xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 86b350f0d07bae38dee6b7837fc30baea7b4c907)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 static inline int gic_get_current_vcpu(GICState *s)
65 {
66     return gic_get_current_cpu(s) + GIC_NCPU;
67 }
68 
69 /* Return true if this GIC config has interrupt groups, which is
70  * true if we're a GICv2, or a GICv1 with the security extensions.
71  */
72 static inline bool gic_has_groups(GICState *s)
73 {
74     return s->revision == 2 || s->security_extn;
75 }
76 
77 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
78 {
79     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
80 }
81 
82 /* TODO: Many places that call this routine could be optimized.  */
83 /* Update interrupt status after enabled or pending bits have been changed.  */
84 static void gic_update(GICState *s)
85 {
86     int best_irq;
87     int best_prio;
88     int irq;
89     int irq_level, fiq_level;
90     int cpu;
91     int cm;
92 
93     for (cpu = 0; cpu < s->num_cpu; cpu++) {
94         cm = 1 << cpu;
95         s->current_pending[cpu] = 1023;
96         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
97             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
98             qemu_irq_lower(s->parent_irq[cpu]);
99             qemu_irq_lower(s->parent_fiq[cpu]);
100             continue;
101         }
102         best_prio = 0x100;
103         best_irq = 1023;
104         for (irq = 0; irq < s->num_irq; irq++) {
105             if (GIC_DIST_TEST_ENABLED(irq, cm) &&
106                 gic_test_pending(s, irq, cm) &&
107                 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
108                 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
109                 if (GIC_DIST_GET_PRIORITY(irq, cpu) < best_prio) {
110                     best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
111                     best_irq = irq;
112                 }
113             }
114         }
115 
116         if (best_irq != 1023) {
117             trace_gic_update_bestirq(cpu, best_irq, best_prio,
118                 s->priority_mask[cpu], s->running_priority[cpu]);
119         }
120 
121         irq_level = fiq_level = 0;
122 
123         if (best_prio < s->priority_mask[cpu]) {
124             s->current_pending[cpu] = best_irq;
125             if (best_prio < s->running_priority[cpu]) {
126                 int group = GIC_DIST_TEST_GROUP(best_irq, cm);
127 
128                 if (extract32(s->ctlr, group, 1) &&
129                     extract32(s->cpu_ctlr[cpu], group, 1)) {
130                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
131                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
132                                 best_irq, cpu);
133                         fiq_level = 1;
134                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
135                     } else {
136                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
137                                 best_irq, cpu);
138                         irq_level = 1;
139                         trace_gic_update_set_irq(cpu, "irq", irq_level);
140                     }
141                 }
142             }
143         }
144 
145         qemu_set_irq(s->parent_irq[cpu], irq_level);
146         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
147     }
148 }
149 
150 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
151                                  int cm, int target)
152 {
153     if (level) {
154         GIC_DIST_SET_LEVEL(irq, cm);
155         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
156             DPRINTF("Set %d pending mask %x\n", irq, target);
157             GIC_DIST_SET_PENDING(irq, target);
158         }
159     } else {
160         GIC_DIST_CLEAR_LEVEL(irq, cm);
161     }
162 }
163 
164 static void gic_set_irq_generic(GICState *s, int irq, int level,
165                                 int cm, int target)
166 {
167     if (level) {
168         GIC_DIST_SET_LEVEL(irq, cm);
169         DPRINTF("Set %d pending mask %x\n", irq, target);
170         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
171             GIC_DIST_SET_PENDING(irq, target);
172         }
173     } else {
174         GIC_DIST_CLEAR_LEVEL(irq, cm);
175     }
176 }
177 
178 /* Process a change in an external IRQ input.  */
179 static void gic_set_irq(void *opaque, int irq, int level)
180 {
181     /* Meaning of the 'irq' parameter:
182      *  [0..N-1] : external interrupts
183      *  [N..N+31] : PPI (internal) interrupts for CPU 0
184      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
185      *  ...
186      */
187     GICState *s = (GICState *)opaque;
188     int cm, target;
189     if (irq < (s->num_irq - GIC_INTERNAL)) {
190         /* The first external input line is internal interrupt 32.  */
191         cm = ALL_CPU_MASK;
192         irq += GIC_INTERNAL;
193         target = GIC_DIST_TARGET(irq);
194     } else {
195         int cpu;
196         irq -= (s->num_irq - GIC_INTERNAL);
197         cpu = irq / GIC_INTERNAL;
198         irq %= GIC_INTERNAL;
199         cm = 1 << cpu;
200         target = cm;
201     }
202 
203     assert(irq >= GIC_NR_SGIS);
204 
205     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
206         return;
207     }
208 
209     if (s->revision == REV_11MPCORE) {
210         gic_set_irq_11mpcore(s, irq, level, cm, target);
211     } else {
212         gic_set_irq_generic(s, irq, level, cm, target);
213     }
214     trace_gic_set_irq(irq, level, cm, target);
215 
216     gic_update(s);
217 }
218 
219 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
220                                             MemTxAttrs attrs)
221 {
222     uint16_t pending_irq = s->current_pending[cpu];
223 
224     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
225         int group = gic_test_group(s, pending_irq, cpu);
226 
227         /* On a GIC without the security extensions, reading this register
228          * behaves in the same way as a secure access to a GIC with them.
229          */
230         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
231 
232         if (group == 0 && !secure) {
233             /* Group0 interrupts hidden from Non-secure access */
234             return 1023;
235         }
236         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
237             /* Group1 interrupts only seen by Secure access if
238              * AckCtl bit set.
