xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 7eb079ec510f72cc3d20f94bd78a02cca29c968c)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 static inline int gic_get_current_vcpu(GICState *s)
65 {
66     return gic_get_current_cpu(s) + GIC_NCPU;
67 }
68 
69 /* Return true if this GIC config has interrupt groups, which is
70  * true if we're a GICv2, or a GICv1 with the security extensions.
71  */
72 static inline bool gic_has_groups(GICState *s)
73 {
74     return s->revision == 2 || s->security_extn;
75 }
76 
77 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
78 {
79     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
80 }
81 
82 /* TODO: Many places that call this routine could be optimized.  */
83 /* Update interrupt status after enabled or pending bits have been changed.  */
84 static void gic_update(GICState *s)
85 {
86     int best_irq;
87     int best_prio;
88     int irq;
89     int irq_level, fiq_level;
90     int cpu;
91     int cm;
92 
93     for (cpu = 0; cpu < s->num_cpu; cpu++) {
94         cm = 1 << cpu;
95         s->current_pending[cpu] = 1023;
96         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
97             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
98             qemu_irq_lower(s->parent_irq[cpu]);
99             qemu_irq_lower(s->parent_fiq[cpu]);
100             continue;
101         }
102         best_prio = 0x100;
103         best_irq = 1023;
104         for (irq = 0; irq < s->num_irq; irq++) {
105             if (GIC_DIST_TEST_ENABLED(irq, cm) &&
106                 gic_test_pending(s, irq, cm) &&
107                 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
108                 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
109                 if (GIC_DIST_GET_PRIORITY(irq, cpu) < best_prio) {
110                     best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
111                     best_irq = irq;
112                 }
113             }
114         }
115 
116         if (best_irq != 1023) {
117             trace_gic_update_bestirq(cpu, best_irq, best_prio,
118                 s->priority_mask[cpu], s->running_priority[cpu]);
119         }
120 
121         irq_level = fiq_level = 0;
122 
123         if (best_prio < s->priority_mask[cpu]) {
124             s->current_pending[cpu] = best_irq;
125             if (best_prio < s->running_priority[cpu]) {
126                 int group = GIC_DIST_TEST_GROUP(best_irq, cm);
127 
128                 if (extract32(s->ctlr, group, 1) &&
129                     extract32(s->cpu_ctlr[cpu], group, 1)) {
130                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
131                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
132                                 best_irq, cpu);
133                         fiq_level = 1;
134                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
135                     } else {
136                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
137                                 best_irq, cpu);
138                         irq_level = 1;
139                         trace_gic_update_set_irq(cpu, "irq", irq_level);
140                     }
141                 }
142             }
143         }
144 
145         qemu_set_irq(s->parent_irq[cpu], irq_level);
146         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
147     }
148 }
149 
150 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
151                                  int cm, int target)
152 {
153     if (level) {
154         GIC_DIST_SET_LEVEL(irq, cm);
155         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
156             DPRINTF("Set %d pending mask %x\n", irq, target);
157             GIC_DIST_SET_PENDING(irq, target);
158         }
159     } else {
160         GIC_DIST_CLEAR_LEVEL(irq, cm);
161     }
162 }
163 
164 static void gic_set_irq_generic(GICState *s, int irq, int level,
165                                 int cm, int target)
166 {
167     if (level) {
168         GIC_DIST_SET_LEVEL(irq, cm);
169         DPRINTF("Set %d pending mask %x\n", irq, target);
170         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
171             GIC_DIST_SET_PENDING(irq, target);
172         }
173     } else {
174         GIC_DIST_CLEAR_LEVEL(irq, cm);
175     }
176 }
177 
178 /* Process a change in an external IRQ input.  */
179 static void gic_set_irq(void *opaque, int irq, int level)
180 {
181     /* Meaning of the 'irq' parameter:
182      *  [0..N-1] : external interrupts
183      *  [N..N+31] : PPI (internal) interrupts for CPU 0
184      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
185      *  ...
186      */
187     GICState *s = (GICState *)opaque;
188     int cm, target;
189     if (irq < (s->num_irq - GIC_INTERNAL)) {
190         /* The first external input line is internal interrupt 32.  */
191         cm = ALL_CPU_MASK;
192         irq += GIC_INTERNAL;
193         target = GIC_DIST_TARGET(irq);
194     } else {
195         int cpu;
196         irq -= (s->num_irq - GIC_INTERNAL);
197         cpu = irq / GIC_INTERNAL;
198         irq %= GIC_INTERNAL;
199         cm = 1 << cpu;
200         target = cm;
201     }
202 
203     assert(irq >= GIC_NR_SGIS);
204 
205     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
206         return;
207     }
208 
209     if (s->revision == REV_11MPCORE) {
210         gic_set_irq_11mpcore(s, irq, level, cm, target);
211     } else {
212         gic_set_irq_generic(s, irq, level, cm, target);
213     }
214     trace_gic_set_irq(irq, level, cm, target);
215 
216     gic_update(s);
217 }
218 
219 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
220                                             MemTxAttrs attrs)
221 {
222     uint16_t pending_irq = s->current_pending[cpu];
223 
224     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
225         int group = gic_test_group(s, pending_irq, cpu);
226 
227         /* On a GIC without the security extensions, reading this register
228          * behaves in the same way as a secure access to a GIC with them.
229          */
230         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
231 
232         if (group == 0 && !secure) {
233             /* Group0 interrupts hidden from Non-secure access */
234             return 1023;
235         }
236         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
237             /* Group1 interrupts only seen by Secure access if
238              * AckCtl bit set.
239              */
240             return 1022;
241         }
242     }
243     return pending_irq;
244 }
245 
246 static int gic_get_group_priority(GICState *s, int cpu, int irq)
247 {
248     /* Return the group priority of the specified interrupt
249      * (which is the top bits of its priority, with the number
250      * of bits masked determined by the applicable binary point register).
