xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 71aa735b0a12201c2b14a76004ee3a58ff43798c)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 /* Return true if this GIC config has interrupt groups, which is
65  * true if we're a GICv2, or a GICv1 with the security extensions.
66  */
67 static inline bool gic_has_groups(GICState *s)
68 {
69     return s->revision == 2 || s->security_extn;
70 }
71 
72 /* TODO: Many places that call this routine could be optimized.  */
73 /* Update interrupt status after enabled or pending bits have been changed.  */
74 void gic_update(GICState *s)
75 {
76     int best_irq;
77     int best_prio;
78     int irq;
79     int irq_level, fiq_level;
80     int cpu;
81     int cm;
82 
83     for (cpu = 0; cpu < s->num_cpu; cpu++) {
84         cm = 1 << cpu;
85         s->current_pending[cpu] = 1023;
86         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
87             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
88             qemu_irq_lower(s->parent_irq[cpu]);
89             qemu_irq_lower(s->parent_fiq[cpu]);
90             continue;
91         }
92         best_prio = 0x100;
93         best_irq = 1023;
94         for (irq = 0; irq < s->num_irq; irq++) {
95             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96                 (!GIC_TEST_ACTIVE(irq, cm)) &&
97                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
98                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
99                     best_prio = GIC_GET_PRIORITY(irq, cpu);
100                     best_irq = irq;
101                 }
102             }
103         }
104 
105         if (best_irq != 1023) {
106             trace_gic_update_bestirq(cpu, best_irq, best_prio,
107                 s->priority_mask[cpu], s->running_priority[cpu]);
108         }
109 
110         irq_level = fiq_level = 0;
111 
112         if (best_prio < s->priority_mask[cpu]) {
113             s->current_pending[cpu] = best_irq;
114             if (best_prio < s->running_priority[cpu]) {
115                 int group = GIC_TEST_GROUP(best_irq, cm);
116 
117                 if (extract32(s->ctlr, group, 1) &&
118                     extract32(s->cpu_ctlr[cpu], group, 1)) {
119                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
120                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
121                                 best_irq, cpu);
122                         fiq_level = 1;
123                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
124                     } else {
125                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
126                                 best_irq, cpu);
127                         irq_level = 1;
128                         trace_gic_update_set_irq(cpu, "irq", irq_level);
129                     }
130                 }
131             }
132         }
133 
134         qemu_set_irq(s->parent_irq[cpu], irq_level);
135         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
136     }
137 }
138 
139 void gic_set_pending_private(GICState *s, int cpu, int irq)
140 {
141     int cm = 1 << cpu;
142 
143     if (gic_test_pending(s, irq, cm)) {
144         return;
145     }
146 
147     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
148     GIC_SET_PENDING(irq, cm);
149     gic_update(s);
150 }
151 
152 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
153                                  int cm, int target)
154 {
155     if (level) {
156         GIC_SET_LEVEL(irq, cm);
157         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
158             DPRINTF("Set %d pending mask %x\n", irq, target);
159             GIC_SET_PENDING(irq, target);
160         }
161     } else {
162         GIC_CLEAR_LEVEL(irq, cm);
163     }
164 }
165 
166 static void gic_set_irq_generic(GICState *s, int irq, int level,
167                                 int cm, int target)
168 {
169     if (level) {
170         GIC_SET_LEVEL(irq, cm);
171         DPRINTF("Set %d pending mask %x\n", irq, target);
172         if (GIC_TEST_EDGE_TRIGGER(irq)) {
173             GIC_SET_PENDING(irq, target);
174         }
175     } else {
176         GIC_CLEAR_LEVEL(irq, cm);
177     }
178 }
179 
180 /* Process a change in an external IRQ input.  */
181 static void gic_set_irq(void *opaque, int irq, int level)
182 {
183     /* Meaning of the 'irq' parameter:
184      *  [0..N-1] : external interrupts
185      *  [N..N+31] : PPI (internal) interrupts for CPU 0
186      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
187      *  ...
188      */
189     GICState *s = (GICState *)opaque;
190     int cm, target;
191     if (irq < (s->num_irq - GIC_INTERNAL)) {
192         /* The first external input line is internal interrupt 32.  */
193         cm = ALL_CPU_MASK;
194         irq += GIC_INTERNAL;
195         target = GIC_TARGET(irq);
196     } else {
197         int cpu;
198         irq -= (s->num_irq - GIC_INTERNAL);
199         cpu = irq / GIC_INTERNAL;
200         irq %= GIC_INTERNAL;
201         cm = 1 << cpu;
202         target = cm;
203     }
204 
205     assert(irq >= GIC_NR_SGIS);
206 
207     if (level == GIC_TEST_LEVEL(irq, cm)) {
208         return;
209     }
210 
211     if (s->revision == REV_11MPCORE) {
212         gic_set_irq_11mpcore(s, irq, level, cm, target);
213     } else {
214         gic_set_irq_generic(s, irq, level, cm, target);
215     }
216     trace_gic_set_irq(irq, level, cm, target);
217 
218     gic_update(s);
219 }
220 
221 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
222                                             MemTxAttrs attrs)
223 {
224     uint16_t pending_irq = s->current_pending[cpu];
225 
226     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
227         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
228         /* On a GIC without the security extensions, reading this register
229          * behaves in the same way as a secure access to a GIC with them.
