~value;
934         if (s->sgi_pending[irq][cpu] == 0) {
935             GIC_CLEAR_PENDING(irq, 1 << cpu);
936         }
937     } else if (offset < 0xf30) {
938         /* GICD_SPENDSGIRn */
939         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
940             goto bad_reg;
941         }
942         irq = (offset - 0xf20);
943 
944         GIC_SET_PENDING(irq, 1 << cpu);
945         s->sgi_pending[irq][cpu] |= value;
946     } else {
947         goto bad_reg;
948     }
949     gic_update(s);
950     return;
951 bad_reg:
952     qemu_log_mask(LOG_GUEST_ERROR,
953                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
954 }
955 
956 static void gic_dist_writew(void *opaque, hwaddr offset,
957                             uint32_t value, MemTxAttrs attrs)
958 {
959     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
960     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
961 }
962 
963 static void gic_dist_writel(void *opaque, hwaddr offset,
964                             uint32_t value, MemTxAttrs attrs)
965 {
966     GICState *s = (GICState *)opaque;
967     if (offset == 0xf00) {
968         int cpu;
969         int irq;
970         int mask;
971         int target_cpu;
972 
973         cpu = gic_get_current_cpu(s);
974         irq = value & 0x3ff;
975         switch ((value >> 24) & 3) {
976         case 0:
977             mask = (value >> 16) & ALL_CPU_MASK;
978             break;
979         case 1:
980             mask = ALL_CPU_MASK ^ (1 << cpu);
981             break;
982         case 2:
983             mask = 1 << cpu;
984             break;
985         default:
986             DPRINTF("Bad Soft Int target filter\n");
987             mask = ALL_CPU_MASK;
988             break;
989         }
990         GIC_SET_PENDING(irq, mask);
991         target_cpu = ctz32(mask);
992         while (target_cpu < GIC_NCPU) {
993             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
994             mask &= ~(1 << target_cpu);
995             target_cpu = ctz32(mask);
996         }
997         gic_update(s);
998         return;
999     }
1000     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1001     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1002 }
1003 
1004 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1005                                   unsigned size, MemTxAttrs attrs)
1006 {
1007     switch (size) {
1008     case 1:
1009         gic_dist_writeb(opaque, offset, data, attrs);
1010         return MEMTX_OK;
1011     case 2:
1012         gic_dist_writew(opaque, offset, data, attrs);
1013         return MEMTX_OK;
1014     case 4:
1015         gic_dist_writel(opaque, offset, data, attrs);
1016         return MEMTX_OK;
1017     default:
1018         return MEMTX_ERROR;
1019     }
1020 }
1021 
1022 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1023 {
1024     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1025      * second half of GICC_NSAPR.
1026      */
1027     switch (GIC_MIN_BPR) {
1028     case 0:
1029         if (regno < 2) {
1030             return s->nsapr[regno + 2][cpu];
1031         }
1032         break;
1033     case 1:
1034         if (regno == 0) {
1035             return s->nsapr[regno + 1][cpu];
1036         }
1037         break;
1038     case 2:
1039         if (regno == 0) {
1040             return extract32(s->nsapr[0][cpu], 16, 16);
1041         }
1042         break;
1043     case 3:
1044         if (regno == 0) {
1045             return extract32(s->nsapr[0][cpu], 8, 8);
1046         }
1047         break;
1048     default:
1049         g_assert_not_reached();
1050     }
1051     return 0;
1052 }
1053 
1054 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1055                                          uint32_t value)
1056 {
1057     /* Write the Nonsecure view of GICC_APR<regno>. */
1058     switch (GIC_MIN_BPR) {
1059     case 0:
1060         if (regno < 2) {
1061             s->nsapr[regno + 2][cpu] = value;
1062         }
1063         break;
1064     case 1:
1065         if (regno == 0) {
1066             s->nsapr[regno + 1][cpu] = value;
1067         }
1068         break;
1069     case 2:
1070         if (regno == 0) {
1071             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1072         }
1073         break;
1074     case 3:
1075         if (regno == 0) {
1076             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1077         }
1078         break;
1079     default:
1080         g_assert_not_reached();
1081     }
1082 }
1083 
1084 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1085                                 uint64_t *data, MemTxAttrs attrs)
1086 {
1087     switch (offset) {
1088     case 0x00: /* Control */
1089         *data = gic_get_cpu_control(s, cpu, attrs);
1090         break;
1091     case 0x04: /* Priority mask */
1092         *data = gic_get_priority_mask(s, cpu, attrs);
1093         break;
1094     case 0x08: /* Binary Point */
1095         if (s->security_extn && !attrs.secure) {
1096             /* BPR is banked. Non-secure copy stored in ABPR. */
1097             *data = s->abpr[cpu];
1098         } else {