251      */
252     int bpr;
253     uint32_t mask;
254 
255     if (gic_has_groups(s) &&
256         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
257         gic_test_group(s, irq, cpu)) {
258         bpr = s->abpr[cpu] - 1;
259         assert(bpr >= 0);
260     } else {
261         bpr = s->bpr[cpu];
262     }
263 
264     /* a BPR of 0 means the group priority bits are [7:1];
265      * a BPR of 1 means they are [7:2], and so on down to
266      * a BPR of 7 meaning no group priority bits at all.
267      */
268     mask = ~0U << ((bpr & 7) + 1);
269 
270     return gic_get_priority(s, irq, cpu) & mask;
271 }
272 
273 static void gic_activate_irq(GICState *s, int cpu, int irq)
274 {
275     /* Set the appropriate Active Priority Register bit for this IRQ,
276      * and update the running priority.
277      */
278     int prio = gic_get_group_priority(s, cpu, irq);
279     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
280     int preemption_level = prio >> (min_bpr + 1);
281     int regno = preemption_level / 32;
282     int bitno = preemption_level % 32;
283     uint32_t *papr = NULL;
284 
285     if (gic_is_vcpu(cpu)) {
286         assert(regno == 0);
287         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
288     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
289         papr = &s->nsapr[regno][cpu];
290     } else {
291         papr = &s->apr[regno][cpu];
292     }
293 
294     *papr |= (1 << bitno);
295 
296     s->running_priority[cpu] = prio;
297     gic_set_active(s, irq, cpu);
298 }
299 
300 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
301 {
302     /* Recalculate the current running priority for this CPU based
303      * on the set bits in the Active Priority Registers.
304      */
305     int i;
306 
307     if (gic_is_vcpu(cpu)) {
308         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
309         if (apr) {
310             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
311         } else {
312             return 0x100;
313         }
314     }
315 
316     for (i = 0; i < GIC_NR_APRS; i++) {
317         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
318         if (!apr) {
319             continue;
320         }
321         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
322     }
323     return 0x100;
324 }
325 
326 static void gic_drop_prio(GICState *s, int cpu, int group)
327 {
328     /* Drop the priority of the currently active interrupt in the
329      * specified group.
330      *
331      * Note that we can guarantee (because of the requirement to nest
332      * GICC_IAR reads [which activate an interrupt and raise priority]
333      * with GICC_EOIR writes [which drop the priority for the interrupt])
334      * that the interrupt we're being called for is the highest priority
335      * active interrupt, meaning that it has the lowest set bit in the
336      * APR registers.
337      *
338      * If the guest does not honour the ordering constraints then the
339      * behaviour of the GIC is UNPREDICTABLE, which for us means that
340      * the values of the APR registers might become incorrect and the
341      * running priority will be wrong, so interrupts that should preempt
342      * might not do so, and interrupts that should not preempt might do so.
343      */
344     if (gic_is_vcpu(cpu)) {
345         int rcpu = gic_get_vcpu_real_id(cpu);
346 
347         if (s->h_apr[rcpu]) {
348             /* Clear lowest set bit */
349             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
350         }
351     } else {
352         int i;
353 
354         for (i = 0; i < GIC_NR_APRS; i++) {
355             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
356             if (!*papr) {
357                 continue;
358             }
359             /* Clear lowest set bit */
360             *papr &= *papr - 1;
361             break;
362         }
363     }
364 
365     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
366 }
367 
368 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
369 {
370     int src;
371     uint32_t ret;
372 
373     if (!gic_is_vcpu(cpu)) {
374         /* Lookup the source CPU for the SGI and clear this in the
375          * sgi_pending map.  Return the src and clear the overall pending
376          * state on this CPU if the SGI is not pending from any CPUs.
377          */
378         assert(s->sgi_pending[irq][cpu] != 0);
379         src = ctz32(s->sgi_pending[irq][cpu]);
380         s->sgi_pending[irq][cpu] &= ~(1 << src);
381         if (s->sgi_pending[irq][cpu] == 0) {
382             gic_clear_pending(s, irq, cpu);
383         }
384         ret = irq | ((src & 0x7) << 10);
385     } else {
386         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
387         src = GICH_LR_CPUID(*lr_entry);
388 
389         gic_clear_pending(s, irq, cpu);
390         ret = irq | (src << 10);
391     }
392 
393     return ret;
394 }
395 
396 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
397 {
398     int ret, irq;
399 
400     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
401      * for the case where this GIC supports grouping and the pending interrupt
402      * is in the wrong group.
403      */
404     irq = gic_get_current_pending_irq(s, cpu, attrs);
405     trace_gic_acknowledge_irq(gic_get_vcpu_real_id(cpu), irq);
406 
407     if (irq >= GIC_MAXIRQ) {
408         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
409         return irq;
410     }
411 
412     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
413         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
414         return 1023;
415     }
416 
417     gic_activate_irq(s, cpu, irq);
418 
419     if (s->revision == REV_11MPCORE) {
420         /* Clear pending flags for both level and edge triggered interrupts.
421          * Level triggered IRQs will be reasserted once they become inactive.
