xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 69e7e60d011846f066af97589660eef52898519a)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/irq.h"
23 #include "hw/sysbus.h"
24 #include "gic_internal.h"
25 #include "qapi/error.h"
26 #include "hw/core/cpu.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/qtest.h"
32 
33 /* #define DEBUG_GIC */
34 
35 #ifdef DEBUG_GIC
36 #define DEBUG_GIC_GATE 1
37 #else
38 #define DEBUG_GIC_GATE 0
39 #endif
40 
41 #define DPRINTF(fmt, ...) do {                                          \
42         if (DEBUG_GIC_GATE) {                                           \
43             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
44         }                                                               \
45     } while (0)
46 
47 static const uint8_t gic_id_11mpcore[] = {
48     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
49 };
50 
51 static const uint8_t gic_id_gicv1[] = {
52     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
53 };
54 
55 static const uint8_t gic_id_gicv2[] = {
56     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
57 };
58 
59 static inline int gic_get_current_cpu(GICState *s)
60 {
61     if (!qtest_enabled() && s->num_cpu > 1) {
62         return current_cpu->cpu_index;
63     }
64     return 0;
65 }
66 
67 static inline int gic_get_current_vcpu(GICState *s)
68 {
69     return gic_get_current_cpu(s) + GIC_NCPU;
70 }
71 
72 /* Return true if this GIC config has interrupt groups, which is
73  * true if we're a GICv2, or a GICv1 with the security extensions.
74  */
75 static inline bool gic_has_groups(GICState *s)
76 {
77     return s->revision == 2 || s->security_extn;
78 }
79 
80 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
81 {
82     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
83 }
84 
85 static inline void gic_get_best_irq(GICState *s, int cpu,
86                                     int *best_irq, int *best_prio, int *group)
87 {
88     int irq;
89     int cm = 1 << cpu;
90 
91     *best_irq = 1023;
92     *best_prio = 0x100;
93 
94     for (irq = 0; irq < s->num_irq; irq++) {
95         if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96             (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
97             (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
98             if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
99                 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
100                 *best_irq = irq;
101             }
102         }
103     }
104 
105     if (*best_irq < 1023) {
106         *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
107     }
108 }
109 
110 static inline void gic_get_best_virq(GICState *s, int cpu,
111                                      int *best_irq, int *best_prio, int *group)
112 {
113     int lr_idx = 0;
114 
115     *best_irq = 1023;
116     *best_prio = 0x100;
117 
118     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
119         uint32_t lr_entry = s->h_lr[lr_idx][cpu];
120         int state = GICH_LR_STATE(lr_entry);
121 
122         if (state == GICH_LR_STATE_PENDING) {
123             int prio = GICH_LR_PRIORITY(lr_entry);
124 
125             if (prio < *best_prio) {
126                 *best_prio = prio;
127                 *best_irq = GICH_LR_VIRT_ID(lr_entry);
128                 *group = GICH_LR_GROUP(lr_entry);
129             }
130         }
131     }
132 }
133 
134 /* Return true if IRQ signaling is enabled for the given cpu and at least one
135  * of the given groups:
136  *   - in the non-virt case, the distributor must be enabled for one of the
137  *   given groups
138  *   - in the virt case, the virtual interface must be enabled.
139  *   - in all cases, the (v)CPU interface must be enabled for one of the given
140  *   groups.
141  */
142 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
143                                     int group_mask)
144 {
145     int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
146 
147     if (!virt && !(s->ctlr & group_mask)) {
148         return false;
149     }
150 
151     if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
152         return false;
153     }
154 
155     if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
156         return false;
157     }
158 
159     return true;
160 }
161 
162 /* TODO: Many places that call this routine could be optimized.  */
163 /* Update interrupt status after enabled or pending bits have been changed.  */
164 static inline void gic_update_internal(GICState *s, bool virt)
165 {
166     int best_irq;
167     int best_prio;
168     int irq_level, fiq_level;
169     int cpu, cpu_iface;
170     int group = 0;
171     qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
172     qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
173 
174     for (cpu = 0; cpu < s->num_cpu; cpu++) {
175         cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
176 
177         s->current_pending[cpu_iface] = 1023;
178         if (!gic_irq_signaling_enabled(s, cpu, virt,
179                                        GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
180             qemu_irq_lower(irq_lines[cpu]);
181             qemu_irq_lower(fiq_lines[cpu]);
182             continue;
183         }
184 
185         if (virt) {
186             gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
187         } else {
188             gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
189         }
190 
191         if (best_irq != 1023) {
192             trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
193                                      best_irq, best_prio,
194                                      s->priority_mask[cpu_iface],
195                                      s->running_priority[cpu_iface]);
196         }
197 
198         irq_level = fiq_level = 0;
199 
200         if (best_prio < s->priority_mask[cpu_iface]) {
201             s->current_pending[cpu_iface] = best_irq;
202             if (best_prio < s->running_priority[cpu_iface]) {
203                 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
204                     if (group == 0 &&
205                         s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
206                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
207                                 best_irq, cpu_iface);
208                         fiq_level = 1;
209                         trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
210                                                  fiq_level);
211                     } else {
212                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
213                                 best_irq, cpu_iface);
214                         irq_level = 1;
215                         trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
216                                                  irq_level);
217                     }
218                 }
219             }
220         }
221 
222         qemu_set_irq(irq_lines[cpu], irq_level);
223         qemu_set_irq(fiq_lines[cpu], fiq_level);
224     }
225 }
226 
227 static void gic_update(GICState *s)
228 {
229     gic_update_internal(s, false);
230 }
231 
232 /* Return true if this LR is empty, i.e. the corresponding bit
233  * in ELRSR is set.
234  */
235 static inline bool gic_lr_entry_is_free(uint32_t entry)
236 {
237     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
238         && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
239 }
240 
241 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
242  * corrsponding bit in EISR is set.