230          */
231         bool secure = !s->security_extn || attrs.secure;
232 
233         if (group == 0 && !secure) {
234             /* Group0 interrupts hidden from Non-secure access */
235             return 1023;
236         }
237         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
238             /* Group1 interrupts only seen by Secure access if
239              * AckCtl bit set.
240              */
241             return 1022;
242         }
243     }
244     return pending_irq;
245 }
246 
247 static int gic_get_group_priority(GICState *s, int cpu, int irq)
248 {
249     /* Return the group priority of the specified interrupt
250      * (which is the top bits of its priority, with the number
251      * of bits masked determined by the applicable binary point register).
252      */
253     int bpr;
254     uint32_t mask;
255 
256     if (gic_has_groups(s) &&
257         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
258         GIC_TEST_GROUP(irq, (1 << cpu))) {
259         bpr = s->abpr[cpu];
260     } else {
261         bpr = s->bpr[cpu];
262     }
263 
264     /* a BPR of 0 means the group priority bits are [7:1];
265      * a BPR of 1 means they are [7:2], and so on down to
266      * a BPR of 7 meaning no group priority bits at all.
267      */
268     mask = ~0U << ((bpr & 7) + 1);
269 
270     return GIC_GET_PRIORITY(irq, cpu) & mask;
271 }
272 
273 static void gic_activate_irq(GICState *s, int cpu, int irq)
274 {
275     /* Set the appropriate Active Priority Register bit for this IRQ,
276      * and update the running priority.
277      */
278     int prio = gic_get_group_priority(s, cpu, irq);
279     int preemption_level = prio >> (GIC_MIN_BPR + 1);
280     int regno = preemption_level / 32;
281     int bitno = preemption_level % 32;
282 
283     if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
284         s->nsapr[regno][cpu] |= (1 << bitno);
285     } else {
286         s->apr[regno][cpu] |= (1 << bitno);
287     }
288 
289     s->running_priority[cpu] = prio;
290     GIC_SET_ACTIVE(irq, 1 << cpu);
291 }
292 
293 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
294 {
295     /* Recalculate the current running priority for this CPU based
296      * on the set bits in the Active Priority Registers.
297      */
298     int i;
299     for (i = 0; i < GIC_NR_APRS; i++) {
300         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
301         if (!apr) {
302             continue;
303         }
304         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
305     }
306     return 0x100;
307 }
308 
309 static void gic_drop_prio(GICState *s, int cpu, int group)
310 {
311     /* Drop the priority of the currently active interrupt in the
312      * specified group.
313      *
314      * Note that we can guarantee (because of the requirement to nest
315      * GICC_IAR reads [which activate an interrupt and raise priority]
316      * with GICC_EOIR writes [which drop the priority for the interrupt])
317      * that the interrupt we're being called for is the highest priority
318      * active interrupt, meaning that it has the lowest set bit in the
319      * APR registers.
320      *
321      * If the guest does not honour the ordering constraints then the
322      * behaviour of the GIC is UNPREDICTABLE, which for us means that
323      * the values of the APR registers might become incorrect and the
324      * running priority will be wrong, so interrupts that should preempt
325      * might not do so, and interrupts that should not preempt might do so.
326      */
327     int i;
328 
329     for (i = 0; i < GIC_NR_APRS; i++) {
330         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
331         if (!*papr) {
332             continue;
333         }
334         /* Clear lowest set bit */
335         *papr &= *papr - 1;
336         break;
337     }
338 
339     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
340 }
341 
342 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
343 {
344     int ret, irq, src;
345     int cm = 1 << cpu;
346 
347     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
348      * for the case where this GIC supports grouping and the pending interrupt
349      * is in the wrong group.
350      */
351     irq = gic_get_current_pending_irq(s, cpu, attrs);
352     trace_gic_acknowledge_irq(cpu, irq);
353 
354     if (irq >= GIC_MAXIRQ) {
355         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
356         return irq;
357     }
358 
359     if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
360         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
361         return 1023;
362     }
363 
364     if (s->revision == REV_11MPCORE) {
365         /* Clear pending flags for both level and edge triggered interrupts.
366          * Level triggered IRQs will be reasserted once they become inactive.
367          */
368         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
369         ret = irq;
370     } else {
371         if (irq < GIC_NR_SGIS) {
372             /* Lookup the source CPU for the SGI and clear this in the
373              * sgi_pending map.  Return the src and clear the overall pending
374              * state on this CPU if the SGI is not pending from any CPUs.