422          */
423         gic_clear_pending(s, irq, cpu);
424         ret = irq;
425     } else {
426         if (irq < GIC_NR_SGIS) {
427             ret = gic_clear_pending_sgi(s, irq, cpu);
428         } else {
429             gic_clear_pending(s, irq, cpu);
430             ret = irq;
431         }
432     }
433 
434     gic_update(s);
435     DPRINTF("ACK %d\n", irq);
436     return ret;
437 }
438 
439 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
440                       MemTxAttrs attrs)
441 {
442     if (s->security_extn && !attrs.secure) {
443         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
444             return; /* Ignore Non-secure access of Group0 IRQ */
445         }
446         val = 0x80 | (val >> 1); /* Non-secure view */
447     }
448 
449     if (irq < GIC_INTERNAL) {
450         s->priority1[irq][cpu] = val;
451     } else {
452         s->priority2[(irq) - GIC_INTERNAL] = val;
453     }
454 }
455 
456 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
457                                  MemTxAttrs attrs)
458 {
459     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
460 
461     if (s->security_extn && !attrs.secure) {
462         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
463             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
464         }
465         prio = (prio << 1) & 0xff; /* Non-secure view */
466     }
467     return prio;
468 }
469 
470 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
471                                   MemTxAttrs attrs)
472 {
473     if (gic_cpu_ns_access(s, cpu, attrs)) {
474         if (s->priority_mask[cpu] & 0x80) {
475             /* Priority Mask in upper half */
476             pmask = 0x80 | (pmask >> 1);
477         } else {
478             /* Non-secure write ignored if priority mask is in lower half */
479             return;
480         }
481     }
482     s->priority_mask[cpu] = pmask;
483 }
484 
485 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
486 {
487     uint32_t pmask = s->priority_mask[cpu];
488 
489     if (gic_cpu_ns_access(s, cpu, attrs)) {
490         if (pmask & 0x80) {
491             /* Priority Mask in upper half, return Non-secure view */
492             pmask = (pmask << 1) & 0xff;
493         } else {
494             /* Priority Mask in lower half, RAZ */
495             pmask = 0;
496         }
497     }
498     return pmask;
499 }
500 
501 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
502 {
503     uint32_t ret = s->cpu_ctlr[cpu];
504 
505     if (gic_cpu_ns_access(s, cpu, attrs)) {
506         /* Construct the NS banked view of GICC_CTLR from the correct
507          * bits of the S banked view. We don't need to move the bypass
508          * control bits because we don't implement that (IMPDEF) part
509          * of the GIC architecture.
510          */
511         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
512     }
513     return ret;
514 }
515 
516 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
517                                 MemTxAttrs attrs)
518 {
519     uint32_t mask;
520 
521     if (gic_cpu_ns_access(s, cpu, attrs)) {
522         /* The NS view can only write certain bits in the register;
523          * the rest are unchanged
524          */
525         mask = GICC_CTLR_EN_GRP1;
526         if (s->revision == 2) {
527             mask |= GICC_CTLR_EOIMODE_NS;
528         }
529         s->cpu_ctlr[cpu] &= ~mask;
530         s->cpu_ctlr[cpu] |= (value << 1) & mask;
531     } else {
532         if (s->revision == 2) {
533             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
534         } else {
535             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
536         }
537         s->cpu_ctlr[cpu] = value & mask;
538     }
539     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
540             "Group1 Interrupts %sabled\n", cpu,
541             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
542             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
543 }
544 
545 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
546 {
547     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
548         /* Idle priority */
549         return 0xff;
550     }
551 
552     if (gic_cpu_ns_access(s, cpu, attrs)) {
553         if (s->running_priority[cpu] & 0x80) {
554             /* Running priority in upper half of range: return the Non-secure
555              * view of the priority.
556              */
557             return s->running_priority[cpu] << 1;
558         } else {
559             /* Running priority in lower half of range: RAZ */
560             return 0;
561         }
562     } else {
563         return s->running_priority[cpu];
564     }
565 }
566 
567 /* Return true if we should split priority drop and interrupt deactivation,
568  * ie whether the relevant EOIMode bit is set.
569  */
570 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
571 {
572     if (s->revision != 2) {
573         /* Before GICv2 prio-drop and deactivate are not separable */
574         return false;
575     }
576     if (gic_cpu_ns_access(s, cpu, attrs)) {
577         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
578     }
579     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
580 }
581 
582 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
583 {
584     int group;
585 
586     if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
587         /*
588          * This handles two cases:
589          * 1. If software writes the ID of a spurious interrupt [ie 1023]
590          * to the GICC_DIR, the GIC ignores that write.
591          * 2. If software writes the number of a non-existent interrupt
592          * this must be a subcase of "value written is not an active interrupt"
593          * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
594          * all IRQs potentially exist, so this limit does not apply.
595          */
596         return;
597     }
598 
599     if (!gic_eoi_split(s, cpu, attrs)) {
600         /* This is UNPREDICTABLE; we choose to ignore it */
601         qemu_log_mask(LOG_GUEST_ERROR,
602                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
603         return;
604     }
605 
606     if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
607         /* This vIRQ does not have an LR entry which is either active or
608          * pending and active. Increment EOICount and ignore the write.
609          */
610         int rcpu = gic_get_vcpu_real_id(cpu);
611         s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
612         return;
613     }
614 
615     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
616 
617     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
618         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
619         return;
620     }
621 
622     gic_clear_active(s, irq, cpu);
623 }
624 
625 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
626 {
627     int cm = 1 << cpu;
628     int group;
629 
630     DPRINTF("EOI %d\n", irq);
631     if (gic_is_vcpu(cpu)) {
632         /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
633          * running prio is < 0x100.
634          */
635         bool prio_drop = s->running_priority[cpu] < 0x100;
636 
637         if (irq >= GIC_MAXIRQ) {
638             /* Ignore spurious interrupt */
639             return;
640         }
641 
642         gic_drop_prio(s, cpu, 0);
643 
644         if (!gic_eoi_split(s, cpu, attrs)) {
645             bool valid = gic_virq_is_valid(s, irq, cpu);
646             if (prio_drop && !valid) {
647                 /* We are in a situation where:
648                  *   - V_CTRL.EOIMode is false (no EOI split),
649                  *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
650                  *   - This vIRQ does not have an LR entry which is either
651                  *     active or pending and active.
652                  * In that case, we must increment EOICount.
653                  */
654                 int rcpu = gic_get_vcpu_real_id(cpu);
655                 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
656             } else if (valid) {
657                 gic_clear_active(s, irq, cpu);
658             }
659         }
660 
661         return;
662     }
663 
664     if (irq >= s->num_irq) {
665         /* This handles two cases:
666          * 1. If software writes the ID of a spurious interrupt [ie 1023]
667          * to the GICC_EOIR, the GIC ignores that write.