243  */
244 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
245 {
246     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
247         && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
248 }
249 
250 static inline void gic_extract_lr_info(GICState *s, int cpu,
251                                 int *num_eoi, int *num_valid, int *num_pending)
252 {
253     int lr_idx;
254 
255     *num_eoi = 0;
256     *num_valid = 0;
257     *num_pending = 0;
258 
259     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
260         uint32_t *entry = &s->h_lr[lr_idx][cpu];
261 
262         if (gic_lr_entry_is_eoi(*entry)) {
263             (*num_eoi)++;
264         }
265 
266         if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
267             (*num_valid)++;
268         }
269 
270         if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
271             (*num_pending)++;
272         }
273     }
274 }
275 
276 static void gic_compute_misr(GICState *s, int cpu)
277 {
278     uint32_t value = 0;
279     int vcpu = cpu + GIC_NCPU;
280 
281     int num_eoi, num_valid, num_pending;
282 
283     gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
284 
285     /* EOI */
286     if (num_eoi) {
287         value |= R_GICH_MISR_EOI_MASK;
288     }
289 
290     /* U: true if only 0 or 1 LR entry is valid */
291     if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
292         value |= R_GICH_MISR_U_MASK;
293     }
294 
295     /* LRENP: EOICount is not 0 */
296     if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
297         ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
298         value |= R_GICH_MISR_LRENP_MASK;
299     }
300 
301     /* NP: no pending interrupts */
302     if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
303         value |= R_GICH_MISR_NP_MASK;
304     }
305 
306     /* VGrp0E: group0 virq signaling enabled */
307     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
308         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
309         value |= R_GICH_MISR_VGrp0E_MASK;
310     }
311 
312     /* VGrp0D: group0 virq signaling disabled */
313     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
314         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
315         value |= R_GICH_MISR_VGrp0D_MASK;
316     }
317 
318     /* VGrp1E: group1 virq signaling enabled */
319     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
320         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
321         value |= R_GICH_MISR_VGrp1E_MASK;
322     }
323 
324     /* VGrp1D: group1 virq signaling disabled */
325     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
326         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
327         value |= R_GICH_MISR_VGrp1D_MASK;
328     }
329 
330     s->h_misr[cpu] = value;
331 }
332 
333 static void gic_update_maintenance(GICState *s)
334 {
335     int cpu = 0;
336     int maint_level;
337 
338     for (cpu = 0; cpu < s->num_cpu; cpu++) {
339         gic_compute_misr(s, cpu);
340         maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
341 
342         trace_gic_update_maintenance_irq(cpu, maint_level);
343         qemu_set_irq(s->maintenance_irq[cpu], maint_level);
344     }
345 }
346 
347 static void gic_update_virt(GICState *s)
348 {
349     gic_update_internal(s, true);
350     gic_update_maintenance(s);
351 }
352 
353 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
354                                  int cm, int target)
355 {
356     if (level) {
357         GIC_DIST_SET_LEVEL(irq, cm);
358         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
359             DPRINTF("Set %d pending mask %x\n", irq, target);
360             GIC_DIST_SET_PENDING(irq, target);
361         }
362     } else {
363         GIC_DIST_CLEAR_LEVEL(irq, cm);
364     }
365 }
366 
367 static void gic_set_irq_generic(GICState *s, int irq, int level,
368                                 int cm, int target)
369 {
370     if (level) {
371         GIC_DIST_SET_LEVEL(irq, cm);
372         DPRINTF("Set %d pending mask %x\n", irq, target);
373         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
374             GIC_DIST_SET_PENDING(irq, target);
375         }
376     } else {
377         GIC_DIST_CLEAR_LEVEL(irq, cm);
378     }
379 }
380 
381 /* Process a change in an external IRQ input.  */
382 static void gic_set_irq(void *opaque, int irq, int level)
383 {
384     /* Meaning of the 'irq' parameter:
385      *  [0..N-1] : external interrupts
386      *  [N..N+31] : PPI (internal) interrupts for CPU 0
387      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
388      *  ...
389      */
390     GICState *s = (GICState *)opaque;
391     int cm, target;
392     if (irq < (s->num_irq - GIC_INTERNAL)) {
393         /* The first external input line is internal interrupt 32.  */
394         cm = ALL_CPU_MASK;
395         irq += GIC_INTERNAL;
396         target = GIC_DIST_TARGET(irq);
397     } else {
398         int cpu;
399         irq -= (s->num_irq - GIC_INTERNAL);
400         cpu = irq / GIC_INTERNAL;
401         irq %= GIC_INTERNAL;
402         cm = 1 << cpu;
403         target = cm;
404     }
405 
406     assert(irq >= GIC_NR_SGIS);
407 
408     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
409         return;
410     }
411 
412     if (s->revision == REV_11MPCORE) {
413         gic_set_irq_11mpcore(s, irq, level, cm, target);
414     } else {
415         gic_set_irq_generic(s, irq, level, cm, target);
416     }
417     trace_gic_set_irq(irq, level, cm, target);
418 
419     gic_update(s);
420 }
421 
422 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
423                                             MemTxAttrs attrs)
424 {
425     uint16_t pending_irq = s->current_pending[cpu];
426 
427     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
428         int group = gic_test_group(s, pending_irq, cpu);
429 
430         /* On a GIC without the security extensions, reading this register
431          * behaves in the same way as a secure access to a GIC with them.
432          */
433         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
434 
435         if (group == 0 && !secure) {
436             /* Group0 interrupts hidden from Non-secure access */
437             return 1023;
438         }
439         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
440             /* Group1 interrupts only seen by Secure access if
441              * AckCtl bit set.
442              */
443             return 1022;
444         }
445     }
446     return pending_irq;
447 }
448 
449 static int gic_get_group_priority(GICState *s, int cpu, int irq)
450 {
451     /* Return the group priority of the specified interrupt
452      * (which is the top bits of its priority, with the number
453      * of bits masked determined by the applicable binary point register).
454      */
455     int bpr;
456     uint32_t mask;
457 
458     if (gic_has_groups(s) &&
459         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
460         gic_test_group(s, irq, cpu)) {
461         bpr = s->abpr[cpu] - 1;
462         assert(bpr >= 0);
463     } else {
464         bpr = s->bpr[cpu];
465     }
466 
467     /* a BPR of 0 means the group priority bits are [7:1];
468      * a BPR of 1 means they are [7:2], and so on down to
469      * a BPR of 7 meaning no group priority bits at all.
470      */
471     mask = ~0U << ((bpr & 7) + 1);
472 
473     return gic_get_priority(s, irq, cpu) & mask;
474 }
475 
476 static void gic_activate_irq(GICState *s, int cpu, int irq)
477 {
478     /* Set the appropriate Active Priority Register bit for this IRQ,
479      * and update the running priority.
480      */
481     int prio = gic_get_group_priority(s, cpu, irq);
482     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
483     int preemption_level = prio >> (min_bpr + 1);
484     int regno = preemption_level / 32;
485     int bitno = preemption_level % 32;
486     uint32_t *papr = NULL;
487 
488     if (gic_is_vcpu(cpu)) {
489         assert(regno == 0);
490         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
491     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
492         papr = &s->nsapr[regno][cpu];
493     } else {
494         papr = &s->apr[regno][cpu];
495     }
496 
497     *papr |= (1 << bitno);
498 
499     s->running_priority[cpu] = prio;
500     gic_set_active(s, irq, cpu);
501 }
502 
503 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
504 {
505     /* Recalculate the current running priority for this CPU based
506      * on the set bits in the Active Priority Registers.
507      */
508     int i;
509 
510     if (gic_is_vcpu(cpu)) {
511         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
512         if (apr) {
513             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
514         } else {
515             return 0x100;
516         }
517     }
518 
519     for (i = 0; i < GIC_NR_APRS; i++) {
520         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
521         if (!apr) {
522             continue;
523         }
524         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
525     }
526     return 0x100;
527 }
528 
529 static void gic_drop_prio(GICState *s, int cpu, int group)
530 {
531     /* Drop the priority of the currently active interrupt in the
532      * specified group.
533      *
534      * Note that we can guarantee (because of the requirement to nest
535      * GICC_IAR reads [which activate an interrupt and raise priority]
536      * with GICC_EOIR writes [which drop the priority for the interrupt])
537      * that the interrupt we're being called for is the highest priority
538      * active interrupt, meaning that it has the lowest set bit in the
539      * APR registers.
540      *
541      * If the guest does not honour the ordering constraints then the
542      * behaviour of the GIC is UNPREDICTABLE, which for us means that
543      * the values of the APR registers might become incorrect and the
544      * running priority will be wrong, so interrupts that should preempt
545      * might not do so, and interrupts that should not preempt might do so.