375              */
376             assert(s->sgi_pending[irq][cpu] != 0);
377             src = ctz32(s->sgi_pending[irq][cpu]);
378             s->sgi_pending[irq][cpu] &= ~(1 << src);
379             if (s->sgi_pending[irq][cpu] == 0) {
380                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
381             }
382             ret = irq | ((src & 0x7) << 10);
383         } else {
384             /* Clear pending state for both level and edge triggered
385              * interrupts. (level triggered interrupts with an active line
386              * remain pending, see gic_test_pending)
387              */
388             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
389             ret = irq;
390         }
391     }
392 
393     gic_activate_irq(s, cpu, irq);
394     gic_update(s);
395     DPRINTF("ACK %d\n", irq);
396     return ret;
397 }
398 
399 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
400                       MemTxAttrs attrs)
401 {
402     if (s->security_extn && !attrs.secure) {
403         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
404             return; /* Ignore Non-secure access of Group0 IRQ */
405         }
406         val = 0x80 | (val >> 1); /* Non-secure view */
407     }
408 
409     if (irq < GIC_INTERNAL) {
410         s->priority1[irq][cpu] = val;
411     } else {
412         s->priority2[(irq) - GIC_INTERNAL] = val;
413     }
414 }
415 
416 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
417                                  MemTxAttrs attrs)
418 {
419     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
420 
421     if (s->security_extn && !attrs.secure) {
422         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
423             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
424         }
425         prio = (prio << 1) & 0xff; /* Non-secure view */
426     }
427     return prio;
428 }
429 
430 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
431                                   MemTxAttrs attrs)
432 {
433     if (s->security_extn && !attrs.secure) {
434         if (s->priority_mask[cpu] & 0x80) {
435             /* Priority Mask in upper half */
436             pmask = 0x80 | (pmask >> 1);
437         } else {
438             /* Non-secure write ignored if priority mask is in lower half */
439             return;
440         }
441     }
442     s->priority_mask[cpu] = pmask;
443 }
444 
445 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
446 {
447     uint32_t pmask = s->priority_mask[cpu];
448 
449     if (s->security_extn && !attrs.secure) {
450         if (pmask & 0x80) {
451             /* Priority Mask in upper half, return Non-secure view */
452             pmask = (pmask << 1) & 0xff;
453         } else {
454             /* Priority Mask in lower half, RAZ */
455             pmask = 0;
456         }
457     }
458     return pmask;
459 }
460 
461 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
462 {
463     uint32_t ret = s->cpu_ctlr[cpu];
464 
465     if (s->security_extn && !attrs.secure) {
466         /* Construct the NS banked view of GICC_CTLR from the correct
467          * bits of the S banked view. We don't need to move the bypass
468          * control bits because we don't implement that (IMPDEF) part
469          * of the GIC architecture.
470          */
471         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
472     }
473     return ret;
474 }
475 
476 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
477                                 MemTxAttrs attrs)
478 {
479     uint32_t mask;
480 
481     if (s->security_extn && !attrs.secure) {
482         /* The NS view can only write certain bits in the register;
483          * the rest are unchanged
484          */
485         mask = GICC_CTLR_EN_GRP1;
486         if (s->revision == 2) {
487             mask |= GICC_CTLR_EOIMODE_NS;
488         }
489         s->cpu_ctlr[cpu] &= ~mask;
490         s->cpu_ctlr[cpu] |= (value << 1) & mask;
491     } else {
492         if (s->revision == 2) {
493             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
494         } else {
495             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
496         }
497         s->cpu_ctlr[cpu] = value & mask;
498     }
499     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
500             "Group1 Interrupts %sabled\n", cpu,
501             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
502             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
503 }
504 
505 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
506 {
507     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
508         /* Idle priority */
509         return 0xff;
510     }
511 
512     if (s->security_extn && !attrs.secure) {
513         if (s->running_priority[cpu] & 0x80) {
514             /* Running priority in upper half of range: return the Non-secure
515              * view of the priority.
516              */
517             return s->running_priority[cpu] << 1;
518         } else {
519             /* Running priority in lower half of range: RAZ */
520             return 0;
521         }
522     } else {
523         return s->running_priority[cpu];
524     }
525 }
526 
527 /* Return true if we should split priority drop and interrupt deactivation,
528  * ie whether the relevant EOIMode bit is set.
529  */
530 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
531 {
532     if (s->revision != 2) {
533         /* Before GICv2 prio-drop and deactivate are not separable */
534         return false;
535     }
536     if (s->security_extn && !attrs.secure) {
537         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
538     }
539     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
540 }
541 
542 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
543 {
544     int cm = 1 << cpu;
545     int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
546 
547     if (!gic_eoi_split(s, cpu, attrs)) {
548         /* This is UNPREDICTABLE; we choose to ignore it */
549         qemu_log_mask(LOG_GUEST_ERROR,
550                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
551         return;
552     }
553 
554     if (s->security_extn && !attrs.secure && !group) {
555         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
556         return;
557     }
558 
559     GIC_CLEAR_ACTIVE(irq, cm);
560 }
561 
562 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
563 {
564     int cm = 1 << cpu;
565     int group;
566 
567     DPRINTF("EOI %d\n", irq);
568     if (irq >= s->num_irq) {
569         /* This handles two cases:
570          * 1. If software writes the ID of a spurious interrupt [ie 1023]
571          * to the GICC_EOIR, the GIC ignores that write.
572          * 2. If software writes the number of a non-existent interrupt
573          * this must be a subcase of "value written does not match the last
574          * valid interrupt value read from the Interrupt Acknowledge
575          * register" and so this is UNPREDICTABLE. We choose to ignore it.
576          */
577         return;
578     }
579     if (s->running_priority[cpu] == 0x100) {
580         return; /* No active IRQ.  */
581     }
582 
583     if (s->revision == REV_11MPCORE) {
584         /* Mark level triggered interrupts as pending if they are still
585            raised.  */
586         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
587             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
588             DPRINTF("Set %d pending mask %x\n", irq, cm);
589             GIC_SET_PENDING(irq, cm);
590         }
591     }
592 
593     group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
594 
595     if (s->security_extn && !attrs.secure && !group) {
596         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
597         return;
598     }
599 
600     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
601      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
602      * i.e. go ahead and complete the irq anyway.