668          * 2. If software writes the number of a non-existent interrupt
669          * this must be a subcase of "value written does not match the last
670          * valid interrupt value read from the Interrupt Acknowledge
671          * register" and so this is UNPREDICTABLE. We choose to ignore it.
672          */
673         return;
674     }
675     if (s->running_priority[cpu] == 0x100) {
676         return; /* No active IRQ.  */
677     }
678 
679     if (s->revision == REV_11MPCORE) {
680         /* Mark level triggered interrupts as pending if they are still
681            raised.  */
682         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
683             && GIC_DIST_TEST_LEVEL(irq, cm)
684             && (GIC_DIST_TARGET(irq) & cm) != 0) {
685             DPRINTF("Set %d pending mask %x\n", irq, cm);
686             GIC_DIST_SET_PENDING(irq, cm);
687         }
688     }
689 
690     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
691 
692     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
693         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
694         return;
695     }
696 
697     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
698      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
699      * i.e. go ahead and complete the irq anyway.
700      */
701 
702     gic_drop_prio(s, cpu, group);
703 
704     /* In GICv2 the guest can choose to split priority-drop and deactivate */
705     if (!gic_eoi_split(s, cpu, attrs)) {
706         gic_clear_active(s, irq, cpu);
707     }
708     gic_update(s);
709 }
710 
711 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
712 {
713     GICState *s = (GICState *)opaque;
714     uint32_t res;
715     int irq;
716     int i;
717     int cpu;
718     int cm;
719     int mask;
720 
721     cpu = gic_get_current_cpu(s);
722     cm = 1 << cpu;
723     if (offset < 0x100) {
724         if (offset == 0) {      /* GICD_CTLR */
725             if (s->security_extn && !attrs.secure) {
726                 /* The NS bank of this register is just an alias of the
727                  * EnableGrp1 bit in the S bank version.
728                  */
729                 return extract32(s->ctlr, 1, 1);
730             } else {
731                 return s->ctlr;
732             }
733         }
734         if (offset == 4)
735             /* Interrupt Controller Type Register */
736             return ((s->num_irq / 32) - 1)
737                     | ((s->num_cpu - 1) << 5)
738                     | (s->security_extn << 10);
739         if (offset < 0x08)
740             return 0;
741         if (offset >= 0x80) {
742             /* Interrupt Group Registers: these RAZ/WI if this is an NS
743              * access to a GIC with the security extensions, or if the GIC
744              * doesn't have groups at all.
745              */
746             res = 0;
747             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
748                 /* Every byte offset holds 8 group status bits */
749                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
750                 if (irq >= s->num_irq) {
751                     goto bad_reg;
752                 }
753                 for (i = 0; i < 8; i++) {
754                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
755                         res |= (1 << i);
756                     }
757                 }
758             }
759             return res;
760         }
761         goto bad_reg;
762     } else if (offset < 0x200) {
763         /* Interrupt Set/Clear Enable.  */
764         if (offset < 0x180)
765             irq = (offset - 0x100) * 8;
766         else
767             irq = (offset - 0x180) * 8;
768         irq += GIC_BASE_IRQ;
769         if (irq >= s->num_irq)
770             goto bad_reg;
771         res = 0;
772         for (i = 0; i < 8; i++) {
773             if (s->security_extn && !attrs.secure &&
774                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
775                 continue; /* Ignore Non-secure access of Group0 IRQ */
776             }
777 
778             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
779                 res |= (1 << i);
780             }
781         }
782     } else if (offset < 0x300) {
783         /* Interrupt Set/Clear Pending.  */
784         if (offset < 0x280)
785             irq = (offset - 0x200) * 8;
786         else
787             irq = (offset - 0x280) * 8;
788         irq += GIC_BASE_IRQ;
789         if (irq >= s->num_irq)
790             goto bad_reg;
791         res = 0;
792         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
793         for (i = 0; i < 8; i++) {
794             if (s->security_extn && !attrs.secure &&
795                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
796                 continue; /* Ignore Non-secure access of Group0 IRQ */
797             }
798 
799             if (gic_test_pending(s, irq + i, mask)) {
800                 res |= (1 << i);
801             }
802         }
803     } else if (offset < 0x400) {
804         /* Interrupt Set/Clear Active.  */
805         if (offset < 0x380) {
806             irq = (offset - 0x300) * 8;
807         } else if (s->revision == 2) {
808             irq = (offset - 0x380) * 8;
809         } else {
810             goto bad_reg;
811         }
812 
813         irq += GIC_BASE_IRQ;
814         if (irq >= s->num_irq)
815             goto bad_reg;
816         res = 0;
817         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
818         for (i = 0; i < 8; i++) {
819             if (s->security_extn && !attrs.secure &&
820                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
821                 continue; /* Ignore Non-secure access of Group0 IRQ */
822             }
823 
824             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
825                 res |= (1 << i);
826             }
827         }
828     } else if (offset < 0x800) {
829         /* Interrupt Priority.  */
830         irq = (offset - 0x400) + GIC_BASE_IRQ;
831         if (irq >= s->num_irq)
832             goto bad_reg;
833         res = gic_dist_get_priority(s, cpu, irq, attrs);
834     } else if (offset < 0xc00) {
835         /* Interrupt CPU Target.  */
836         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
837             /* For uniprocessor GICs these RAZ/WI */
838             res = 0;
839         } else {
840             irq = (offset - 0x800) + GIC_BASE_IRQ;
841             if (irq >= s->num_irq) {
842                 goto bad_reg;
843             }
844             if (irq < 29 && s->revision == REV_11MPCORE) {
845                 res = 0;
846             } else if (irq < GIC_INTERNAL) {
847                 res = cm;
848             } else {
849                 res = GIC_DIST_TARGET(irq);
850             }
851         }
852     } else if (offset < 0xf00) {
853         /* Interrupt Configuration.  */
854         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
855         if (irq >= s->num_irq)
856             goto bad_reg;
857         res = 0;
858         for (i = 0; i < 4; i++) {
859             if (s->security_extn && !attrs.secure &&
860                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
861                 continue; /* Ignore Non-secure access of Group0 IRQ */
862             }
863 
864             if (GIC_DIST_TEST_MODEL(irq + i)) {
865                 res |= (1 << (i * 2));
866             }
867             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
868                 res |= (2 << (i * 2));
869             }
870         }
871     } else if (offset < 0xf10) {
872         goto bad_reg;
873     } else if (offset < 0xf30) {
874         if (s->revision == REV_11MPCORE) {
875             goto bad_reg;
876         }
877 
878         if (offset < 0xf20) {
879             /* GICD_CPENDSGIRn */
880             irq = (offset - 0xf10);
881         } else {
882             irq = (offset - 0xf20);