1099             *data = s->bpr[cpu];
1100         }
1101         break;
1102     case 0x0c: /* Acknowledge */
1103         *data = gic_acknowledge_irq(s, cpu, attrs);
1104         break;
1105     case 0x14: /* Running Priority */
1106         *data = gic_get_running_priority(s, cpu, attrs);
1107         break;
1108     case 0x18: /* Highest Pending Interrupt */
1109         *data = gic_get_current_pending_irq(s, cpu, attrs);
1110         break;
1111     case 0x1c: /* Aliased Binary Point */
1112         /* GIC v2, no security: ABPR
1113          * GIC v1, no security: not implemented (RAZ/WI)
1114          * With security extensions, secure access: ABPR (alias of NS BPR)
1115          * With security extensions, nonsecure access: RAZ/WI
1116          */
1117         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1118             *data = 0;
1119         } else {
1120             *data = s->abpr[cpu];
1121         }
1122         break;
1123     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1124     {
1125         int regno = (offset - 0xd0) / 4;
1126 
1127         if (regno >= GIC_NR_APRS || s->revision != 2) {
1128             *data = 0;
1129         } else if (s->security_extn && !attrs.secure) {
1130             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1131             *data = gic_apr_ns_view(s, regno, cpu);
1132         } else {
1133             *data = s->apr[regno][cpu];
1134         }
1135         break;
1136     }
1137     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1138     {
1139         int regno = (offset - 0xe0) / 4;
1140 
1141         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1142             (s->security_extn && !attrs.secure)) {
1143             *data = 0;
1144         } else {
1145             *data = s->nsapr[regno][cpu];
1146         }
1147         break;
1148     }
1149     default:
1150         qemu_log_mask(LOG_GUEST_ERROR,
1151                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1152         return MEMTX_ERROR;
1153     }
1154     return MEMTX_OK;
1155 }
1156 
1157 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1158                                  uint32_t value, MemTxAttrs attrs)
1159 {
1160     switch (offset) {
1161     case 0x00: /* Control */
1162         gic_set_cpu_control(s, cpu, value, attrs);
1163         break;
1164     case 0x04: /* Priority mask */
1165         gic_set_priority_mask(s, cpu, value, attrs);
1166         break;
1167     case 0x08: /* Binary Point */
1168         if (s->security_extn && !attrs.secure) {
1169             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1170         } else {
1171             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1172         }
1173         break;
1174     case 0x10: /* End Of Interrupt */
1175         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1176         return MEMTX_OK;
1177     case 0x1c: /* Aliased Binary Point */
1178         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1179             /* unimplemented, or NS access: RAZ/WI */
1180             return MEMTX_OK;
1181         } else {
1182             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1183         }
1184         break;
1185     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1186     {
1187         int regno = (offset - 0xd0) / 4;
1188 
1189         if (regno >= GIC_NR_APRS || s->revision != 2) {
1190             return MEMTX_OK;
1191         }
1192         if (s->security_extn && !attrs.secure) {
1193             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1194             gic_apr_write_ns_view(s, regno, cpu, value);
1195         } else {
1196             s->apr[regno][cpu] = value;
1197         }
1198         break;
1199     }
1200     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1201     {
1202         int regno = (offset - 0xe0) / 4;
1203 
1204         if (regno >= GIC_NR_APRS || s->revision != 2) {
1205             return MEMTX_OK;
1206         }
1207         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1208             return MEMTX_OK;
1209         }
1210         s->nsapr[regno][cpu] = value;
1211         break;
1212     }
1213     default:
1214         qemu_log_mask(LOG_GUEST_ERROR,
1215                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1216         return MEMTX_ERROR;
1217     }
1218     gic_update(s);
1219     return MEMTX_OK;
1220 }
1221 
1222 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1223 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1224                                     unsigned size, MemTxAttrs attrs)
1225 {
1226     GICState *s = (GICState *)opaque;
1227     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1228 }
1229 
1230 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1231                                      uint64_t value, unsigned size,
1232                                      MemTxAttrs attrs)
1233 {
1234     GICState *s = (GICState *)opaque;
1235     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1236 }
1237 
1238 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1239  * These just decode the opaque pointer into GICState* + cpu id.