603      */
604 
605     gic_drop_prio(s, cpu, group);
606 
607     /* In GICv2 the guest can choose to split priority-drop and deactivate */
608     if (!gic_eoi_split(s, cpu, attrs)) {
609         GIC_CLEAR_ACTIVE(irq, cm);
610     }
611     gic_update(s);
612 }
613 
614 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
615 {
616     GICState *s = (GICState *)opaque;
617     uint32_t res;
618     int irq;
619     int i;
620     int cpu;
621     int cm;
622     int mask;
623 
624     cpu = gic_get_current_cpu(s);
625     cm = 1 << cpu;
626     if (offset < 0x100) {
627         if (offset == 0) {      /* GICD_CTLR */
628             if (s->security_extn && !attrs.secure) {
629                 /* The NS bank of this register is just an alias of the
630                  * EnableGrp1 bit in the S bank version.
631                  */
632                 return extract32(s->ctlr, 1, 1);
633             } else {
634                 return s->ctlr;
635             }
636         }
637         if (offset == 4)
638             /* Interrupt Controller Type Register */
639             return ((s->num_irq / 32) - 1)
640                     | ((s->num_cpu - 1) << 5)
641                     | (s->security_extn << 10);
642         if (offset < 0x08)
643             return 0;
644         if (offset >= 0x80) {
645             /* Interrupt Group Registers: these RAZ/WI if this is an NS
646              * access to a GIC with the security extensions, or if the GIC
647              * doesn't have groups at all.
648              */
649             res = 0;
650             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
651                 /* Every byte offset holds 8 group status bits */
652                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
653                 if (irq >= s->num_irq) {
654                     goto bad_reg;
655                 }
656                 for (i = 0; i < 8; i++) {
657                     if (GIC_TEST_GROUP(irq + i, cm)) {
658                         res |= (1 << i);
659                     }
660                 }
661             }
662             return res;
663         }
664         goto bad_reg;
665     } else if (offset < 0x200) {
666         /* Interrupt Set/Clear Enable.  */
667         if (offset < 0x180)
668             irq = (offset - 0x100) * 8;
669         else
670             irq = (offset - 0x180) * 8;
671         irq += GIC_BASE_IRQ;
672         if (irq >= s->num_irq)
673             goto bad_reg;
674         res = 0;
675         for (i = 0; i < 8; i++) {
676             if (s->security_extn && !attrs.secure &&
677                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
678                 continue; /* Ignore Non-secure access of Group0 IRQ */
679             }
680 
681             if (GIC_TEST_ENABLED(irq + i, cm)) {
682                 res |= (1 << i);
683             }
684         }
685     } else if (offset < 0x300) {
686         /* Interrupt Set/Clear Pending.  */
687         if (offset < 0x280)
688             irq = (offset - 0x200) * 8;
689         else
690             irq = (offset - 0x280) * 8;
691         irq += GIC_BASE_IRQ;
692         if (irq >= s->num_irq)
693             goto bad_reg;
694         res = 0;
695         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
696         for (i = 0; i < 8; i++) {
697             if (s->security_extn && !attrs.secure &&
698                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
699                 continue; /* Ignore Non-secure access of Group0 IRQ */
700             }
701 
702             if (gic_test_pending(s, irq + i, mask)) {
703                 res |= (1 << i);
704             }
705         }
706     } else if (offset < 0x400) {
707         /* Interrupt Active.  */
708         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
709         if (irq >= s->num_irq)
710             goto bad_reg;
711         res = 0;
712         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
713         for (i = 0; i < 8; i++) {
714             if (s->security_extn && !attrs.secure &&
715                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
716                 continue; /* Ignore Non-secure access of Group0 IRQ */
717             }
718 
719             if (GIC_TEST_ACTIVE(irq + i, mask)) {
720                 res |= (1 << i);
721             }
722         }
723     } else if (offset < 0x800) {
724         /* Interrupt Priority.  */
725         irq = (offset - 0x400) + GIC_BASE_IRQ;
726         if (irq >= s->num_irq)
727             goto bad_reg;
728         res = gic_get_priority(s, cpu, irq, attrs);
729     } else if (offset < 0xc00) {
730         /* Interrupt CPU Target.  */
731         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
732             /* For uniprocessor GICs these RAZ/WI */
733             res = 0;
734         } else {
735             irq = (offset - 0x800) + GIC_BASE_IRQ;
736             if (irq >= s->num_irq) {
737                 goto bad_reg;
738             }
739             if (irq >= 29 && irq <= 31) {
740                 res = cm;
741             } else {
742                 res = GIC_TARGET(irq);
743             }
744         }
745     } else if (offset < 0xf00) {
746         /* Interrupt Configuration.  */
747         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
748         if (irq >= s->num_irq)
749             goto bad_reg;
750         res = 0;
751         for (i = 0; i < 4; i++) {
752             if (s->security_extn && !attrs.secure &&
753                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
754                 continue; /* Ignore Non-secure access of Group0 IRQ */
755             }
756 
757             if (GIC_TEST_MODEL(irq + i))
758                 res |= (1 << (i * 2));
759             if (GIC_TEST_EDGE_TRIGGER(irq + i))
760                 res |= (2 << (i * 2));
761         }
762     } else if (offset < 0xf10) {
763         goto bad_reg;
764     } else if (offset < 0xf30) {
765         if (s->revision == REV_11MPCORE) {
766             goto bad_reg;
767         }
768 
769         if (offset < 0xf20) {
770             /* GICD_CPENDSGIRn */
771             irq = (offset - 0xf10);
772         } else {
773             irq = (offset - 0xf20);
774             /* GICD_SPENDSGIRn */
775         }
776 
777         if (s->security_extn && !attrs.secure &&
778             !GIC_TEST_GROUP(irq, 1 << cpu)) {
779             res = 0; /* Ignore Non-secure access of Group0 IRQ */
780         } else {
781             res = s->sgi_pending[irq][cpu];
782         }
783     } else if (offset < 0xfd0) {
784         goto bad_reg;
785     } else if (offset < 0x1000) {
786         if (offset & 3) {
787             res = 0;
788         } else {
789             switch (s->revision) {
790             case REV_11MPCORE:
791                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
792                 break;
793             case 1:
794                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
795                 break;
796             case 2:
797                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
798                 break;
799             default:
800                 res = 0;
801             }
802         }
803     } else {
804         g_assert_not_reached();
805     }
806     return res;
807 bad_reg:
808     qemu_log_mask(LOG_GUEST_ERROR,
809                   "gic_dist_readb: Bad offset %x\n", (int)offset);
810     return 0;
811 }
812 
813 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