883             /* GICD_SPENDSGIRn */
884         }
885 
886         if (s->security_extn && !attrs.secure &&
887             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
888             res = 0; /* Ignore Non-secure access of Group0 IRQ */
889         } else {
890             res = s->sgi_pending[irq][cpu];
891         }
892     } else if (offset < 0xfd0) {
893         goto bad_reg;
894     } else if (offset < 0x1000) {
895         if (offset & 3) {
896             res = 0;
897         } else {
898             switch (s->revision) {
899             case REV_11MPCORE:
900                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
901                 break;
902             case 1:
903                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
904                 break;
905             case 2:
906                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
907                 break;
908             default:
909                 res = 0;
910             }
911         }
912     } else {
913         g_assert_not_reached();
914     }
915     return res;
916 bad_reg:
917     qemu_log_mask(LOG_GUEST_ERROR,
918                   "gic_dist_readb: Bad offset %x\n", (int)offset);
919     return 0;
920 }
921 
922 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
923                                  unsigned size, MemTxAttrs attrs)
924 {
925     switch (size) {
926     case 1:
927         *data = gic_dist_readb(opaque, offset, attrs);
928         return MEMTX_OK;
929     case 2:
930         *data = gic_dist_readb(opaque, offset, attrs);
931         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
932         return MEMTX_OK;
933     case 4:
934         *data = gic_dist_readb(opaque, offset, attrs);
935         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
936         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
937         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
938         return MEMTX_OK;
939     default:
940         return MEMTX_ERROR;
941     }
942 }
943 
944 static void gic_dist_writeb(void *opaque, hwaddr offset,
945                             uint32_t value, MemTxAttrs attrs)
946 {
947     GICState *s = (GICState *)opaque;
948     int irq;
949     int i;
950     int cpu;
951 
952     cpu = gic_get_current_cpu(s);
953     if (offset < 0x100) {
954         if (offset == 0) {
955             if (s->security_extn && !attrs.secure) {
956                 /* NS version is just an alias of the S version's bit 1 */
957                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
958             } else if (gic_has_groups(s)) {
959                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
960             } else {
961                 s->ctlr = value & GICD_CTLR_EN_GRP0;
962             }
963             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
964                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
965                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
966         } else if (offset < 4) {
967             /* ignored.  */
968         } else if (offset >= 0x80) {
969             /* Interrupt Group Registers: RAZ/WI for NS access to secure
970              * GIC, or for GICs without groups.
971              */
972             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
973                 /* Every byte offset holds 8 group status bits */
974                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
975                 if (irq >= s->num_irq) {
976                     goto bad_reg;
977                 }
978                 for (i = 0; i < 8; i++) {
979                     /* Group bits are banked for private interrupts */
980                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
981                     if (value & (1 << i)) {
982                         /* Group1 (Non-secure) */
983                         GIC_DIST_SET_GROUP(irq + i, cm);
984                     } else {
985                         /* Group0 (Secure) */
986                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
987                     }
988                 }
989             }
990         } else {
991             goto bad_reg;
992         }
993     } else if (offset < 0x180) {
994         /* Interrupt Set Enable.  */
995         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
996         if (irq >= s->num_irq)
997             goto bad_reg;
998         if (irq < GIC_NR_SGIS) {
999             value = 0xff;
1000         }
1001 
1002         for (i = 0; i < 8; i++) {
1003             if (value & (1 << i)) {
1004                 int mask =
1005                     (irq < GIC_INTERNAL) ? (1 << cpu)
1006                                          : GIC_DIST_TARGET(irq + i);
1007                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1008 
1009                 if (s->security_extn && !attrs.secure &&
1010                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1011                     continue; /* Ignore Non-secure access of Group0 IRQ */
1012                 }
1013 
1014                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1015                     DPRINTF("Enabled IRQ %d\n", irq + i);
1016                     trace_gic_enable_irq(irq + i);
1017                 }
1018                 GIC_DIST_SET_ENABLED(irq + i, cm);
1019                 /* If a raised level triggered IRQ enabled then mark
1020                    is as pending.  */
1021                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1022                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1023                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1024                     GIC_DIST_SET_PENDING(irq + i, mask);
1025                 }
1026             }
1027         }
1028     } else if (offset < 0x200) {
1029         /* Interrupt Clear Enable.  */
1030         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
1031         if (irq >= s->num_irq)
1032             goto bad_reg;
1033         if (irq < GIC_NR_SGIS) {
1034             value = 0;
1035         }
1036 
1037         for (i = 0; i < 8; i++) {
1038             if (value & (1 << i)) {
1039                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1040 
1041                 if (s->security_extn && !attrs.secure &&
1042                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1043                     continue; /* Ignore Non-secure access of Group0 IRQ */
1044                 }
1045 
1046                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1047                     DPRINTF("Disabled IRQ %d\n", irq + i);
1048                     trace_gic_disable_irq(irq + i);
1049                 }
1050                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1051             }
1052         }
1053     } else if (offset < 0x280) {
1054         /* Interrupt Set Pending.  */
1055         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
1056         if (irq >= s->num_irq)
1057             goto bad_reg;
1058         if (irq < GIC_NR_SGIS) {
1059             value = 0;
1060         }
1061 
1062         for (i = 0; i < 8; i++) {
1063             if (value & (1 << i)) {
1064                 if (s->security_extn && !attrs.secure &&
1065                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1066                     continue; /* Ignore Non-secure access of Group0 IRQ */
1067                 }
1068 
1069                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1070             }
1071         }
1072     } else if (offset < 0x300) {
1073         /* Interrupt Clear Pending.  */
1074         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
1075         if (irq >= s->num_irq)
1076             goto bad_reg;
1077         if (irq < GIC_NR_SGIS) {
1078             value = 0;
1079         }
1080 
1081         for (i = 0; i < 8; i++) {
1082             if (s->security_extn && !attrs.secure &&