239              */
240             return 1022;
241         }
242     }
243     return pending_irq;
244 }
245 
246 static int gic_get_group_priority(GICState *s, int cpu, int irq)
247 {
248     /* Return the group priority of the specified interrupt
249      * (which is the top bits of its priority, with the number
250      * of bits masked determined by the applicable binary point register).
251      */
252     int bpr;
253     uint32_t mask;
254 
255     if (gic_has_groups(s) &&
256         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
257         gic_test_group(s, irq, cpu)) {
258         bpr = s->abpr[cpu] - 1;
259         assert(bpr >= 0);
260     } else {
261         bpr = s->bpr[cpu];
262     }
263 
264     /* a BPR of 0 means the group priority bits are [7:1];
265      * a BPR of 1 means they are [7:2], and so on down to
266      * a BPR of 7 meaning no group priority bits at all.
267      */
268     mask = ~0U << ((bpr & 7) + 1);
269 
270     return gic_get_priority(s, irq, cpu) & mask;
271 }
272 
273 static void gic_activate_irq(GICState *s, int cpu, int irq)
274 {
275     /* Set the appropriate Active Priority Register bit for this IRQ,
276      * and update the running priority.
277      */
278     int prio = gic_get_group_priority(s, cpu, irq);
279     int preemption_level = prio >> (GIC_MIN_BPR + 1);
280     int regno = preemption_level / 32;
281     int bitno = preemption_level % 32;
282 
283     if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
284         s->nsapr[regno][cpu] |= (1 << bitno);
285     } else {
286         s->apr[regno][cpu] |= (1 << bitno);
287     }
288 
289     s->running_priority[cpu] = prio;
290     gic_set_active(s, irq, cpu);
291 }
292 
293 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
294 {
295     /* Recalculate the current running priority for this CPU based
296      * on the set bits in the Active Priority Registers.
297      */
298     int i;
299     for (i = 0; i < GIC_NR_APRS; i++) {
300         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
301         if (!apr) {
302             continue;
303         }
304         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
305     }
306     return 0x100;
307 }
308 
309 static void gic_drop_prio(GICState *s, int cpu, int group)
310 {
311     /* Drop the priority of the currently active interrupt in the
312      * specified group.
313      *
314      * Note that we can guarantee (because of the requirement to nest
315      * GICC_IAR reads [which activate an interrupt and raise priority]
316      * with GICC_EOIR writes [which drop the priority for the interrupt])
317      * that the interrupt we're being called for is the highest priority
318      * active interrupt, meaning that it has the lowest set bit in the
319      * APR registers.
320      *
321      * If the guest does not honour the ordering constraints then the
322      * behaviour of the GIC is UNPREDICTABLE, which for us means that
323      * the values of the APR registers might become incorrect and the
324      * running priority will be wrong, so interrupts that should preempt
325      * might not do so, and interrupts that should not preempt might do so.
326      */
327     int i;
328 
329     for (i = 0; i < GIC_NR_APRS; i++) {
330         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
331         if (!*papr) {
332             continue;
333         }
334         /* Clear lowest set bit */
335         *papr &= *papr - 1;
336         break;
337     }
338 
339     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
340 }
341 
342 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
343 {
344     int ret, irq, src;
345     int cm = 1 << cpu;
346 
347     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
348      * for the case where this GIC supports grouping and the pending interrupt
349      * is in the wrong group.
350      */
351     irq = gic_get_current_pending_irq(s, cpu, attrs);
352     trace_gic_acknowledge_irq(cpu, irq);
353 
354     if (irq >= GIC_MAXIRQ) {
355         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
356         return irq;
357     }
358 
359     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
360         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
361         return 1023;
362     }
363 
364     if (s->revision == REV_11MPCORE) {
365         /* Clear pending flags for both level and edge triggered interrupts.
366          * Level triggered IRQs will be reasserted once they become inactive.
367          */
368         gic_clear_pending(s, irq, cpu);
369         ret = irq;
370     } else {
371         if (irq < GIC_NR_SGIS) {
372             /* Lookup the source CPU for the SGI and clear this in the
373              * sgi_pending map.  Return the src and clear the overall pending
374              * state on this CPU if the SGI is not pending from any CPUs.
375              */
376             assert(s->sgi_pending[irq][cpu] != 0);
377             src = ctz32(s->sgi_pending[irq][cpu]);
378             s->sgi_pending[irq][cpu] &= ~(1 << src);
379             if (s->sgi_pending[irq][cpu] == 0) {
380                 gic_clear_pending(s, irq, cpu);
381             }
382             ret = irq | ((src & 0x7) << 10);
383         } else {
384             /* Clear pending state for both level and edge triggered
385              * interrupts. (level triggered interrupts with an active line
386              * remain pending, see gic_test_pending)
387              */
388             gic_clear_pending(s, irq, cpu);
389             ret = irq;
390         }
391     }
392 
393     gic_activate_irq(s, cpu, irq);
394     gic_update(s);
395     DPRINTF("ACK %d\n", irq);
396     return ret;
397 }
398 
399 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
400                       MemTxAttrs attrs)
401 {
402     if (s->security_extn && !attrs.secure) {
403         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
404             return; /* Ignore Non-secure access of Group0 IRQ */
405         }
406         val = 0x80 | (val >> 1); /* Non-secure view */
407     }
408 
409     if (irq < GIC_INTERNAL) {
410         s->priority1[irq][cpu] = val;
411     } else {
412         s->priority2[(irq) - GIC_INTERNAL] = val;
413     }
414 }
415 
416 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
417                                  MemTxAttrs attrs)
418 {
419     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
420 
421     if (s->security_extn && !attrs.secure) {
422         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
423             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
424         }
425         prio = (prio << 1) & 0xff; /* Non-secure view */
426     }
427     return prio;
428 }
429 
430 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
431                                   MemTxAttrs attrs)
432 {
433     if (gic_cpu_ns_access(s, cpu, attrs)) {
434         if (s->priority_mask[cpu] & 0x80) {
435             /* Priority Mask in upper half */
436             pmask = 0x80 | (pmask >> 1);
437         } else {
438             /* Non-secure write ignored if priority mask is in lower half */
439             return;
440         }
441     }
442     s->priority_mask[cpu] = pmask;
443 }
444 
445 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
446 {
447     uint32_t pmask = s->priority_mask[cpu];
448 
449     if (gic_cpu_ns_access(s, cpu, attrs)) {
450         if (pmask & 0x80) {
451             /* Priority Mask in upper half, return Non-secure view */
452             pmask = (pmask << 1) & 0xff;
453         } else {
454             /* Priority Mask in lower half, RAZ */
455             pmask = 0;
456         }
457     }
458     return pmask;
459 }
460 
461 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
462 {
463     uint32_t ret = s->cpu_ctlr[cpu];
464 
465     if (gic_cpu_ns_access(s, cpu, attrs)) {
466         /* Construct the NS banked view of GICC_CTLR from the correct
467          * bits of the S banked view. We don't need to move the bypass
468          * control bits because we don't implement that (IMPDEF) part
469          * of the GIC architecture.