814                                  unsigned size, MemTxAttrs attrs)
815 {
816     switch (size) {
817     case 1:
818         *data = gic_dist_readb(opaque, offset, attrs);
819         return MEMTX_OK;
820     case 2:
821         *data = gic_dist_readb(opaque, offset, attrs);
822         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
823         return MEMTX_OK;
824     case 4:
825         *data = gic_dist_readb(opaque, offset, attrs);
826         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
827         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
828         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
829         return MEMTX_OK;
830     default:
831         return MEMTX_ERROR;
832     }
833 }
834 
835 static void gic_dist_writeb(void *opaque, hwaddr offset,
836                             uint32_t value, MemTxAttrs attrs)
837 {
838     GICState *s = (GICState *)opaque;
839     int irq;
840     int i;
841     int cpu;
842 
843     cpu = gic_get_current_cpu(s);
844     if (offset < 0x100) {
845         if (offset == 0) {
846             if (s->security_extn && !attrs.secure) {
847                 /* NS version is just an alias of the S version's bit 1 */
848                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
849             } else if (gic_has_groups(s)) {
850                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
851             } else {
852                 s->ctlr = value & GICD_CTLR_EN_GRP0;
853             }
854             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
855                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
856                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
857         } else if (offset < 4) {
858             /* ignored.  */
859         } else if (offset >= 0x80) {
860             /* Interrupt Group Registers: RAZ/WI for NS access to secure
861              * GIC, or for GICs without groups.
862              */
863             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
864                 /* Every byte offset holds 8 group status bits */
865                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
866                 if (irq >= s->num_irq) {
867                     goto bad_reg;
868                 }
869                 for (i = 0; i < 8; i++) {
870                     /* Group bits are banked for private interrupts */
871                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
872                     if (value & (1 << i)) {
873                         /* Group1 (Non-secure) */
874                         GIC_SET_GROUP(irq + i, cm);
875                     } else {
876                         /* Group0 (Secure) */
877                         GIC_CLEAR_GROUP(irq + i, cm);
878                     }
879                 }
880             }
881         } else {
882             goto bad_reg;
883         }
884     } else if (offset < 0x180) {
885         /* Interrupt Set Enable.  */
886         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
887         if (irq >= s->num_irq)
888             goto bad_reg;
889         if (irq < GIC_NR_SGIS) {
890             value = 0xff;
891         }
892 
893         for (i = 0; i < 8; i++) {
894             if (value & (1 << i)) {
895                 int mask =
896                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
897                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
898 
899                 if (s->security_extn && !attrs.secure &&
900                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
901                     continue; /* Ignore Non-secure access of Group0 IRQ */
902                 }
903 
904                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
905                     DPRINTF("Enabled IRQ %d\n", irq + i);
906                     trace_gic_enable_irq(irq + i);
907                 }
908                 GIC_SET_ENABLED(irq + i, cm);
909                 /* If a raised level triggered IRQ enabled then mark
910                    is as pending.  */
911                 if (GIC_TEST_LEVEL(irq + i, mask)
912                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
913                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
914                     GIC_SET_PENDING(irq + i, mask);
915                 }
916             }
917         }
918     } else if (offset < 0x200) {
919         /* Interrupt Clear Enable.  */
920         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
921         if (irq >= s->num_irq)
922             goto bad_reg;
923         if (irq < GIC_NR_SGIS) {
924             value = 0;
925         }
926 
927         for (i = 0; i < 8; i++) {
928             if (value & (1 << i)) {
929                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
930 
931                 if (s->security_extn && !attrs.secure &&
932                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
933                     continue; /* Ignore Non-secure access of Group0 IRQ */
934                 }
935 
936                 if (GIC_TEST_ENABLED(irq + i, cm)) {
937                     DPRINTF("Disabled IRQ %d\n", irq + i);
938                     trace_gic_disable_irq(irq + i);
939                 }
940                 GIC_CLEAR_ENABLED(irq + i, cm);
941             }
942         }
943     } else if (offset < 0x280) {
944         /* Interrupt Set Pending.  */
945         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
946         if (irq >= s->num_irq)
947             goto bad_reg;
948         if (irq < GIC_NR_SGIS) {
949             value = 0;
950         }
951 
952         for (i = 0; i < 8; i++) {
953             if (value & (1 << i)) {
954                 if (s->security_extn && !attrs.secure &&
955                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
956                     continue; /* Ignore Non-secure access of Group0 IRQ */
957                 }
958 
959                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
960             }
961         }
962     } else if (offset < 0x300) {
963         /* Interrupt Clear Pending.  */
964         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
965         if (irq >= s->num_irq)
966             goto bad_reg;
967         if (irq < GIC_NR_SGIS) {
968             value = 0;
969         }
970 
971         for (i = 0; i < 8; i++) {
972             if (s->security_extn && !attrs.secure &&
973                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
974                 continue; /* Ignore Non-secure access of Group0 IRQ */
975             }
976 
977             /* ??? This currently clears the pending bit for all CPUs, even
978                for per-CPU interrupts.  It's unclear whether this is the
979                corect behavior.  */
980             if (value & (1 << i)) {
981                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
982             }
983         }
984     } else if (offset < 0x400) {
985         /* Interrupt Active.  */
986         goto bad_reg;
987     } else if (offset < 0x800) {
988         /* Interrupt Priority.  */
989         irq = (offset - 0x400) + GIC_BASE_IRQ;
990         if (irq >= s->num_irq)
991             goto bad_reg;
992         gic_set_priority(s, cpu, irq, value, attrs);
993     } else if (offset < 0xc00) {
994         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
995          * annoying exception of the 11MPCore's GIC.