1083                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1084                 continue; /* Ignore Non-secure access of Group0 IRQ */
1085             }
1086 
1087             /* ??? This currently clears the pending bit for all CPUs, even
1088                for per-CPU interrupts.  It's unclear whether this is the
1089                corect behavior.  */
1090             if (value & (1 << i)) {
1091                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1092             }
1093         }
1094     } else if (offset < 0x380) {
1095         /* Interrupt Set Active.  */
1096         if (s->revision != 2) {
1097             goto bad_reg;
1098         }
1099 
1100         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
1101         if (irq >= s->num_irq) {
1102             goto bad_reg;
1103         }
1104 
1105         /* This register is banked per-cpu for PPIs */
1106         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1107 
1108         for (i = 0; i < 8; i++) {
1109             if (s->security_extn && !attrs.secure &&
1110                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1111                 continue; /* Ignore Non-secure access of Group0 IRQ */
1112             }
1113 
1114             if (value & (1 << i)) {
1115                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1116             }
1117         }
1118     } else if (offset < 0x400) {
1119         /* Interrupt Clear Active.  */
1120         if (s->revision != 2) {
1121             goto bad_reg;
1122         }
1123 
1124         irq = (offset - 0x380) * 8 + GIC_BASE_IRQ;
1125         if (irq >= s->num_irq) {
1126             goto bad_reg;
1127         }
1128 
1129         /* This register is banked per-cpu for PPIs */
1130         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1131 
1132         for (i = 0; i < 8; i++) {
1133             if (s->security_extn && !attrs.secure &&
1134                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1135                 continue; /* Ignore Non-secure access of Group0 IRQ */
1136             }
1137 
1138             if (value & (1 << i)) {
1139                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1140             }
1141         }
1142     } else if (offset < 0x800) {
1143         /* Interrupt Priority.  */
1144         irq = (offset - 0x400) + GIC_BASE_IRQ;
1145         if (irq >= s->num_irq)
1146             goto bad_reg;
1147         gic_dist_set_priority(s, cpu, irq, value, attrs);
1148     } else if (offset < 0xc00) {
1149         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1150          * annoying exception of the 11MPCore's GIC.
1151          */
1152         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1153             irq = (offset - 0x800) + GIC_BASE_IRQ;
1154             if (irq >= s->num_irq) {
1155                 goto bad_reg;
1156             }
1157             if (irq < 29 && s->revision == REV_11MPCORE) {
1158                 value = 0;
1159             } else if (irq < GIC_INTERNAL) {
1160                 value = ALL_CPU_MASK;
1161             }
1162             s->irq_target[irq] = value & ALL_CPU_MASK;
1163         }
1164     } else if (offset < 0xf00) {
1165         /* Interrupt Configuration.  */
1166         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1167         if (irq >= s->num_irq)
1168             goto bad_reg;
1169         if (irq < GIC_NR_SGIS)
1170             value |= 0xaa;
1171         for (i = 0; i < 4; i++) {
1172             if (s->security_extn && !attrs.secure &&
1173                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1174                 continue; /* Ignore Non-secure access of Group0 IRQ */
1175             }
1176 
1177             if (s->revision == REV_11MPCORE) {
1178                 if (value & (1 << (i * 2))) {
1179                     GIC_DIST_SET_MODEL(irq + i);
1180                 } else {
1181                     GIC_DIST_CLEAR_MODEL(irq + i);
1182                 }
1183             }
1184             if (value & (2 << (i * 2))) {
1185                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1186             } else {
1187                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1188             }
1189         }
1190     } else if (offset < 0xf10) {
1191         /* 0xf00 is only handled for 32-bit writes.  */
1192         goto bad_reg;
1193     } else if (offset < 0xf20) {
1194         /* GICD_CPENDSGIRn */
1195         if (s->revision == REV_11MPCORE) {
1196             goto bad_reg;
1197         }
1198         irq = (offset - 0xf10);
1199 
1200         if (!s->security_extn || attrs.secure ||
1201             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1202             s->sgi_pending[irq][cpu] &= ~value;
1203             if (s->sgi_pending[irq][cpu] == 0) {
1204                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1205             }
1206         }
1207     } else if (offset < 0xf30) {
1208         /* GICD_SPENDSGIRn */
1209         if (s->revision == REV_11MPCORE) {
1210             goto bad_reg;
1211         }
1212         irq = (offset - 0xf20);
1213 
1214         if (!s->security_extn || attrs.secure ||
1215             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1216             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1217             s->sgi_pending[irq][cpu] |= value;
1218         }
1219     } else {
1220         goto bad_reg;
1221     }
1222     gic_update(s);
1223     return;
1224 bad_reg:
1225     qemu_log_mask(LOG_GUEST_ERROR,
1226                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1227 }
1228 
1229 static void gic_dist_writew(void *opaque, hwaddr offset,
1230                             uint32_t value, MemTxAttrs attrs)
1231 {
1232     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1233     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1234 }
1235 
1236 static void gic_dist_writel(void *opaque, hwaddr offset,
1237                             uint32_t value, MemTxAttrs attrs)
1238 {
1239     GICState *s = (GICState *)opaque;
1240     if (offset == 0xf00) {
1241         int cpu;
1242         int irq;
1243         int mask;
1244         int target_cpu;
1245 
1246         cpu = gic_get_current_cpu(s);
1247         irq = value & 0x3ff;
1248         switch ((value >> 24) & 3) {
1249         case 0:
1250             mask = (value >> 16) & ALL_CPU_MASK;
1251             break;
1252         case 1:
1253             mask = ALL_CPU_MASK ^ (1 << cpu);
1254             break;
1255         case 2:
1256             mask = 1 << cpu;
1257             break;
1258         default:
1259             DPRINTF("Bad Soft Int target filter\n");
1260             mask = ALL_CPU_MASK;
1261             break;
1262         }
1263         GIC_DIST_SET_PENDING(irq, mask);
1264         target_cpu = ctz32(mask);
1265         while (target_cpu < GIC_NCPU) {
1266             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1267             mask &= ~(1 << target_cpu);
1268             target_cpu = ctz32(mask);
1269         }
1270         gic_update(s);
1271         return;
1272     }
1273     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1274     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1275 }
1276 
1277 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1278                                   unsigned size, MemTxAttrs attrs)
1279 {
1280     switch (size) {
1281     case 1:
1282         gic_dist_writeb(opaque, offset, data, attrs);
1283         return MEMTX_OK;
1284     case 2:
1285         gic_dist_writew(opaque, offset, data, attrs);
1286         return MEMTX_OK;
1287     case 4:
1288         gic_dist_writel(opaque, offset, data, attrs);
1289         return MEMTX_OK;
1290     default:
1291         return MEMTX_ERROR;
1292     }
1293 }
1294 
1295 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1296 {
1297     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1298      * second half of GICC_NSAPR.