470          */
471         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
472     }
473     return ret;
474 }
475 
476 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
477                                 MemTxAttrs attrs)
478 {
479     uint32_t mask;
480 
481     if (gic_cpu_ns_access(s, cpu, attrs)) {
482         /* The NS view can only write certain bits in the register;
483          * the rest are unchanged
484          */
485         mask = GICC_CTLR_EN_GRP1;
486         if (s->revision == 2) {
487             mask |= GICC_CTLR_EOIMODE_NS;
488         }
489         s->cpu_ctlr[cpu] &= ~mask;
490         s->cpu_ctlr[cpu] |= (value << 1) & mask;
491     } else {
492         if (s->revision == 2) {
493             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
494         } else {
495             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
496         }
497         s->cpu_ctlr[cpu] = value & mask;
498     }
499     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
500             "Group1 Interrupts %sabled\n", cpu,
501             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
502             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
503 }
504 
505 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
506 {
507     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
508         /* Idle priority */
509         return 0xff;
510     }
511 
512     if (gic_cpu_ns_access(s, cpu, attrs)) {
513         if (s->running_priority[cpu] & 0x80) {
514             /* Running priority in upper half of range: return the Non-secure
515              * view of the priority.
516              */
517             return s->running_priority[cpu] << 1;
518         } else {
519             /* Running priority in lower half of range: RAZ */
520             return 0;
521         }
522     } else {
523         return s->running_priority[cpu];
524     }
525 }
526 
527 /* Return true if we should split priority drop and interrupt deactivation,
528  * ie whether the relevant EOIMode bit is set.
529  */
530 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
531 {
532     if (s->revision != 2) {
533         /* Before GICv2 prio-drop and deactivate are not separable */
534         return false;
535     }
536     if (gic_cpu_ns_access(s, cpu, attrs)) {
537         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
538     }
539     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
540 }
541 
542 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
543 {
544     int group;
545 
546     if (irq >= s->num_irq) {
547         /*
548          * This handles two cases:
549          * 1. If software writes the ID of a spurious interrupt [ie 1023]
550          * to the GICC_DIR, the GIC ignores that write.
551          * 2. If software writes the number of a non-existent interrupt
552          * this must be a subcase of "value written is not an active interrupt"
553          * and so this is UNPREDICTABLE. We choose to ignore it.
554          */
555         return;
556     }
557 
558     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
559 
560     if (!gic_eoi_split(s, cpu, attrs)) {
561         /* This is UNPREDICTABLE; we choose to ignore it */
562         qemu_log_mask(LOG_GUEST_ERROR,
563                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
564         return;
565     }
566 
567     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
568         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
569         return;
570     }
571 
572     gic_clear_active(s, irq, cpu);
573 }
574 
575 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
576 {
577     int cm = 1 << cpu;
578     int group;
579 
580     DPRINTF("EOI %d\n", irq);
581     if (irq >= s->num_irq) {
582         /* This handles two cases:
583          * 1. If software writes the ID of a spurious interrupt [ie 1023]
584          * to the GICC_EOIR, the GIC ignores that write.
585          * 2. If software writes the number of a non-existent interrupt
586          * this must be a subcase of "value written does not match the last
587          * valid interrupt value read from the Interrupt Acknowledge
588          * register" and so this is UNPREDICTABLE. We choose to ignore it.
589          */
590         return;
591     }
592     if (s->running_priority[cpu] == 0x100) {
593         return; /* No active IRQ.  */
594     }
595 
596     if (s->revision == REV_11MPCORE) {
597         /* Mark level triggered interrupts as pending if they are still
598            raised.  */
599         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
600             && GIC_DIST_TEST_LEVEL(irq, cm)
601             && (GIC_DIST_TARGET(irq) & cm) != 0) {
602             DPRINTF("Set %d pending mask %x\n", irq, cm);
603             GIC_DIST_SET_PENDING(irq, cm);
604         }
605     }
606 
607     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
608 
609     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
610         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
611         return;
612     }
613 
614     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
615      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
616      * i.e. go ahead and complete the irq anyway.