996          */
997         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
998             irq = (offset - 0x800) + GIC_BASE_IRQ;
999             if (irq >= s->num_irq) {
1000                 goto bad_reg;
1001             }
1002             if (irq < 29) {
1003                 value = 0;
1004             } else if (irq < GIC_INTERNAL) {
1005                 value = ALL_CPU_MASK;
1006             }
1007             s->irq_target[irq] = value & ALL_CPU_MASK;
1008         }
1009     } else if (offset < 0xf00) {
1010         /* Interrupt Configuration.  */
1011         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1012         if (irq >= s->num_irq)
1013             goto bad_reg;
1014         if (irq < GIC_NR_SGIS)
1015             value |= 0xaa;
1016         for (i = 0; i < 4; i++) {
1017             if (s->security_extn && !attrs.secure &&
1018                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
1019                 continue; /* Ignore Non-secure access of Group0 IRQ */
1020             }
1021 
1022             if (s->revision == REV_11MPCORE) {
1023                 if (value & (1 << (i * 2))) {
1024                     GIC_SET_MODEL(irq + i);
1025                 } else {
1026                     GIC_CLEAR_MODEL(irq + i);
1027                 }
1028             }
1029             if (value & (2 << (i * 2))) {
1030                 GIC_SET_EDGE_TRIGGER(irq + i);
1031             } else {
1032                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
1033             }
1034         }
1035     } else if (offset < 0xf10) {
1036         /* 0xf00 is only handled for 32-bit writes.  */
1037         goto bad_reg;
1038     } else if (offset < 0xf20) {
1039         /* GICD_CPENDSGIRn */
1040         if (s->revision == REV_11MPCORE) {
1041             goto bad_reg;
1042         }
1043         irq = (offset - 0xf10);
1044 
1045         if (!s->security_extn || attrs.secure ||
1046             GIC_TEST_GROUP(irq, 1 << cpu)) {
1047             s->sgi_pending[irq][cpu] &= ~value;
1048             if (s->sgi_pending[irq][cpu] == 0) {
1049                 GIC_CLEAR_PENDING(irq, 1 << cpu);
1050             }
1051         }
1052     } else if (offset < 0xf30) {
1053         /* GICD_SPENDSGIRn */
1054         if (s->revision == REV_11MPCORE) {
1055             goto bad_reg;
1056         }
1057         irq = (offset - 0xf20);
1058 
1059         if (!s->security_extn || attrs.secure ||
1060             GIC_TEST_GROUP(irq, 1 << cpu)) {
1061             GIC_SET_PENDING(irq, 1 << cpu);
1062             s->sgi_pending[irq][cpu] |= value;
1063         }
1064     } else {
1065         goto bad_reg;
1066     }
1067     gic_update(s);
1068     return;
1069 bad_reg:
1070     qemu_log_mask(LOG_GUEST_ERROR,
1071                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1072 }
1073 
1074 static void gic_dist_writew(void *opaque, hwaddr offset,
1075                             uint32_t value, MemTxAttrs attrs)
1076 {
1077     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1078     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1079 }
1080 
1081 static void gic_dist_writel(void *opaque, hwaddr offset,
1082                             uint32_t value, MemTxAttrs attrs)
1083 {
1084     GICState *s = (GICState *)opaque;
1085     if (offset == 0xf00) {
1086         int cpu;
1087         int irq;
1088         int mask;
1089         int target_cpu;
1090 
1091         cpu = gic_get_current_cpu(s);
1092         irq = value & 0x3ff;
1093         switch ((value >> 24) & 3) {
1094         case 0:
1095             mask = (value >> 16) & ALL_CPU_MASK;
1096             break;
1097         case 1:
1098             mask = ALL_CPU_MASK ^ (1 << cpu);
1099             break;
1100         case 2:
1101             mask = 1 << cpu;
1102             break;
1103         default:
1104             DPRINTF("Bad Soft Int target filter\n");
1105             mask = ALL_CPU_MASK;
1106             break;
1107         }
1108         GIC_SET_PENDING(irq, mask);
1109         target_cpu = ctz32(mask);
1110         while (target_cpu < GIC_NCPU) {
1111             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1112             mask &= ~(1 << target_cpu);
1113             target_cpu = ctz32(mask);
1114         }
1115         gic_update(s);
1116         return;
1117     }
1118     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1119     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1120 }
1121 
1122 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1123                                   unsigned size, MemTxAttrs attrs)
1124 {
1125     switch (size) {
1126     case 1:
1127         gic_dist_writeb(opaque, offset, data, attrs);
1128         return MEMTX_OK;
1129     case 2:
1130         gic_dist_writew(opaque, offset, data, attrs);
1131         return MEMTX_OK;
1132     case 4:
1133         gic_dist_writel(opaque, offset, data, attrs);
1134         return MEMTX_OK;
1135     default:
1136         return MEMTX_ERROR;
1137     }
1138 }
1139 
1140 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1141 {
1142     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1143      * second half of GICC_NSAPR.