1299      */
1300     switch (GIC_MIN_BPR) {
1301     case 0:
1302         if (regno < 2) {
1303             return s->nsapr[regno + 2][cpu];
1304         }
1305         break;
1306     case 1:
1307         if (regno == 0) {
1308             return s->nsapr[regno + 1][cpu];
1309         }
1310         break;
1311     case 2:
1312         if (regno == 0) {
1313             return extract32(s->nsapr[0][cpu], 16, 16);
1314         }
1315         break;
1316     case 3:
1317         if (regno == 0) {
1318             return extract32(s->nsapr[0][cpu], 8, 8);
1319         }
1320         break;
1321     default:
1322         g_assert_not_reached();
1323     }
1324     return 0;
1325 }
1326 
1327 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1328                                          uint32_t value)
1329 {
1330     /* Write the Nonsecure view of GICC_APR<regno>. */
1331     switch (GIC_MIN_BPR) {
1332     case 0:
1333         if (regno < 2) {
1334             s->nsapr[regno + 2][cpu] = value;
1335         }
1336         break;
1337     case 1:
1338         if (regno == 0) {
1339             s->nsapr[regno + 1][cpu] = value;
1340         }
1341         break;
1342     case 2:
1343         if (regno == 0) {
1344             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1345         }
1346         break;
1347     case 3:
1348         if (regno == 0) {
1349             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1350         }
1351         break;
1352     default:
1353         g_assert_not_reached();
1354     }
1355 }
1356 
1357 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1358                                 uint64_t *data, MemTxAttrs attrs)
1359 {
1360     switch (offset) {
1361     case 0x00: /* Control */
1362         *data = gic_get_cpu_control(s, cpu, attrs);
1363         break;
1364     case 0x04: /* Priority mask */
1365         *data = gic_get_priority_mask(s, cpu, attrs);
1366         break;
1367     case 0x08: /* Binary Point */
1368         if (gic_cpu_ns_access(s, cpu, attrs)) {
1369             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1370                 /* NS view of BPR when CBPR is 1 */
1371                 *data = MIN(s->bpr[cpu] + 1, 7);
1372             } else {
1373                 /* BPR is banked. Non-secure copy stored in ABPR. */
1374                 *data = s->abpr[cpu];
1375             }
1376         } else {
1377             *data = s->bpr[cpu];
1378         }
1379         break;
1380     case 0x0c: /* Acknowledge */
1381         *data = gic_acknowledge_irq(s, cpu, attrs);
1382         break;
1383     case 0x14: /* Running Priority */
1384         *data = gic_get_running_priority(s, cpu, attrs);
1385         break;
1386     case 0x18: /* Highest Pending Interrupt */
1387         *data = gic_get_current_pending_irq(s, cpu, attrs);
1388         break;
1389     case 0x1c: /* Aliased Binary Point */
1390         /* GIC v2, no security: ABPR
1391          * GIC v1, no security: not implemented (RAZ/WI)
1392          * With security extensions, secure access: ABPR (alias of NS BPR)
1393          * With security extensions, nonsecure access: RAZ/WI
1394          */
1395         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1396             *data = 0;
1397         } else {
1398             *data = s->abpr[cpu];
1399         }
1400         break;
1401     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1402     {
1403         int regno = (offset - 0xd0) / 4;
1404         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1405 
1406         if (regno >= nr_aprs || s->revision != 2) {
1407             *data = 0;
1408         } else if (gic_is_vcpu(cpu)) {
1409             *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1410         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1411             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1412             *data = gic_apr_ns_view(s, regno, cpu);
1413         } else {
1414             *data = s->apr[regno][cpu];
1415         }
1416         break;
1417     }
1418     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1419     {
1420         int regno = (offset - 0xe0) / 4;
1421 
1422         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1423             gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1424             *data = 0;
1425         } else {
1426             *data = s->nsapr[regno][cpu];
1427         }
1428         break;
1429     }
1430     default:
1431         qemu_log_mask(LOG_GUEST_ERROR,
1432                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1433         *data = 0;
1434         break;
1435     }
1436     return MEMTX_OK;
1437 }
1438 
1439 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1440                                  uint32_t value, MemTxAttrs attrs)
1441 {
1442     switch (offset) {
1443     case 0x00: /* Control */
1444         gic_set_cpu_control(s, cpu, value, attrs);
1445         break;
1446     case 0x04: /* Priority mask */
1447         gic_set_priority_mask(s, cpu, value, attrs);
1448         break;
1449     case 0x08: /* Binary Point */
1450         if (gic_cpu_ns_access(s, cpu, attrs)) {
1451             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1452                 /* WI when CBPR is 1 */
1453                 return MEMTX_OK;
1454             } else {
1455                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1456             }
1457         } else {
1458             int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1459             s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1460         }
1461         break;
1462     case 0x10: /* End Of Interrupt */
1463         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1464         return MEMTX_OK;
1465     case 0x1c: /* Aliased Binary Point */
1466         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1467             /* unimplemented, or NS access: RAZ/WI */
1468             return MEMTX_OK;
1469         } else {
1470             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1471         }