617      */
618 
619     gic_drop_prio(s, cpu, group);
620 
621     /* In GICv2 the guest can choose to split priority-drop and deactivate */
622     if (!gic_eoi_split(s, cpu, attrs)) {
623         gic_clear_active(s, irq, cpu);
624     }
625     gic_update(s);
626 }
627 
628 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
629 {
630     GICState *s = (GICState *)opaque;
631     uint32_t res;
632     int irq;
633     int i;
634     int cpu;
635     int cm;
636     int mask;
637 
638     cpu = gic_get_current_cpu(s);
639     cm = 1 << cpu;
640     if (offset < 0x100) {
641         if (offset == 0) {      /* GICD_CTLR */
642             if (s->security_extn && !attrs.secure) {
643                 /* The NS bank of this register is just an alias of the
644                  * EnableGrp1 bit in the S bank version.
645                  */
646                 return extract32(s->ctlr, 1, 1);
647             } else {
648                 return s->ctlr;
649             }
650         }
651         if (offset == 4)
652             /* Interrupt Controller Type Register */
653             return ((s->num_irq / 32) - 1)
654                     | ((s->num_cpu - 1) << 5)
655                     | (s->security_extn << 10);
656         if (offset < 0x08)
657             return 0;
658         if (offset >= 0x80) {
659             /* Interrupt Group Registers: these RAZ/WI if this is an NS
660              * access to a GIC with the security extensions, or if the GIC
661              * doesn't have groups at all.
662              */
663             res = 0;
664             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
665                 /* Every byte offset holds 8 group status bits */
666                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
667                 if (irq >= s->num_irq) {
668                     goto bad_reg;
669                 }
670                 for (i = 0; i < 8; i++) {
671                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
672                         res |= (1 << i);
673                     }
674                 }
675             }
676             return res;
677         }
678         goto bad_reg;
679     } else if (offset < 0x200) {
680         /* Interrupt Set/Clear Enable.  */
681         if (offset < 0x180)
682             irq = (offset - 0x100) * 8;
683         else
684             irq = (offset - 0x180) * 8;
685         irq += GIC_BASE_IRQ;
686         if (irq >= s->num_irq)
687             goto bad_reg;
688         res = 0;
689         for (i = 0; i < 8; i++) {
690             if (s->security_extn && !attrs.secure &&
691                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
692                 continue; /* Ignore Non-secure access of Group0 IRQ */
693             }
694 
695             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
696                 res |= (1 << i);
697             }
698         }
699     } else if (offset < 0x300) {
700         /* Interrupt Set/Clear Pending.  */
701         if (offset < 0x280)
702             irq = (offset - 0x200) * 8;
703         else
704             irq = (offset - 0x280) * 8;
705         irq += GIC_BASE_IRQ;
706         if (irq >= s->num_irq)
707             goto bad_reg;
708         res = 0;
709         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
710         for (i = 0; i < 8; i++) {
711             if (s->security_extn && !attrs.secure &&
712                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
713                 continue; /* Ignore Non-secure access of Group0 IRQ */
714             }
715 
716             if (gic_test_pending(s, irq + i, mask)) {
717                 res |= (1 << i);
718             }
719         }
720     } else if (offset < 0x400) {
721         /* Interrupt Set/Clear Active.  */
722         if (offset < 0x380) {
723             irq = (offset - 0x300) * 8;
724         } else if (s->revision == 2) {
725             irq = (offset - 0x380) * 8;
726         } else {
727             goto bad_reg;
728         }
729 
730         irq += GIC_BASE_IRQ;
731         if (irq >= s->num_irq)
732             goto bad_reg;
733         res = 0;
734         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
735         for (i = 0; i < 8; i++) {
736             if (s->security_extn && !attrs.secure &&
737                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
738                 continue; /* Ignore Non-secure access of Group0 IRQ */
739             }
740 
741             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
742                 res |= (1 << i);
743             }
744         }
745     } else if (offset < 0x800) {
746         /* Interrupt Priority.  */
747         irq = (offset - 0x400) + GIC_BASE_IRQ;
748         if (irq >= s->num_irq)
749             goto bad_reg;
750         res = gic_dist_get_priority(s, cpu, irq, attrs);
751     } else if (offset < 0xc00) {
752         /* Interrupt CPU Target.  */
753         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
754             /* For uniprocessor GICs these RAZ/WI */
755             res = 0;
756         } else {
757             irq = (offset - 0x800) + GIC_BASE_IRQ;
758             if (irq >= s->num_irq) {
759                 goto bad_reg;
760             }
761             if (irq < 29 && s->revision == REV_11MPCORE) {
762                 res = 0;
763             } else if (irq < GIC_INTERNAL) {
764                 res = cm;
765             } else {
766                 res = GIC_DIST_TARGET(irq);
767             }
768         }
769     } else if (offset < 0xf00) {
770         /* Interrupt Configuration.  */
771         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
772         if (irq >= s->num_irq)
773             goto bad_reg;
774         res = 0;
775         for (i = 0; i < 4; i++) {
776             if (s->security_extn && !attrs.secure &&
777                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
778                 continue; /* Ignore Non-secure access of Group0 IRQ */
779             }
780 
781             if (GIC_DIST_TEST_MODEL(irq + i)) {
782                 res |= (1 << (i * 2));
783             }
784             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
785                 res |= (2 << (i * 2));
786             }
787         }
788     } else if (offset < 0xf10) {
789         goto bad_reg;
790     } else if (offset < 0xf30) {
791         if (s->revision == REV_11MPCORE) {
792             goto bad_reg;
793         }
794 
795         if (offset < 0xf20) {
796             /* GICD_CPENDSGIRn */
797             irq = (offset - 0xf10);
798         } else {
799             irq = (offset - 0xf20);
800             /* GICD_SPENDSGIRn */
801         }
802 
803         if (s->security_extn && !attrs.secure &&
804             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
805             res = 0; /* Ignore Non-secure access of Group0 IRQ */
806         } else {
807             res = s->sgi_pending[irq][cpu];
808         }
809     } else if (offset < 0xfd0) {
810         goto bad_reg;
811     } else if (offset < 0x1000) {
812         if (offset & 3) {
813             res = 0;
814         } else {
815             switch (s->revision) {
816             case REV_11MPCORE:
817                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
818                 break;
819             case 1:
820                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
821                 break;
822             case 2:
823                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
824                 break;
825             default:
826                 res = 0;
827             }
828         }
829     } else {
830         g_assert_not_reached();
831     }
832     return res;
833 bad_reg:
834     qemu_log_mask(LOG_GUEST_ERROR,
835                   "gic_dist_readb: Bad offset %x\n", (int)offset);
836     return 0;
837 }
838 
839 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
840                                  unsigned size, MemTxAttrs attrs)
841 {
842     switch (size) {
843     case 1:
844         *data = gic_dist_readb(opaque, offset, attrs);
845         return MEMTX_OK;
846     case 2:
847         *data = gic_dist_readb(opaque, offset, attrs);
848         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
849         return MEMTX_OK;
850     case 4:
851         *data = gic_dist_readb(opaque, offset, attrs);
852         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
853         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
854         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
855         return MEMTX_OK;
856     default:
857         return MEMTX_ERROR;
858     }
859 }
860 
861 static void gic_dist_writeb(void *opaque, hwaddr offset,
862                             uint32_t value, MemTxAttrs attrs)
863 {
864     GICState *s = (GICState *)opaque;
865     int irq;
866     int i;
867     int cpu;
868 
869     cpu = gic_get_current_cpu(s);
870     if (offset < 0x100) {
871         if (offset == 0) {
872             if (s->security_extn && !attrs.secure) {
873                 /* NS version is just an alias of the S version's bit 1 */
874                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
875             } else if (gic_has_groups(s)) {
876                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
877             } else {
878                 s->ctlr = value & GICD_CTLR_EN_GRP0;
879             }
880             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
881                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
882                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
883         } else if (offset < 4) {
884             /* ignored.  */
885         } else if (offset >= 0x80) {
886             /* Interrupt Group Registers: RAZ/WI for NS access to secure
887              * GIC, or for GICs without groups.
888              */
889             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
890                 /* Every byte offset holds 8 group status bits */
891                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
892                 if (irq >= s->num_irq) {
893                     goto bad_reg;
894                 }
895                 for (i = 0; i < 8; i++) {
896                     /* Group bits are banked for private interrupts */
897                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
898                     if (value & (1 << i)) {
899                         /* Group1 (Non-secure) */
900                         GIC_DIST_SET_GROUP(irq + i, cm);
901                     } else {
902                         /* Group0 (Secure) */
903                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
904                     }
905                 }
906             }
907         } else {
908             goto bad_reg;
909         }
910     } else if (offset < 0x180) {
911         /* Interrupt Set Enable.  */
912         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
913         if (irq >= s->num_irq)
914             goto bad_reg;
915         if (irq < GIC_NR_SGIS) {
916             value = 0xff;
917         }
918 
919         for (i = 0; i < 8; i++) {
920             if (value & (1 << i)) {
921                 int mask =
922                     (irq < GIC_INTERNAL) ? (1 << cpu)
923                                          : GIC_DIST_TARGET(irq + i);
924                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
925 
926                 if (s->security_extn && !attrs.secure &&
927                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
928                     continue; /* Ignore Non-secure access of Group0 IRQ */
929                 }
930 
931                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
932                     DPRINTF("Enabled IRQ %d\n", irq + i);
933                     trace_gic_enable_irq(irq + i);
934                 }
935                 GIC_DIST_SET_ENABLED(irq + i, cm);
936                 /* If a raised level triggered IRQ enabled then mark
937                    is as pending.  */
938                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
939                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
940                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
941                     GIC_DIST_SET_PENDING(irq + i, mask);
942                 }
943             }
944         }
945     } else if (offset < 0x200) {
946         /* Interrupt Clear Enable.  */
947         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
948         if (irq >= s->num_irq)
949             goto bad_reg;
950         if (irq < GIC_NR_SGIS) {
951             value = 0;
952         }
953 
954         for (i = 0; i < 8; i++) {
955             if (value & (1 << i)) {
956                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
957 
958                 if (s->security_extn && !attrs.secure &&
959                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
960                     continue; /* Ignore Non-secure access of Group0 IRQ */
961                 }
962 
963                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
964                     DPRINTF("Disabled IRQ %d\n", irq + i);
965                     trace_gic_disable_irq(irq + i);
966                 }
967                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
968             }
969         }
970     } else if (offset < 0x280) {
971         /* Interrupt Set Pending.  */
972         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
973         if (irq >= s->num_irq)
974             goto bad_reg;
975         if (irq < GIC_NR_SGIS) {
976             value = 0;
977         }
978 
979         for (i = 0; i < 8; i++) {
980             if (value & (1 << i)) {
981                 if (s->security_extn && !attrs.secure &&
982                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
983                     continue; /* Ignore Non-secure access of Group0 IRQ */
984                 }
985 
986                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
987             }
988         }
989     } else if (offset < 0x300) {
990         /* Interrupt Clear Pending.  */
991         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
992         if (irq >= s->num_irq)
993             goto bad_reg;
994         if (irq < GIC_NR_SGIS) {
995             value = 0;
996         }
997 
998         for (i = 0; i < 8; i++) {
999             if (s->security_extn && !attrs.secure &&
1000                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1001                 continue; /* Ignore Non-secure access of Group0 IRQ */
1002             }
1003 
1004             /* ??? This currently clears the pending bit for all CPUs, even
1005                for per-CPU interrupts.  It's unclear whether this is the
1006                corect behavior.  */
1007             if (value & (1 << i)) {
1008                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1009             }