1144      */
1145     switch (GIC_MIN_BPR) {
1146     case 0:
1147         if (regno < 2) {
1148             return s->nsapr[regno + 2][cpu];
1149         }
1150         break;
1151     case 1:
1152         if (regno == 0) {
1153             return s->nsapr[regno + 1][cpu];
1154         }
1155         break;
1156     case 2:
1157         if (regno == 0) {
1158             return extract32(s->nsapr[0][cpu], 16, 16);
1159         }
1160         break;
1161     case 3:
1162         if (regno == 0) {
1163             return extract32(s->nsapr[0][cpu], 8, 8);
1164         }
1165         break;
1166     default:
1167         g_assert_not_reached();
1168     }
1169     return 0;
1170 }
1171 
1172 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1173                                          uint32_t value)
1174 {
1175     /* Write the Nonsecure view of GICC_APR<regno>. */
1176     switch (GIC_MIN_BPR) {
1177     case 0:
1178         if (regno < 2) {
1179             s->nsapr[regno + 2][cpu] = value;
1180         }
1181         break;
1182     case 1:
1183         if (regno == 0) {
1184             s->nsapr[regno + 1][cpu] = value;
1185         }
1186         break;
1187     case 2:
1188         if (regno == 0) {
1189             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1190         }
1191         break;
1192     case 3:
1193         if (regno == 0) {
1194             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1195         }
1196         break;
1197     default:
1198         g_assert_not_reached();
1199     }
1200 }
1201 
1202 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1203                                 uint64_t *data, MemTxAttrs attrs)
1204 {
1205     switch (offset) {
1206     case 0x00: /* Control */
1207         *data = gic_get_cpu_control(s, cpu, attrs);
1208         break;
1209     case 0x04: /* Priority mask */
1210         *data = gic_get_priority_mask(s, cpu, attrs);
1211         break;
1212     case 0x08: /* Binary Point */
1213         if (s->security_extn && !attrs.secure) {
1214             /* BPR is banked. Non-secure copy stored in ABPR. */
1215             *data = s->abpr[cpu];
1216         } else {
1217             *data = s->bpr[cpu];
1218         }
1219         break;
1220     case 0x0c: /* Acknowledge */
1221         *data = gic_acknowledge_irq(s, cpu, attrs);
1222         break;
1223     case 0x14: /* Running Priority */
1224         *data = gic_get_running_priority(s, cpu, attrs);
1225         break;
1226     case 0x18: /* Highest Pending Interrupt */
1227         *data = gic_get_current_pending_irq(s, cpu, attrs);
1228         break;
1229     case 0x1c: /* Aliased Binary Point */
1230         /* GIC v2, no security: ABPR
1231          * GIC v1, no security: not implemented (RAZ/WI)
1232          * With security extensions, secure access: ABPR (alias of NS BPR)
1233          * With security extensions, nonsecure access: RAZ/WI
1234          */
1235         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1236             *data = 0;
1237         } else {
1238             *data = s->abpr[cpu];
1239         }
1240         break;
1241     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1242     {
1243         int regno = (offset - 0xd0) / 4;
1244 
1245         if (regno >= GIC_NR_APRS || s->revision != 2) {
1246             *data = 0;
1247         } else if (s->security_extn && !attrs.secure) {
1248             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1249             *data = gic_apr_ns_view(s, regno, cpu);
1250         } else {
1251             *data = s->apr[regno][cpu];
1252         }
1253         break;
1254     }
1255     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1256     {
1257         int regno = (offset - 0xe0) / 4;
1258 
1259         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1260             (s->security_extn && !attrs.secure)) {
1261             *data = 0;
1262         } else {
1263             *data = s->nsapr[regno][cpu];
1264         }
1265         break;
1266     }
1267     default:
1268         qemu_log_mask(LOG_GUEST_ERROR,
1269                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1270         *data = 0;
1271         break;
1272     }
1273     return MEMTX_OK;
1274 }
1275 
1276 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1277                                  uint32_t value, MemTxAttrs attrs)
1278 {
1279     switch (offset) {
1280     case 0x00: /* Control */
1281         gic_set_cpu_control(s, cpu, value, attrs);
1282         break;
1283     case 0x04: /* Priority mask */
1284         gic_set_priority_mask(s, cpu, value, attrs);
1285         break;
1286     case 0x08: /* Binary Point */
1287         if (s->security_extn && !attrs.secure) {
1288             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1289         } else {
1290             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1291         }
1292         break;
1293     case 0x10: /* End Of Interrupt */
1294         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1295         return MEMTX_OK;
1296     case 0x1c: /* Aliased Binary Point */
1297         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1298             /* unimplemented, or NS access: RAZ/WI */
1299             return MEMTX_OK;
1300         } else {
1301             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1302         }
1303         break;
1304     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1305     {
1306         int regno = (offset - 0xd0) / 4;
1307 
1308         if (regno >= GIC_NR_APRS || s->revision != 2) {
1309             return MEMTX_OK;
1310         }
1311         if (s->security_extn && !attrs.secure) {