1472         break;
1473     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1474     {
1475         int regno = (offset - 0xd0) / 4;
1476         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1477 
1478         if (regno >= nr_aprs || s->revision != 2) {
1479             return MEMTX_OK;
1480         }
1481         if (gic_is_vcpu(cpu)) {
1482             s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1483         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1484             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1485             gic_apr_write_ns_view(s, regno, cpu, value);
1486         } else {
1487             s->apr[regno][cpu] = value;
1488         }
1489         break;
1490     }
1491     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1492     {
1493         int regno = (offset - 0xe0) / 4;
1494 
1495         if (regno >= GIC_NR_APRS || s->revision != 2) {
1496             return MEMTX_OK;
1497         }
1498         if (gic_is_vcpu(cpu)) {
1499             return MEMTX_OK;
1500         }
1501         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1502             return MEMTX_OK;
1503         }
1504         s->nsapr[regno][cpu] = value;
1505         break;
1506     }
1507     case 0x1000:
1508         /* GICC_DIR */
1509         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1510         break;
1511     default:
1512         qemu_log_mask(LOG_GUEST_ERROR,
1513                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1514         return MEMTX_OK;
1515     }
1516     gic_update(s);
1517     return MEMTX_OK;
1518 }
1519 
1520 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1521 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1522                                     unsigned size, MemTxAttrs attrs)
1523 {
1524     GICState *s = (GICState *)opaque;
1525     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1526 }
1527 
1528 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1529                                      uint64_t value, unsigned size,
1530                                      MemTxAttrs attrs)
1531 {
1532     GICState *s = (GICState *)opaque;
1533     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1534 }
1535 
1536 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1537  * These just decode the opaque pointer into GICState* + cpu id.
1538  */
1539 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1540                                    unsigned size, MemTxAttrs attrs)
1541 {
1542     GICState **backref = (GICState **)opaque;
1543     GICState *s = *backref;
1544     int id = (backref - s->backref);
1545     return gic_cpu_read(s, id, addr, data, attrs);
1546 }
1547 
1548 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1549                                     uint64_t value, unsigned size,
1550                                     MemTxAttrs attrs)
1551 {
1552     GICState **backref = (GICState **)opaque;
1553     GICState *s = *backref;
1554     int id = (backref - s->backref);
1555     return gic_cpu_write(s, id, addr, value, attrs);
1556 }
1557 
1558 static const MemoryRegionOps gic_ops[2] = {
1559     {
1560         .read_with_attrs = gic_dist_read,
1561         .write_with_attrs = gic_dist_write,
1562         .endianness = DEVICE_NATIVE_ENDIAN,
1563     },
1564     {
1565         .read_with_attrs = gic_thiscpu_read,
1566         .write_with_attrs = gic_thiscpu_write,
1567         .endianness = DEVICE_NATIVE_ENDIAN,
1568     }
1569 };
1570 
1571 static const MemoryRegionOps gic_cpu_ops = {
1572     .read_with_attrs = gic_do_cpu_read,
1573     .write_with_attrs = gic_do_cpu_write,
1574     .endianness = DEVICE_NATIVE_ENDIAN,
1575 };
1576 
1577 static void arm_gic_realize(DeviceState *dev, Error **errp)
1578 {
1579     /* Device instance realize function for the GIC sysbus device */
1580     int i;
1581     GICState *s = ARM_GIC(dev);
1582     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1583     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1584     Error *local_err = NULL;
1585 
1586     agc->parent_realize(dev, &local_err);
1587     if (local_err) {
1588         error_propagate(errp, local_err);
1589         return;
1590     }
1591 
1592     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1593         error_setg(errp, "KVM with user space irqchip only works when the "
1594                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
1595         return;
1596     }
1597 
1598     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1599     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, NULL);
1600 
1601     /* Extra core-specific regions for the CPU interfaces. This is
1602      * necessary for "franken-GIC" implementations, for example on
1603      * Exynos 4.
1604      * NB that the memory region size of 0x100 applies for the 11MPCore
1605      * and also cores following the GIC v1 spec (ie A9).
1606      * GIC v2 defines a larger memory region (0x1000) so this will need
1607      * to be extended when we implement A15.
1608      */
1609     for (i = 0; i < s->num_cpu; i++) {
1610         s->backref[i] = s;
1611         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1612                               &s->backref[i], "gic_cpu", 0x100);
1613         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1614     }
1615 }
1616 
1617 static void arm_gic_class_init(ObjectClass *klass, void *data)
1618 {
1619     DeviceClass *dc = DEVICE_CLASS(klass);
1620     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1621 
1622     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1623 }
1624 
1625 static const TypeInfo arm_gic_info = {
1626     .name = TYPE_ARM_GIC,
1627     .parent = TYPE_ARM_GIC_COMMON,
1628     .instance_size = sizeof(GICState),
1629     .class_init = arm_gic_class_init,
1630     .class_size = sizeof(ARMGICClass),
1631 };
1632 
1633 static void arm_gic_register_types(void)
1634 {
1635     type_register_static(&arm_gic_info);
1636 }
1637 
1638 type_init(arm_gic_register_types)
1639