1010         }
1011     } else if (offset < 0x380) {
1012         /* Interrupt Set Active.  */
1013         if (s->revision != 2) {
1014             goto bad_reg;
1015         }
1016 
1017         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
1018         if (irq >= s->num_irq) {
1019             goto bad_reg;
1020         }
1021 
1022         /* This register is banked per-cpu for PPIs */
1023         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1024 
1025         for (i = 0; i < 8; i++) {
1026             if (s->security_extn && !attrs.secure &&
1027                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1028                 continue; /* Ignore Non-secure access of Group0 IRQ */
1029             }
1030 
1031             if (value & (1 << i)) {
1032                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1033             }
1034         }
1035     } else if (offset < 0x400) {
1036         /* Interrupt Clear Active.  */
1037         if (s->revision != 2) {
1038             goto bad_reg;
1039         }
1040 
1041         irq = (offset - 0x380) * 8 + GIC_BASE_IRQ;
1042         if (irq >= s->num_irq) {
1043             goto bad_reg;
1044         }
1045 
1046         /* This register is banked per-cpu for PPIs */
1047         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1048 
1049         for (i = 0; i < 8; i++) {
1050             if (s->security_extn && !attrs.secure &&
1051                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1052                 continue; /* Ignore Non-secure access of Group0 IRQ */
1053             }
1054 
1055             if (value & (1 << i)) {
1056                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1057             }
1058         }
1059     } else if (offset < 0x800) {
1060         /* Interrupt Priority.  */
1061         irq = (offset - 0x400) + GIC_BASE_IRQ;
1062         if (irq >= s->num_irq)
1063             goto bad_reg;
1064         gic_dist_set_priority(s, cpu, irq, value, attrs);
1065     } else if (offset < 0xc00) {
1066         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1067          * annoying exception of the 11MPCore's GIC.
1068          */
1069         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1070             irq = (offset - 0x800) + GIC_BASE_IRQ;
1071             if (irq >= s->num_irq) {
1072                 goto bad_reg;
1073             }
1074             if (irq < 29 && s->revision == REV_11MPCORE) {
1075                 value = 0;
1076             } else if (irq < GIC_INTERNAL) {
1077                 value = ALL_CPU_MASK;
1078             }
1079             s->irq_target[irq] = value & ALL_CPU_MASK;
1080         }
1081     } else if (offset < 0xf00) {
1082         /* Interrupt Configuration.  */
1083         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1084         if (irq >= s->num_irq)
1085             goto bad_reg;
1086         if (irq < GIC_NR_SGIS)
1087             value |= 0xaa;
1088         for (i = 0; i < 4; i++) {
1089             if (s->security_extn && !attrs.secure &&
1090                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1091                 continue; /* Ignore Non-secure access of Group0 IRQ */
1092             }
1093 
1094             if (s->revision == REV_11MPCORE) {
1095                 if (value & (1 << (i * 2))) {
1096                     GIC_DIST_SET_MODEL(irq + i);
1097                 } else {
1098                     GIC_DIST_CLEAR_MODEL(irq + i);
1099                 }
1100             }
1101             if (value & (2 << (i * 2))) {
1102                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1103             } else {
1104                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1105             }
1106         }
1107     } else if (offset < 0xf10) {
1108         /* 0xf00 is only handled for 32-bit writes.  */
1109         goto bad_reg;
1110     } else if (offset < 0xf20) {
1111         /* GICD_CPENDSGIRn */
1112         if (s->revision == REV_11MPCORE) {
1113             goto bad_reg;
1114         }
1115         irq = (offset - 0xf10);
1116 
1117         if (!s->security_extn || attrs.secure ||
1118             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1119             s->sgi_pending[irq][cpu] &= ~value;
1120             if (s->sgi_pending[irq][cpu] == 0) {
1121                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1122             }
1123         }
1124     } else if (offset < 0xf30) {
1125         /* GICD_SPENDSGIRn */
1126         if (s->revision == REV_11MPCORE) {
1127             goto bad_reg;
1128         }
1129         irq = (offset - 0xf20);
1130 
1131         if (!s->security_extn || attrs.secure ||
1132             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1133             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1134             s->sgi_pending[irq][cpu] |= value;
1135         }
1136     } else {
1137         goto bad_reg;
1138     }
1139     gic_update(s);
1140     return;
1141 bad_reg:
1142     qemu_log_mask(LOG_GUEST_ERROR,
1143                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1144 }
1145 
1146 static void gic_dist_writew(void *opaque, hwaddr offset,
1147                             uint32_t value, MemTxAttrs attrs)
1148 {
1149     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1150     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1151 }
1152 
1153 static void gic_dist_writel(void *opaque, hwaddr offset,
1154                             uint32_t value, MemTxAttrs attrs)
1155 {
1156     GICState *s = (GICState *)opaque;
1157     if (offset == 0xf00) {
1158         int cpu;
1159         int irq;
1160         int mask;
1161         int target_cpu;
1162 
1163         cpu = gic_get_current_cpu(s);
1164         irq = value & 0x3ff;
1165         switch ((value >> 24) & 3) {
1166         case 0:
1167             mask = (value >> 16) & ALL_CPU_MASK;
1168             break;
1169         case 1:
1170             mask = ALL_CPU_MASK ^ (1 << cpu);
1171             break;
1172         case 2:
1173             mask = 1 << cpu;
1174             break;
1175         default:
1176             DPRINTF("Bad Soft Int target filter\n");
1177             mask = ALL_CPU_MASK;
1178             break;
1179         }
1180         GIC_DIST_SET_PENDING(irq, mask);
1181         target_cpu = ctz32(mask);
1182         while (target_cpu < GIC_NCPU) {
1183             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1184             mask &= ~(1 << target_cpu);
1185             target_cpu = ctz32(mask);
1186         }
1187         gic_update(s);
1188         return;
1189     }
1190     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1191     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1192 }
1193 
1194 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1195                                   unsigned size, MemTxAttrs attrs)
1196 {
1197     switch (size) {
1198     case 1:
1199         gic_dist_writeb(opaque, offset, data, attrs);
1200         return MEMTX_OK;
1201     case 2:
1202         gic_dist_writew(opaque, offset, data, attrs);
1203         return MEMTX_OK;
1204     case 4:
1205         gic_dist_writel(opaque, offset, data, attrs);
1206         return MEMTX_OK;
1207     default:
1208         return MEMTX_ERROR;
1209     }
1210 }
1211 
1212 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1213 {
1214     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1215      * second half of GICC_NSAPR.