546      */
547     if (gic_is_vcpu(cpu)) {
548         int rcpu = gic_get_vcpu_real_id(cpu);
549 
550         if (s->h_apr[rcpu]) {
551             /* Clear lowest set bit */
552             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
553         }
554     } else {
555         int i;
556 
557         for (i = 0; i < GIC_NR_APRS; i++) {
558             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
559             if (!*papr) {
560                 continue;
561             }
562             /* Clear lowest set bit */
563             *papr &= *papr - 1;
564             break;
565         }
566     }
567 
568     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
569 }
570 
571 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
572 {
573     int src;
574     uint32_t ret;
575 
576     if (!gic_is_vcpu(cpu)) {
577         /* Lookup the source CPU for the SGI and clear this in the
578          * sgi_pending map.  Return the src and clear the overall pending
579          * state on this CPU if the SGI is not pending from any CPUs.
580          */
581         assert(s->sgi_pending[irq][cpu] != 0);
582         src = ctz32(s->sgi_pending[irq][cpu]);
583         s->sgi_pending[irq][cpu] &= ~(1 << src);
584         if (s->sgi_pending[irq][cpu] == 0) {
585             gic_clear_pending(s, irq, cpu);
586         }
587         ret = irq | ((src & 0x7) << 10);
588     } else {
589         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
590         src = GICH_LR_CPUID(*lr_entry);
591 
592         gic_clear_pending(s, irq, cpu);
593         ret = irq | (src << 10);
594     }
595 
596     return ret;
597 }
598 
599 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
600 {
601     int ret, irq;
602 
603     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
604      * for the case where this GIC supports grouping and the pending interrupt
605      * is in the wrong group.
606      */
607     irq = gic_get_current_pending_irq(s, cpu, attrs);
608     trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
609                               gic_get_vcpu_real_id(cpu), irq);
610 
611     if (irq >= GIC_MAXIRQ) {
612         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
613         return irq;
614     }
615 
616     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
617         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
618         return 1023;
619     }
620 
621     gic_activate_irq(s, cpu, irq);
622 
623     if (s->revision == REV_11MPCORE) {
624         /* Clear pending flags for both level and edge triggered interrupts.
625          * Level triggered IRQs will be reasserted once they become inactive.
626          */
627         gic_clear_pending(s, irq, cpu);
628         ret = irq;
629     } else {
630         if (irq < GIC_NR_SGIS) {
631             ret = gic_clear_pending_sgi(s, irq, cpu);
632         } else {
633             gic_clear_pending(s, irq, cpu);
634             ret = irq;
635         }
636     }
637 
638     if (gic_is_vcpu(cpu)) {
639         gic_update_virt(s);
640     } else {
641         gic_update(s);
642     }
643     DPRINTF("ACK %d\n", irq);
644     return ret;
645 }
646 
647 static uint32_t gic_fullprio_mask(GICState *s, int cpu)
648 {
649     /*
650      * Return a mask word which clears the unimplemented priority
651      * bits from a priority value for an interrupt. (Not to be
652      * confused with the group priority, whose mask depends on BPR.)
653      */
654     int priBits;
655 
656     if (gic_is_vcpu(cpu)) {
657         priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
658     } else {
659         priBits = s->n_prio_bits;
660     }
661     return ~0U << (8 - priBits);
662 }
663 
664 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
665                       MemTxAttrs attrs)
666 {
667     if (s->security_extn && !attrs.secure) {
668         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
669             return; /* Ignore Non-secure access of Group0 IRQ */
670         }
671         val = 0x80 | (val >> 1); /* Non-secure view */
672     }
673 
674     val &= gic_fullprio_mask(s, cpu);
675 
676     if (irq < GIC_INTERNAL) {
677         s->priority1[irq][cpu] = val;
678     } else {
679         s->priority2[(irq) - GIC_INTERNAL] = val;
680     }
681 }
682 
683 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
684                                  MemTxAttrs attrs)
685 {
686     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
687 
688     if (s->security_extn && !attrs.secure) {
689         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
690             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
691         }
692         prio = (prio << 1) & 0xff; /* Non-secure view */
693     }
694     return prio & gic_fullprio_mask(s, cpu);
695 }
696 
697 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
698                                   MemTxAttrs attrs)
699 {
700     if (gic_cpu_ns_access(s, cpu, attrs)) {
701         if (s->priority_mask[cpu] & 0x80) {
702             /* Priority Mask in upper half */
703             pmask = 0x80 | (pmask >> 1);
704         } else {
705             /* Non-secure write ignored if priority mask is in lower half */
706             return;
707         }
708     }
709     s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
710 }
711 
712 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
713 {
714     uint32_t pmask = s->priority_mask[cpu];
715 
716     if (gic_cpu_ns_access(s, cpu, attrs)) {
717         if (pmask & 0x80) {
718             /* Priority Mask in upper half, return Non-secure view */
719             pmask = (pmask << 1) & 0xff;
720         } else {
721             /* Priority Mask in lower half, RAZ */
722             pmask = 0;
723         }
724     }
725     return pmask;
726 }
727 
728 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
729 {
730     uint32_t ret = s->cpu_ctlr[cpu];
731 
732     if (gic_cpu_ns_access(s, cpu, attrs)) {
733         /* Construct the NS banked view of GICC_CTLR from the correct
734          * bits of the S banked view. We don't need to move the bypass
735          * control bits because we don't implement that (IMPDEF) part
736          * of the GIC architecture.
737          */
738         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
739     }
740     return ret;
741 }
742 
743 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
744                                 MemTxAttrs attrs)
745 {
746     uint32_t mask;
747 
748     if (gic_cpu_ns_access(s, cpu, attrs)) {
749         /* The NS view can only write certain bits in the register;
750          * the rest are unchanged
751          */
752         mask = GICC_CTLR_EN_GRP1;
753         if (s->revision == 2) {
754             mask |= GICC_CTLR_EOIMODE_NS;
755         }
756         s->cpu_ctlr[cpu] &= ~mask;
757         s->cpu_ctlr[cpu] |= (value << 1) & mask;
758     } else {
759         if (s->revision == 2) {
760             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
761         } else {
762             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
763         }
764         s->cpu_ctlr[cpu] = value & mask;
765     }
766     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
767             "Group1 Interrupts %sabled\n", cpu,
768             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
769             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
770 }
771 
772 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
773 {
774     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
775         /* Idle priority */
776         return 0xff;
777     }
778 
779     if (gic_cpu_ns_access(s, cpu, attrs)) {
780         if (s->running_priority[cpu] & 0x80) {
781             /* Running priority in upper half of range: return the Non-secure
782              * view of the priority.
783              */
784             return s->running_priority[cpu] << 1;
785         } else {
786             /* Running priority in lower half of range: RAZ */
787             return 0;
788         }
789     } else {
790         return s->running_priority[cpu];
791     }
792 }
793 
794 /* Return true if we should split priority drop and interrupt deactivation,
795  * ie whether the relevant EOIMode bit is set.
796  */
797 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
798 {
799     if (s->revision != 2) {
800         /* Before GICv2 prio-drop and deactivate are not separable */
801         return false;
802     }
803     if (gic_cpu_ns_access(s, cpu, attrs)) {
804         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
805     }
806     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
807 }
808 
809 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
810 {
811     int group;
812 
813     if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
814         /*
815          * This handles two cases:
816          * 1. If software writes the ID of a spurious interrupt [ie 1023]
817          * to the GICC_DIR, the GIC ignores that write.