1312             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1313             gic_apr_write_ns_view(s, regno, cpu, value);
1314         } else {
1315             s->apr[regno][cpu] = value;
1316         }
1317         break;
1318     }
1319     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1320     {
1321         int regno = (offset - 0xe0) / 4;
1322 
1323         if (regno >= GIC_NR_APRS || s->revision != 2) {
1324             return MEMTX_OK;
1325         }
1326         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1327             return MEMTX_OK;
1328         }
1329         s->nsapr[regno][cpu] = value;
1330         break;
1331     }
1332     case 0x1000:
1333         /* GICC_DIR */
1334         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1335         break;
1336     default:
1337         qemu_log_mask(LOG_GUEST_ERROR,
1338                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1339         return MEMTX_OK;
1340     }
1341     gic_update(s);
1342     return MEMTX_OK;
1343 }
1344 
1345 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1346 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1347                                     unsigned size, MemTxAttrs attrs)
1348 {
1349     GICState *s = (GICState *)opaque;
1350     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1351 }
1352 
1353 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1354                                      uint64_t value, unsigned size,
1355                                      MemTxAttrs attrs)
1356 {
1357     GICState *s = (GICState *)opaque;
1358     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1359 }
1360 
1361 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1362  * These just decode the opaque pointer into GICState* + cpu id.
1363  */
1364 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1365                                    unsigned size, MemTxAttrs attrs)
1366 {
1367     GICState **backref = (GICState **)opaque;
1368     GICState *s = *backref;
1369     int id = (backref - s->backref);
1370     return gic_cpu_read(s, id, addr, data, attrs);
1371 }
1372 
1373 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1374                                     uint64_t value, unsigned size,
1375                                     MemTxAttrs attrs)
1376 {
1377     GICState **backref = (GICState **)opaque;
1378     GICState *s = *backref;
1379     int id = (backref - s->backref);
1380     return gic_cpu_write(s, id, addr, value, attrs);
1381 }
1382 
1383 static const MemoryRegionOps gic_ops[2] = {
1384     {
1385         .read_with_attrs = gic_dist_read,
1386         .write_with_attrs = gic_dist_write,
1387         .endianness = DEVICE_NATIVE_ENDIAN,
1388     },
1389     {
1390         .read_with_attrs = gic_thiscpu_read,
1391         .write_with_attrs = gic_thiscpu_write,
1392         .endianness = DEVICE_NATIVE_ENDIAN,
1393     }
1394 };
1395 
1396 static const MemoryRegionOps gic_cpu_ops = {
1397     .read_with_attrs = gic_do_cpu_read,
1398     .write_with_attrs = gic_do_cpu_write,
1399     .endianness = DEVICE_NATIVE_ENDIAN,
1400 };
1401 
1402 /* This function is used by nvic model */
1403 void gic_init_irqs_and_distributor(GICState *s)
1404 {
1405     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1406 }
1407 
1408 static void arm_gic_realize(DeviceState *dev, Error **errp)
1409 {
1410     /* Device instance realize function for the GIC sysbus device */
1411     int i;
1412     GICState *s = ARM_GIC(dev);
1413     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1414     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1415     Error *local_err = NULL;
1416 
1417     agc->parent_realize(dev, &local_err);
1418     if (local_err) {
1419         error_propagate(errp, local_err);
1420         return;
1421     }
1422 
1423     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1424         error_setg(errp, "KVM with user space irqchip only works when the "
1425                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
1426         return;
1427     }
1428 
1429     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1430     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1431 
1432     /* Extra core-specific regions for the CPU interfaces. This is
1433      * necessary for "franken-GIC" implementations, for example on
1434      * Exynos 4.
1435      * NB that the memory region size of 0x100 applies for the 11MPCore
1436      * and also cores following the GIC v1 spec (ie A9).
1437      * GIC v2 defines a larger memory region (0x1000) so this will need
1438      * to be extended when we implement A15.
1439      */
1440     for (i = 0; i < s->num_cpu; i++) {
1441         s->backref[i] = s;
1442         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1443                               &s->backref[i], "gic_cpu", 0x100);
1444         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1445     }
1446 }
1447 
1448 static void arm_gic_class_init(ObjectClass *klass, void *data)
1449 {
1450     DeviceClass *dc = DEVICE_CLASS(klass);
1451     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1452 
1453     agc->parent_realize = dc->realize;
1454     dc->realize = arm_gic_realize;
1455 }
1456 
1457 static const TypeInfo arm_gic_info = {
1458     .name = TYPE_ARM_GIC,
1459     .parent = TYPE_ARM_GIC_COMMON,
1460     .instance_size = sizeof(GICState),
1461     .class_init = arm_gic_class_init,
1462     .class_size = sizeof(ARMGICClass),
1463 };
1464 
1465 static void arm_gic_register_types(void)
1466 {
1467     type_register_static(&arm_gic_info);
1468 }
1469 
1470 type_init(arm_gic_register_types)
1471