1216      */
1217     switch (GIC_MIN_BPR) {
1218     case 0:
1219         if (regno < 2) {
1220             return s->nsapr[regno + 2][cpu];
1221         }
1222         break;
1223     case 1:
1224         if (regno == 0) {
1225             return s->nsapr[regno + 1][cpu];
1226         }
1227         break;
1228     case 2:
1229         if (regno == 0) {
1230             return extract32(s->nsapr[0][cpu], 16, 16);
1231         }
1232         break;
1233     case 3:
1234         if (regno == 0) {
1235             return extract32(s->nsapr[0][cpu], 8, 8);
1236         }
1237         break;
1238     default:
1239         g_assert_not_reached();
1240     }
1241     return 0;
1242 }
1243 
1244 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1245                                          uint32_t value)
1246 {
1247     /* Write the Nonsecure view of GICC_APR<regno>. */
1248     switch (GIC_MIN_BPR) {
1249     case 0:
1250         if (regno < 2) {
1251             s->nsapr[regno + 2][cpu] = value;
1252         }
1253         break;
1254     case 1:
1255         if (regno == 0) {
1256             s->nsapr[regno + 1][cpu] = value;
1257         }
1258         break;
1259     case 2:
1260         if (regno == 0) {
1261             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1262         }
1263         break;
1264     case 3:
1265         if (regno == 0) {
1266             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1267         }
1268         break;
1269     default:
1270         g_assert_not_reached();
1271     }
1272 }
1273 
1274 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1275                                 uint64_t *data, MemTxAttrs attrs)
1276 {
1277     switch (offset) {
1278     case 0x00: /* Control */
1279         *data = gic_get_cpu_control(s, cpu, attrs);
1280         break;
1281     case 0x04: /* Priority mask */
1282         *data = gic_get_priority_mask(s, cpu, attrs);
1283         break;
1284     case 0x08: /* Binary Point */
1285         if (gic_cpu_ns_access(s, cpu, attrs)) {
1286             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1287                 /* NS view of BPR when CBPR is 1 */
1288                 *data = MIN(s->bpr[cpu] + 1, 7);
1289             } else {
1290                 /* BPR is banked. Non-secure copy stored in ABPR. */
1291                 *data = s->abpr[cpu];
1292             }
1293         } else {
1294             *data = s->bpr[cpu];
1295         }
1296         break;
1297     case 0x0c: /* Acknowledge */
1298         *data = gic_acknowledge_irq(s, cpu, attrs);
1299         break;
1300     case 0x14: /* Running Priority */
1301         *data = gic_get_running_priority(s, cpu, attrs);
1302         break;
1303     case 0x18: /* Highest Pending Interrupt */
1304         *data = gic_get_current_pending_irq(s, cpu, attrs);
1305         break;
1306     case 0x1c: /* Aliased Binary Point */
1307         /* GIC v2, no security: ABPR
1308          * GIC v1, no security: not implemented (RAZ/WI)
1309          * With security extensions, secure access: ABPR (alias of NS BPR)
1310          * With security extensions, nonsecure access: RAZ/WI
1311          */
1312         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1313             *data = 0;
1314         } else {
1315             *data = s->abpr[cpu];
1316         }
1317         break;
1318     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1319     {
1320         int regno = (offset - 0xd0) / 4;
1321 
1322         if (regno >= GIC_NR_APRS || s->revision != 2) {
1323             *data = 0;
1324         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1325             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1326             *data = gic_apr_ns_view(s, regno, cpu);
1327         } else {
1328             *data = s->apr[regno][cpu];
1329         }
1330         break;
1331     }
1332     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1333     {
1334         int regno = (offset - 0xe0) / 4;
1335 
1336         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1337             gic_cpu_ns_access(s, cpu, attrs)) {
1338             *data = 0;
1339         } else {
1340             *data = s->nsapr[regno][cpu];
1341         }
1342         break;
1343     }
1344     default:
1345         qemu_log_mask(LOG_GUEST_ERROR,
1346                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1347         *data = 0;
1348         break;
1349     }
1350     return MEMTX_OK;
1351 }
1352 
1353 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1354                                  uint32_t value, MemTxAttrs attrs)
1355 {
1356     switch (offset) {
1357     case 0x00: /* Control */
1358         gic_set_cpu_control(s, cpu, value, attrs);
1359         break;
1360     case 0x04: /* Priority mask */
1361         gic_set_priority_mask(s, cpu, value, attrs);
1362         break;
1363     case 0x08: /* Binary Point */
1364         if (gic_cpu_ns_access(s, cpu, attrs)) {
1365             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1366                 /* WI when CBPR is 1 */
1367                 return MEMTX_OK;
1368             } else {
1369                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1370             }
1371         } else {
1372             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1373         }
1374         break;
1375     case 0x10: /* End Of Interrupt */
1376         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1377         return MEMTX_OK;
1378     case 0x1c: /* Aliased Binary Point */
1379         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1380             /* unimplemented, or NS access: RAZ/WI */
1381             return MEMTX_OK;
1382         } else {
1383             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1384         }