818          * 2. If software writes the number of a non-existent interrupt
819          * this must be a subcase of "value written is not an active interrupt"
820          * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
821          * all IRQs potentially exist, so this limit does not apply.
822          */
823         return;
824     }
825 
826     if (!gic_eoi_split(s, cpu, attrs)) {
827         /* This is UNPREDICTABLE; we choose to ignore it */
828         qemu_log_mask(LOG_GUEST_ERROR,
829                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
830         return;
831     }
832 
833     if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
834         /* This vIRQ does not have an LR entry which is either active or
835          * pending and active. Increment EOICount and ignore the write.
836          */
837         int rcpu = gic_get_vcpu_real_id(cpu);
838         s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
839 
840         /* Update the virtual interface in case a maintenance interrupt should
841          * be raised.
842          */
843         gic_update_virt(s);
844         return;
845     }
846 
847     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
848 
849     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
850         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
851         return;
852     }
853 
854     gic_clear_active(s, irq, cpu);
855 }
856 
857 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
858 {
859     int cm = 1 << cpu;
860     int group;
861 
862     DPRINTF("EOI %d\n", irq);
863     if (gic_is_vcpu(cpu)) {
864         /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
865          * running prio is < 0x100.
866          */
867         bool prio_drop = s->running_priority[cpu] < 0x100;
868 
869         if (irq >= GIC_MAXIRQ) {
870             /* Ignore spurious interrupt */
871             return;
872         }
873 
874         gic_drop_prio(s, cpu, 0);
875 
876         if (!gic_eoi_split(s, cpu, attrs)) {
877             bool valid = gic_virq_is_valid(s, irq, cpu);
878             if (prio_drop && !valid) {
879                 /* We are in a situation where:
880                  *   - V_CTRL.EOIMode is false (no EOI split),
881                  *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
882                  *   - This vIRQ does not have an LR entry which is either
883                  *     active or pending and active.
884                  * In that case, we must increment EOICount.
885                  */
886                 int rcpu = gic_get_vcpu_real_id(cpu);
887                 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
888             } else if (valid) {
889                 gic_clear_active(s, irq, cpu);
890             }
891         }
892 
893         gic_update_virt(s);
894         return;
895     }
896 
897     if (irq >= s->num_irq) {
898         /* This handles two cases:
899          * 1. If software writes the ID of a spurious interrupt [ie 1023]
900          * to the GICC_EOIR, the GIC ignores that write.
901          * 2. If software writes the number of a non-existent interrupt
902          * this must be a subcase of "value written does not match the last
903          * valid interrupt value read from the Interrupt Acknowledge
904          * register" and so this is UNPREDICTABLE. We choose to ignore it.
905          */
906         return;
907     }
908     if (s->running_priority[cpu] == 0x100) {
909         return; /* No active IRQ.  */
910     }
911 
912     if (s->revision == REV_11MPCORE) {
913         /* Mark level triggered interrupts as pending if they are still
914            raised.  */
915         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
916             && GIC_DIST_TEST_LEVEL(irq, cm)
917             && (GIC_DIST_TARGET(irq) & cm) != 0) {
918             DPRINTF("Set %d pending mask %x\n", irq, cm);
919             GIC_DIST_SET_PENDING(irq, cm);
920         }
921     }
922 
923     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
924 
925     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
926         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
927         return;
928     }
929 
930     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
931      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
932      * i.e. go ahead and complete the irq anyway.
933      */
934 
935     gic_drop_prio(s, cpu, group);
936 
937     /* In GICv2 the guest can choose to split priority-drop and deactivate */
938     if (!gic_eoi_split(s, cpu, attrs)) {
939         gic_clear_active(s, irq, cpu);
940     }
941     gic_update(s);
942 }
943 
944 static uint8_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
945 {
946     GICState *s = (GICState *)opaque;
947     uint32_t res;
948     int irq;
949     int i;
950     int cpu;
951     int cm;
952     int mask;
953 
954     cpu = gic_get_current_cpu(s);
955     cm = 1 << cpu;
956     if (offset < 0x100) {
957         if (offset == 0) {      /* GICD_CTLR */
958             /* We rely here on the only non-zero bits being in byte 0 */
959             if (s->security_extn && !attrs.secure) {
960                 /* The NS bank of this register is just an alias of the
961                  * EnableGrp1 bit in the S bank version.
962                  */
963                 return extract32(s->ctlr, 1, 1);
964             } else {
965                 return s->ctlr;
966             }
967         }
968         if (offset == 4) {
969             /* GICD_TYPER byte 0 */
970             return ((s->num_irq / 32) - 1) | ((s->num_cpu - 1) << 5);
971         }
972         if (offset == 5) {
973             /* GICD_TYPER byte 1 */
974             return (s->security_extn << 2);
975         }
976         if (offset < 0x08)
977             return 0;
978         if (offset >= 0x80) {
979             /* Interrupt Group Registers: these RAZ/WI if this is an NS
980              * access to a GIC with the security extensions, or if the GIC
981              * doesn't have groups at all.