1240  */
1241 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1242                                    unsigned size, MemTxAttrs attrs)
1243 {
1244     GICState **backref = (GICState **)opaque;
1245     GICState *s = *backref;
1246     int id = (backref - s->backref);
1247     return gic_cpu_read(s, id, addr, data, attrs);
1248 }
1249 
1250 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1251                                     uint64_t value, unsigned size,
1252                                     MemTxAttrs attrs)
1253 {
1254     GICState **backref = (GICState **)opaque;
1255     GICState *s = *backref;
1256     int id = (backref - s->backref);
1257     return gic_cpu_write(s, id, addr, value, attrs);
1258 }
1259 
1260 static const MemoryRegionOps gic_ops[2] = {
1261     {
1262         .read_with_attrs = gic_dist_read,
1263         .write_with_attrs = gic_dist_write,
1264         .endianness = DEVICE_NATIVE_ENDIAN,
1265     },
1266     {
1267         .read_with_attrs = gic_thiscpu_read,
1268         .write_with_attrs = gic_thiscpu_write,
1269         .endianness = DEVICE_NATIVE_ENDIAN,
1270     }
1271 };
1272 
1273 static const MemoryRegionOps gic_cpu_ops = {
1274     .read_with_attrs = gic_do_cpu_read,
1275     .write_with_attrs = gic_do_cpu_write,
1276     .endianness = DEVICE_NATIVE_ENDIAN,
1277 };
1278 
1279 /* This function is used by nvic model */
1280 void gic_init_irqs_and_distributor(GICState *s)
1281 {
1282     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1283 }
1284 
1285 static void arm_gic_realize(DeviceState *dev, Error **errp)
1286 {
1287     /* Device instance realize function for the GIC sysbus device */
1288     int i;
1289     GICState *s = ARM_GIC(dev);
1290     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1291     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1292     Error *local_err = NULL;
1293 
1294     agc->parent_realize(dev, &local_err);
1295     if (local_err) {
1296         error_propagate(errp, local_err);
1297         return;
1298     }
1299 
1300     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1301     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1302 
1303     /* Extra core-specific regions for the CPU interfaces. This is
1304      * necessary for "franken-GIC" implementations, for example on
1305      * Exynos 4.
1306      * NB that the memory region size of 0x100 applies for the 11MPCore
1307      * and also cores following the GIC v1 spec (ie A9).
1308      * GIC v2 defines a larger memory region (0x1000) so this will need
1309      * to be extended when we implement A15.
1310      */
1311     for (i = 0; i < s->num_cpu; i++) {
1312         s->backref[i] = s;
1313         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1314                               &s->backref[i], "gic_cpu", 0x100);
1315         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1316     }
1317 }
1318 
1319 static void arm_gic_class_init(ObjectClass *klass, void *data)
1320 {
1321     DeviceClass *dc = DEVICE_CLASS(klass);
1322     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1323 
1324     agc->parent_realize = dc->realize;
1325     dc->realize = arm_gic_realize;
1326 }
1327 
1328 static const TypeInfo arm_gic_info = {
1329     .name = TYPE_ARM_GIC,
1330     .parent = TYPE_ARM_GIC_COMMON,
1331     .instance_size = sizeof(GICState),
1332     .class_init = arm_gic_class_init,
1333     .class_size = sizeof(ARMGICClass),
1334 };
1335 
1336 static void arm_gic_register_types(void)
1337 {
1338     type_register_static(&arm_gic_info);
1339 }
1340 
1341 type_init(arm_gic_register_types)
1342