1385         break;
1386     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1387     {
1388         int regno = (offset - 0xd0) / 4;
1389 
1390         if (regno >= GIC_NR_APRS || s->revision != 2) {
1391             return MEMTX_OK;
1392         }
1393         if (gic_cpu_ns_access(s, cpu, attrs)) {
1394             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1395             gic_apr_write_ns_view(s, regno, cpu, value);
1396         } else {
1397             s->apr[regno][cpu] = value;
1398         }
1399         break;
1400     }
1401     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1402     {
1403         int regno = (offset - 0xe0) / 4;
1404 
1405         if (regno >= GIC_NR_APRS || s->revision != 2) {
1406             return MEMTX_OK;
1407         }
1408         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1409             return MEMTX_OK;
1410         }
1411         s->nsapr[regno][cpu] = value;
1412         break;
1413     }
1414     case 0x1000:
1415         /* GICC_DIR */
1416         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1417         break;
1418     default:
1419         qemu_log_mask(LOG_GUEST_ERROR,
1420                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1421         return MEMTX_OK;
1422     }
1423     gic_update(s);
1424     return MEMTX_OK;
1425 }
1426 
1427 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1428 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1429                                     unsigned size, MemTxAttrs attrs)
1430 {
1431     GICState *s = (GICState *)opaque;
1432     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1433 }
1434 
1435 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1436                                      uint64_t value, unsigned size,
1437                                      MemTxAttrs attrs)
1438 {
1439     GICState *s = (GICState *)opaque;
1440     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1441 }
1442 
1443 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1444  * These just decode the opaque pointer into GICState* + cpu id.
1445  */
1446 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1447                                    unsigned size, MemTxAttrs attrs)
1448 {
1449     GICState **backref = (GICState **)opaque;
1450     GICState *s = *backref;
1451     int id = (backref - s->backref);
1452     return gic_cpu_read(s, id, addr, data, attrs);
1453 }
1454 
1455 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1456                                     uint64_t value, unsigned size,
1457                                     MemTxAttrs attrs)
1458 {
1459     GICState **backref = (GICState **)opaque;
1460     GICState *s = *backref;
1461     int id = (backref - s->backref);
1462     return gic_cpu_write(s, id, addr, value, attrs);
1463 }
1464 
1465 static const MemoryRegionOps gic_ops[2] = {
1466     {
1467         .read_with_attrs = gic_dist_read,
1468         .write_with_attrs = gic_dist_write,
1469         .endianness = DEVICE_NATIVE_ENDIAN,
1470     },
1471     {
1472         .read_with_attrs = gic_thiscpu_read,
1473         .write_with_attrs = gic_thiscpu_write,
1474         .endianness = DEVICE_NATIVE_ENDIAN,
1475     }
1476 };
1477 
1478 static const MemoryRegionOps gic_cpu_ops = {
1479     .read_with_attrs = gic_do_cpu_read,
1480     .write_with_attrs = gic_do_cpu_write,
1481     .endianness = DEVICE_NATIVE_ENDIAN,
1482 };
1483 
1484 static void arm_gic_realize(DeviceState *dev, Error **errp)
1485 {
1486     /* Device instance realize function for the GIC sysbus device */
1487     int i;
1488     GICState *s = ARM_GIC(dev);
1489     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1490     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1491     Error *local_err = NULL;
1492 
1493     agc->parent_realize(dev, &local_err);
1494     if (local_err) {
1495         error_propagate(errp, local_err);
1496         return;
1497     }
1498 
1499     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1500         error_setg(errp, "KVM with user space irqchip only works when the "
1501                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
1502         return;
1503     }
1504 
1505     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1506     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, NULL);
1507 
1508     /* Extra core-specific regions for the CPU interfaces. This is
1509      * necessary for "franken-GIC" implementations, for example on
1510      * Exynos 4.
1511      * NB that the memory region size of 0x100 applies for the 11MPCore
1512      * and also cores following the GIC v1 spec (ie A9).
1513      * GIC v2 defines a larger memory region (0x1000) so this will need
1514      * to be extended when we implement A15.
1515      */
1516     for (i = 0; i < s->num_cpu; i++) {
1517         s->backref[i] = s;
1518         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1519                               &s->backref[i], "gic_cpu", 0x100);
1520         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1521     }
1522 }
1523 
1524 static void arm_gic_class_init(ObjectClass *klass, void *data)
1525 {
1526     DeviceClass *dc = DEVICE_CLASS(klass);
1527     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1528 
1529     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1530 }
1531 
1532 static const TypeInfo arm_gic_info = {
1533     .name = TYPE_ARM_GIC,
1534     .parent = TYPE_ARM_GIC_COMMON,
1535     .instance_size = sizeof(GICState),
1536     .class_init = arm_gic_class_init,
1537     .class_size = sizeof(ARMGICClass),
1538 };
1539 
1540 static void arm_gic_register_types(void)
1541 {
1542     type_register_static(&arm_gic_info);
1543 }
1544 
1545 type_init(arm_gic_register_types)
1546