982              */
983             res = 0;
984             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
985                 /* Every byte offset holds 8 group status bits */
986                 irq = (offset - 0x080) * 8;
987                 if (irq >= s->num_irq) {
988                     goto bad_reg;
989                 }
990                 for (i = 0; i < 8; i++) {
991                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
992                         res |= (1 << i);
993                     }
994                 }
995             }
996             return res;
997         }
998         goto bad_reg;
999     } else if (offset < 0x200) {
1000         /* Interrupt Set/Clear Enable.  */
1001         if (offset < 0x180)
1002             irq = (offset - 0x100) * 8;
1003         else
1004             irq = (offset - 0x180) * 8;
1005         if (irq >= s->num_irq)
1006             goto bad_reg;
1007         res = 0;
1008         for (i = 0; i < 8; i++) {
1009             if (s->security_extn && !attrs.secure &&
1010                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1011                 continue; /* Ignore Non-secure access of Group0 IRQ */
1012             }
1013 
1014             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1015                 res |= (1 << i);
1016             }
1017         }
1018     } else if (offset < 0x300) {
1019         /* Interrupt Set/Clear Pending.  */
1020         if (offset < 0x280)
1021             irq = (offset - 0x200) * 8;
1022         else
1023             irq = (offset - 0x280) * 8;
1024         if (irq >= s->num_irq)
1025             goto bad_reg;
1026         res = 0;
1027         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1028         for (i = 0; i < 8; i++) {
1029             if (s->security_extn && !attrs.secure &&
1030                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1031                 continue; /* Ignore Non-secure access of Group0 IRQ */
1032             }
1033 
1034             if (gic_test_pending(s, irq + i, mask)) {
1035                 res |= (1 << i);
1036             }
1037         }
1038     } else if (offset < 0x400) {
1039         /* Interrupt Set/Clear Active.  */
1040         if (offset < 0x380) {
1041             irq = (offset - 0x300) * 8;
1042         } else if (s->revision == 2) {
1043             irq = (offset - 0x380) * 8;
1044         } else {
1045             goto bad_reg;
1046         }
1047 
1048         if (irq >= s->num_irq)
1049             goto bad_reg;
1050         res = 0;
1051         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1052         for (i = 0; i < 8; i++) {
1053             if (s->security_extn && !attrs.secure &&
1054                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1055                 continue; /* Ignore Non-secure access of Group0 IRQ */
1056             }
1057 
1058             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1059                 res |= (1 << i);
1060             }
1061         }
1062     } else if (offset < 0x800) {
1063         /* Interrupt Priority.  */
1064         irq = (offset - 0x400);
1065         if (irq >= s->num_irq)
1066             goto bad_reg;
1067         res = gic_dist_get_priority(s, cpu, irq, attrs);
1068     } else if (offset < 0xc00) {
1069         /* Interrupt CPU Target.  */
1070         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1071             /* For uniprocessor GICs these RAZ/WI */
1072             res = 0;
1073         } else {
1074             irq = (offset - 0x800);
1075             if (irq >= s->num_irq) {
1076                 goto bad_reg;
1077             }
1078             if (irq < 29 && s->revision == REV_11MPCORE) {
1079                 res = 0;
1080             } else if (irq < GIC_INTERNAL) {
1081                 res = cm;
1082             } else {
1083                 res = GIC_DIST_TARGET(irq);
1084             }
1085         }
1086     } else if (offset < 0xf00) {
1087         /* Interrupt Configuration.  */
1088         irq = (offset - 0xc00) * 4;
1089         if (irq >= s->num_irq)
1090             goto bad_reg;
1091         res = 0;
1092         for (i = 0; i < 4; i++) {
1093             if (s->security_extn && !attrs.secure &&
1094                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1095                 continue; /* Ignore Non-secure access of Group0 IRQ */
1096             }
1097 
1098             if (GIC_DIST_TEST_MODEL(irq + i)) {
1099                 res |= (1 << (i * 2));
1100             }
1101             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1102                 res |= (2 << (i * 2));
1103             }
1104         }
1105     } else if (offset < 0xf10) {
1106         goto bad_reg;
1107     } else if (offset < 0xf30) {
1108         if (s->revision == REV_11MPCORE) {
1109             goto bad_reg;
1110         }
1111 
1112         if (offset < 0xf20) {
1113             /* GICD_CPENDSGIRn */
1114             irq = (offset - 0xf10);
1115         } else {
1116             irq = (offset - 0xf20);
1117             /* GICD_SPENDSGIRn */
1118         }
1119 
1120         if (s->security_extn && !attrs.secure &&
1121             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1122             res = 0; /* Ignore Non-secure access of Group0 IRQ */
1123         } else {
1124             res = s->sgi_pending[irq][cpu];
1125         }
1126     } else if (offset < 0xfd0) {
1127         goto bad_reg;
1128     } else if (offset < 0x1000) {
1129         if (offset & 3) {
1130             res = 0;
1131         } else {
1132             switch (s->revision) {
1133             case REV_11MPCORE:
1134                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1135                 break;
1136             case 1:
1137                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1138                 break;
1139             case 2:
1140                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1141                 break;
1142             default:
1143                 res = 0;
1144             }
1145         }
1146     } else {
1147         g_assert_not_reached();
1148     }
1149     return res;
1150 bad_reg:
1151     qemu_log_mask(LOG_GUEST_ERROR,
1152                   "gic_dist_readb: Bad offset %x\n", (int)offset);
1153     return 0;
1154 }
1155 
1156 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1157                                  unsigned size, MemTxAttrs attrs)
1158 {
1159     switch (size) {
1160     case 1:
1161         *data = gic_dist_readb(opaque, offset, attrs);
1162         break;
1163     case 2:
1164         *data = gic_dist_readb(opaque, offset, attrs);
1165         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1166         break;
1167     case 4:
1168         *data = gic_dist_readb(opaque, offset, attrs);
1169         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1170         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1171         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1172         break;
1173     default:
1174         return MEMTX_ERROR;
1175     }
1176 
1177     trace_gic_dist_read(offset, size, *data);
1178     return MEMTX_OK;
1179 }
1180 
1181 static void gic_dist_writeb(void *opaque, hwaddr offset,
1182                             uint32_t value, MemTxAttrs attrs)
1183 {
1184     GICState *s = (GICState *)opaque;
1185     int irq;
1186     int i;
1187     int cpu;
1188 
1189     cpu = gic_get_current_cpu(s);
1190     if (offset < 0x100) {
1191         if (offset == 0) {
1192             if (s->security_extn && !attrs.secure) {
1193                 /* NS version is just an alias of the S version's bit 1 */
1194                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1195             } else if (gic_has_groups(s)) {
1196                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1197             } else {
1198                 s->ctlr = value & GICD_CTLR_EN_GRP0;
1199             }
1200             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1201                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1202                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1203         } else if (offset < 4) {
1204             /* ignored.  */
1205         } else if (offset >= 0x80) {
1206             /* Interrupt Group Registers: RAZ/WI for NS access to secure
1207              * GIC, or for GICs without groups.
1208              */
1209             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1210                 /* Every byte offset holds 8 group status bits */
1211                 irq = (offset - 0x80) * 8;
1212                 if (irq >= s->num_irq) {
1213                     goto bad_reg;
1214                 }
1215                 for (i = 0; i < 8; i++) {
1216                     /* Group bits are banked for private interrupts */
1217                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1218                     if (value & (1 << i)) {
1219                         /* Group1 (Non-secure) */
1220                         GIC_DIST_SET_GROUP(irq + i, cm);
1221                     } else {
1222                         /* Group0 (Secure) */
1223                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
1224                     }
1225                 }
1226             }
1227         } else {
1228             goto bad_reg;
1229         }
1230     } else if (offset < 0x180) {
1231         /* Interrupt Set Enable.  */
1232         irq = (offset - 0x100) * 8;
1233         if (irq >= s->num_irq)
1234             goto bad_reg;
1235         if (irq < GIC_NR_SGIS) {
1236             value = 0xff;
1237         }
1238 
1239         for (i = 0; i < 8; i++) {
1240             if (value & (1 << i)) {
1241                 int mask =
1242                     (irq < GIC_INTERNAL) ? (1 << cpu)
1243                                          : GIC_DIST_TARGET(irq + i);
1244                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1245 
1246                 if (s->security_extn && !attrs.secure &&
1247                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1248                     continue; /* Ignore Non-secure access of Group0 IRQ */
1249                 }
1250 
1251                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1252                     DPRINTF("Enabled IRQ %d\n", irq + i);
1253                     trace_gic_enable_irq(irq + i);
1254                 }
1255                 GIC_DIST_SET_ENABLED(irq + i, cm);
1256                 /* If a raised level triggered IRQ enabled then mark
1257                    is as pending.  */
1258                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1259                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1260                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1261                     GIC_DIST_SET_PENDING(irq + i, mask);
1262                 }
1263             }
1264         }
1265     } else if (offset < 0x200) {
1266         /* Interrupt Clear Enable.  */
1267         irq = (offset - 0x180) * 8;
1268         if (irq >= s->num_irq)
1269             goto bad_reg;
1270         if (irq < GIC_NR_SGIS) {
1271             value = 0;
1272         }
1273 
1274         for (i = 0; i < 8; i++) {
1275             if (value & (1 << i)) {
1276                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1277 
1278                 if (s->security_extn && !attrs.secure &&
1279                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1280                     continue; /* Ignore Non-secure access of Group0 IRQ */
1281                 }
1282 
1283                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1284                     DPRINTF("Disabled IRQ %d\n", irq + i);
1285                     trace_gic_disable_irq(irq + i);
1286                 }
1287                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1288             }
1289         }
1290     } else if (offset < 0x280) {
1291         /* Interrupt Set Pending.  */
1292         irq = (offset - 0x200) * 8;
1293         if (irq >= s->num_irq)
1294             goto bad_reg;
1295         if (irq < GIC_NR_SGIS) {
1296             value = 0;
1297         }
1298 
1299         for (i = 0; i < 8; i++) {
1300             if (value & (1 << i)) {
1301                 if (s->security_extn && !attrs.secure &&
1302                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1303                     continue; /* Ignore Non-secure access of Group0 IRQ */
1304                 }
1305 
1306                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1307             }
1308         }
1309     } else if (offset < 0x300) {
1310         /* Interrupt Clear Pending.  */
1311         irq = (offset - 0x280) * 8;
1312         if (irq >= s->num_irq)
1313             goto bad_reg;
1314         if (irq < GIC_NR_SGIS) {
1315             value = 0;
1316         }
1317 
1318         for (i = 0; i < 8; i++) {
1319             if (s->security_extn && !attrs.secure &&
1320                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1321                 continue; /* Ignore Non-secure access of Group0 IRQ */
1322             }
1323 
1324             /* ??? This currently clears the pending bit for all CPUs, even
1325                for per-CPU interrupts.  It's unclear whether this is the
1326                corect behavior.  */
1327             if (value & (1 << i)) {
1328                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1329             }
1330         }
1331     } else if (offset < 0x380) {
1332         /* Interrupt Set Active.  */
1333         if (s->revision != 2) {
1334             goto bad_reg;
1335         }
1336 
1337         irq = (offset - 0x300) * 8;
1338         if (irq >= s->num_irq) {
1339             goto bad_reg;
1340         }
1341 
1342         /* This register is banked per-cpu for PPIs */
1343         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1344 
1345         for (i = 0; i < 8; i++) {
1346             if (s->security_extn && !attrs.secure &&
1347                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1348                 continue; /* Ignore Non-secure access of Group0 IRQ */
1349             }
1350 
1351             if (value & (1 << i)) {
1352                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1353             }
1354         }
1355     } else if (offset < 0x400) {
1356         /* Interrupt Clear Active.  */
1357         if (s->revision != 2) {
1358             goto bad_reg;
1359         }
1360 
1361         irq = (offset - 0x380) * 8;
1362         if (irq >= s->num_irq) {
1363             goto bad_reg;
1364         }
1365 
1366         /* This register is banked per-cpu for PPIs */
1367         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1368 
1369         for (i = 0; i < 8; i++) {
1370             if (s->security_extn && !attrs.secure &&
1371                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1372                 continue; /* Ignore Non-secure access of Group0 IRQ */
1373             }
1374 
1375             if (value & (1 << i)) {
1376                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1377             }
1378         }
1379     } else if (offset < 0x800) {
1380         /* Interrupt Priority.  */
1381         irq = (offset - 0x400);
1382         if (irq >= s->num_irq)
1383             goto bad_reg;
1384         gic_dist_set_priority(s, cpu, irq, value, attrs);
1385     } else if (offset < 0xc00) {
1386         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1387          * annoying exception of the 11MPCore's GIC.
1388          */
1389         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1390             irq = (offset - 0x800);
1391             if (irq >= s->num_irq) {
1392                 goto bad_reg;
1393             }
1394             if (irq < 29 && s->revision == REV_11MPCORE) {
1395                 value = 0;
1396             } else if (irq < GIC_INTERNAL) {
1397                 value = ALL_CPU_MASK;
1398             }
1399             s->irq_target[irq] = value & ALL_CPU_MASK;
1400         }
1401     } else if (offset < 0xf00) {
1402         /* Interrupt Configuration.  */
1403         irq = (offset - 0xc00) * 4;
1404         if (irq >= s->num_irq)
1405             goto bad_reg;
1406         if (irq < GIC_NR_SGIS)
1407             value |= 0xaa;
1408         for (i = 0; i < 4; i++) {
1409             if (s->security_extn && !attrs.secure &&
1410                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1411                 continue; /* Ignore Non-secure access of Group0 IRQ */
1412             }
1413 
1414             if (s->revision == REV_11MPCORE) {
1415                 if (value & (1 << (i * 2))) {
1416                     GIC_DIST_SET_MODEL(irq + i);
1417                 } else {
1418                     GIC_DIST_CLEAR_MODEL(irq + i);
1419                 }
1420             }
1421             if (value & (2 << (i * 2))) {
1422                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1423             } else {
1424                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1425             }
1426         }
1427     } else if (offset < 0xf10) {
1428         /* 0xf00 is only handled for 32-bit writes.  */
1429         goto bad_reg;
1430     } else if (offset < 0xf20) {
1431         /* GICD_CPENDSGIRn */
1432         if (s->revision == REV_11MPCORE) {
1433             goto bad_reg;
1434         }
1435         irq = (offset - 0xf10);
1436 
1437         if (!s->security_extn || attrs.secure ||
1438             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1439             s->sgi_pending[irq][cpu] &= ~value;
1440             if (s->sgi_pending[irq][cpu] == 0) {
1441                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1442             }
1443         }
1444     } else if (offset < 0xf30) {
1445         /* GICD_SPENDSGIRn */
1446         if (s->revision == REV_11MPCORE) {
1447             goto bad_reg;
1448         }
1449         irq = (offset - 0xf20);
1450 
1451         if (!s->security_extn || attrs.secure ||
1452             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1453             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1454             s->sgi_pending[irq][cpu] |= value;
1455         }
1456     } else {
1457         goto bad_reg;
1458     }
1459     gic_update(s);
1460     return;
1461 bad_reg:
1462     qemu_log_mask(LOG_GUEST_ERROR,
1463                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1464 }
1465 
1466 static void gic_dist_writew(void *opaque, hwaddr offset,
1467                             uint32_t value, MemTxAttrs attrs)
1468 {
1469     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1470     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1471 }
1472 
1473 static void gic_dist_writel(void *opaque, hwaddr offset,
1474                             uint32_t value, MemTxAttrs attrs)
1475 {
1476     GICState *s = (GICState *)opaque;
1477     if (offset == 0xf00) {
1478         int cpu;
1479         int irq;
1480         int mask;
1481         int target_cpu;
1482 
1483         cpu = gic_get_current_cpu(s);
1484         irq = value & 0xf;
1485         switch ((value >> 24) & 3) {
1486         case 0:
1487             mask = (value >> 16) & ALL_CPU_MASK;
1488             break;
1489         case 1:
1490             mask = ALL_CPU_MASK ^ (1 << cpu);
1491             break;
1492         case 2:
1493             mask = 1 << cpu;
1494             break;
1495         default:
1496             DPRINTF("Bad Soft Int target filter\n");
1497             mask = ALL_CPU_MASK;
1498             break;
1499         }
1500         GIC_DIST_SET_PENDING(irq, mask);
1501         target_cpu = ctz32(mask);
1502         while (target_cpu < GIC_NCPU) {
1503             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1504             mask &= ~(1 << target_cpu);
1505             target_cpu = ctz32(mask);
1506         }
1507         gic_update(s);
1508         return;
1509     }
1510     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1511     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1512 }
1513 
1514 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1515                                   unsigned size, MemTxAttrs attrs)
1516 {
1517     trace_gic_dist_write(offset, size, data);
1518 
1519     switch (size) {
1520     case 1:
1521         gic_dist_writeb(opaque, offset, data, attrs);
1522         return MEMTX_OK;
1523     case 2:
1524         gic_dist_writew(opaque, offset, data, attrs);
1525         return MEMTX_OK;
1526     case 4:
1527         gic_dist_writel(opaque, offset, data, attrs);
1528         return MEMTX_OK;
1529     default:
1530         return MEMTX_ERROR;
1531     }
1532 }
1533 
1534 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1535 {
1536     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1537      * second half of GICC_NSAPR.
1538      */
1539     switch (GIC_MIN_BPR) {
1540     case 0:
1541         if (regno < 2) {
1542             return s->nsapr[regno + 2][cpu];
1543         }
1544         break;
1545     case 1:
1546         if (regno == 0) {
1547             return s->nsapr[regno + 1][cpu];
1548         }
1549         break;
1550     case 2:
1551         if (regno == 0) {
1552             return extract32(s->nsapr[0][cpu], 16, 16);
1553         }
1554         break;
1555     case 3:
1556         if (regno == 0) {
1557             return extract32(s->nsapr[0][cpu], 8, 8);
1558         }
1559         break;
1560     default:
1561         g_assert_not_reached();
1562     }
1563     return 0;
1564 }
1565 
1566 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1567                                          uint32_t value)
1568 {
1569     /* Write the Nonsecure view of GICC_APR<regno>. */
1570     switch (GIC_MIN_BPR) {
1571     case 0:
1572         if (regno < 2) {
1573             s->nsapr[regno + 2][cpu] = value;
1574         }
1575         break;
1576     case 1:
1577         if (regno == 0) {
1578             s->nsapr[regno + 1][cpu] = value;
1579         }
1580         break;
1581     case 2:
1582         if (regno == 0) {
1583             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1584         }
1585         break;
1586     case 3:
1587         if (regno == 0) {
1588             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1589         }
1590         break;
1591     default:
1592         g_assert_not_reached();
1593     }
1594 }
1595 
1596 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1597                                 uint64_t *data, MemTxAttrs attrs)
1598 {
1599     switch (offset) {
1600     case 0x00: /* Control */
1601         *data = gic_get_cpu_control(s, cpu, attrs);
1602         break;
1603     case 0x04: /* Priority mask */
1604         *data = gic_get_priority_mask(s, cpu, attrs);
1605         break;
1606     case 0x08: /* Binary Point */
1607         if (gic_cpu_ns_access(s, cpu, attrs)) {
1608             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1609                 /* NS view of BPR when CBPR is 1 */
1610                 *data = MIN(s->bpr[cpu] + 1, 7);
1611             } else {
1612                 /* BPR is banked. Non-secure copy stored in ABPR. */
1613                 *data = s->abpr[cpu];
1614             }
1615         } else {
1616             *data = s->bpr[cpu];
1617         }
1618         break;
1619     case 0x0c: /* Acknowledge */
1620         *data = gic_acknowledge_irq(s, cpu, attrs);
1621         break;
1622     case 0x14: /* Running Priority */
1623         *data = gic_get_running_priority(s, cpu, attrs);
1624         break;
1625     case 0x18: /* Highest Pending Interrupt */
1626         *data = gic_get_current_pending_irq(s, cpu, attrs);
1627         break;
1628     case 0x1c: /* Aliased Binary Point */
1629         /* GIC v2, no security: ABPR
1630          * GIC v1, no security: not implemented (RAZ/WI)
1631          * With security extensions, secure access: ABPR (alias of NS BPR)
1632          * With security extensions, nonsecure access: RAZ/WI
1633          */
1634         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1635             *data = 0;
1636         } else {
1637             *data = s->abpr[cpu];
1638         }
1639         break;
1640     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1641     {
1642         int regno = (offset - 0xd0) / 4;
1643         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1644 
1645         if (regno >= nr_aprs || s->revision != 2) {
1646             *data = 0;
1647         } else if (gic_is_vcpu(cpu)) {
1648             *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1649         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1650             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1651             *data = gic_apr_ns_view(s, regno, cpu);
1652         } else {
1653             *data = s->apr[regno][cpu];
1654         }
1655         break;
1656     }
1657     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1658     {
1659         int regno = (offset - 0xe0) / 4;
1660 
1661         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1662             gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1663             *data = 0;
1664         } else {
1665             *data = s->nsapr[regno][cpu];
1666         }
1667         break;
1668     }
1669     case 0xfc:
1670         if (s->revision == REV_11MPCORE) {
1671             /* Reserved on 11MPCore */
1672             *data = 0;
1673         } else {
1674             /* GICv1 or v2; Arm implementation */
1675             *data = (s->revision << 16) | 0x43b;
1676         }
1677         break;
1678     default:
1679         qemu_log_mask(LOG_GUEST_ERROR,
1680                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1681         *data = 0;
1682         break;
1683     }
1684 
1685     trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1686                        gic_get_vcpu_real_id(cpu), offset, *data);
1687     return MEMTX_OK;
1688 }
1689 
1690 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1691                                  uint32_t value, MemTxAttrs attrs)
1692 {
1693     trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1694                         gic_get_vcpu_real_id(cpu), offset, value);
1695 
1696     switch (offset) {
1697     case 0x00: /* Control */
1698         gic_set_cpu_control(s, cpu, value, attrs);
1699         break;
1700     case 0x04: /* Priority mask */
1701         gic_set_priority_mask(s, cpu, value, attrs);
1702         break;
1703     case 0x08: /* Binary Point */
1704         if (gic_cpu_ns_access(s, cpu, attrs)) {
1705             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1706                 /* WI when CBPR is 1 */
1707                 return MEMTX_OK;
1708             } else {
1709                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1710             }
1711         } else {
1712             int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1713             s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1714         }
1715         break;
1716     case 0x10: /* End Of Interrupt */
1717         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1718         return MEMTX_OK;
1719     case 0x1c: /* Aliased Binary Point */
1720         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1721             /* unimplemented, or NS access: RAZ/WI */
1722             return MEMTX_OK;
1723         } else {
1724             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1725         }
1726         break;
1727     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1728     {
1729         int regno = (offset - 0xd0) / 4;
1730         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1731 
1732         if (regno >= nr_aprs || s->revision != 2) {
1733             return MEMTX_OK;
1734         }
1735         if (gic_is_vcpu(cpu)) {
1736             s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1737         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1738             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1739             gic_apr_write_ns_view(s, regno, cpu, value);
1740         } else {
1741             s->apr[regno][cpu] = value;
1742         }
1743         s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1744         break;
1745     }
1746     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1747     {
1748         int regno = (offset - 0xe0) / 4;
1749 
1750         if (regno >= GIC_NR_APRS || s->revision != 2) {
1751             return MEMTX_OK;
1752         }
1753         if (gic_is_vcpu(cpu)) {
1754             return MEMTX_OK;
1755         }
1756         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1757             return MEMTX_OK;
1758         }
1759         s->nsapr[regno][cpu] = value;
1760         s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1761         break;
1762     }
1763     case 0x1000:
1764         /* GICC_DIR */
1765         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1766         break;
1767     default:
1768         qemu_log_mask(LOG_GUEST_ERROR,
1769                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1770         return MEMTX_OK;
1771     }
1772 
1773     if (gic_is_vcpu(cpu)) {
1774         gic_update_virt(s);
1775     } else {
1776         gic_update(s);
1777     }
1778 
1779     return MEMTX_OK;
1780 }
1781 
1782 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1783 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1784                                     unsigned size, MemTxAttrs attrs)
1785 {
1786     GICState *s = (GICState *)opaque;
1787     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1788 }
1789 
1790 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1791                                      uint64_t value, unsigned size,
1792                                      MemTxAttrs attrs)
1793 {
1794     GICState *s = (GICState *)opaque;
1795     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1796 }
1797 
1798 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1799  * These just decode the opaque pointer into GICState* + cpu id.
1800  */
1801 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1802                                    unsigned size, MemTxAttrs attrs)
1803 {
1804     GICState **backref = (GICState **)opaque;
1805     GICState *s = *backref;
1806     int id = (backref - s->backref);
1807     return gic_cpu_read(s, id, addr, data, attrs);
1808 }
1809 
1810 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1811                                     uint64_t value, unsigned size,
1812                                     MemTxAttrs attrs)
1813 {
1814     GICState **backref = (GICState **)opaque;
1815     GICState *s = *backref;
1816     int id = (backref - s->backref);
1817     return gic_cpu_write(s, id, addr, value, attrs);
1818 }
1819 
1820 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1821                                     unsigned size, MemTxAttrs attrs)
1822 {
1823     GICState *s = (GICState *)opaque;
1824 
1825     return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1826 }
1827 
1828 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1829                                      uint64_t value, unsigned size,
1830                                      MemTxAttrs attrs)
1831 {
1832     GICState *s = (GICState *)opaque;
1833 
1834     return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1835 }
1836 
1837 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1838 {
1839     int lr_idx;
1840     uint32_t ret = 0;
1841 
1842     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1843         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1844         ret = deposit32(ret, lr_idx - lr_start, 1,
1845                         gic_lr_entry_is_eoi(*entry));
1846     }
1847 
1848     return ret;
1849 }
1850 
1851 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1852 {
1853     int lr_idx;
1854     uint32_t ret = 0;
1855 
1856     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1857         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1858         ret = deposit32(ret, lr_idx - lr_start, 1,
1859                         gic_lr_entry_is_free(*entry));
1860     }
1861 
1862     return ret;
1863 }
1864 
1865 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1866 {
1867     int vcpu = gic_get_current_vcpu(s);
1868     uint32_t ctlr;
1869     uint32_t abpr;
1870     uint32_t bpr;
1871     uint32_t prio_mask;
1872 
1873     ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1874     abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1875     bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1876     prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1877 
1878     gic_set_cpu_control(s, vcpu, ctlr, attrs);
1879     s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1880     s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1881     gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1882 }
1883 
1884 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1885                                 uint64_t *data, MemTxAttrs attrs)
1886 {
1887     GICState *s = ARM_GIC(opaque);
1888     int vcpu = cpu + GIC_NCPU;
1889 
1890     switch (addr) {
1891     case A_GICH_HCR: /* Hypervisor Control */
1892         *data = s->h_hcr[cpu];
1893         break;
1894 
1895     case A_GICH_VTR: /* VGIC Type */
1896         *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1897         *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1898                            GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1899         *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1900                            (7 - GIC_VIRT_MIN_BPR) - 1);
1901         break;
1902 
1903     case A_GICH_VMCR: /* Virtual Machine Control */
1904         *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1905                            extract32(s->cpu_ctlr[vcpu], 0, 10));
1906         *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1907         *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1908         *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1909                            extract32(s->priority_mask[vcpu], 3, 5));
1910         break;
1911 
1912     case A_GICH_MISR: /* Maintenance Interrupt Status */
1913         *data = s->h_misr[cpu];
1914         break;
1915 
1916     case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1917     case A_GICH_EISR1:
1918         *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1919         break;
1920 
1921     case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1922     case A_GICH_ELRSR1:
1923         *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1924         break;
1925 
1926     case A_GICH_APR: /* Active Priorities */
1927         *data = s->h_apr[cpu];
1928         break;
1929 
1930     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1931     {
1932         int lr_idx = (addr - A_GICH_LR0) / 4;
1933 
1934         if (lr_idx > s->num_lrs) {
1935             *data = 0;
1936         } else {
1937             *data = s->h_lr[lr_idx][cpu];
1938         }
1939         break;
1940     }
1941 
1942     default:
1943         qemu_log_mask(LOG_GUEST_ERROR,
1944                       "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1945         return MEMTX_OK;
1946     }
1947 
1948     trace_gic_hyp_read(addr, *data);
1949     return MEMTX_OK;
1950 }
1951 
1952 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1953                                  uint64_t value, MemTxAttrs attrs)
1954 {
1955     GICState *s = ARM_GIC(opaque);
1956     int vcpu = cpu + GIC_NCPU;
1957 
1958     trace_gic_hyp_write(addr, value);
1959 
1960     switch (addr) {
1961     case A_GICH_HCR: /* Hypervisor Control */
1962         s->h_hcr[cpu] = value & GICH_HCR_MASK;
1963         break;
1964 
1965     case A_GICH_VMCR: /* Virtual Machine Control */
1966         gic_vmcr_write(s, value, attrs);
1967         break;
1968 
1969     case A_GICH_APR: /* Active Priorities */
1970         s->h_apr[cpu] = value;
1971         s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1972         break;
1973 
1974     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1975     {
1976         int lr_idx = (addr - A_GICH_LR0) / 4;
1977 
1978         if (lr_idx > s->num_lrs) {
1979             return MEMTX_OK;
1980         }
1981 
1982         s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1983         trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1984         break;
1985     }
1986 
1987     default:
1988         qemu_log_mask(LOG_GUEST_ERROR,
1989                       "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1990         return MEMTX_OK;
1991     }
1992 
1993     gic_update_virt(s);
1994     return MEMTX_OK;
1995 }
1996 
1997 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1998                                     unsigned size, MemTxAttrs attrs)
1999 {
2000     GICState *s = (GICState *)opaque;
2001 
2002     return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
2003 }
2004 
2005 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
2006                                      uint64_t value, unsigned size,
2007                                      MemTxAttrs attrs)
2008 {
2009     GICState *s = (GICState *)opaque;
2010 
2011     return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
2012 }
2013 
2014 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2015                                     unsigned size, MemTxAttrs attrs)
2016 {
2017     GICState **backref = (GICState **)opaque;
2018     GICState *s = *backref;
2019     int id = (backref - s->backref);
2020 
2021     return gic_hyp_read(s, id, addr, data, attrs);
2022 }
2023 
2024 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2025                                      uint64_t value, unsigned size,
2026                                      MemTxAttrs attrs)
2027 {
2028     GICState **backref = (GICState **)opaque;
2029     GICState *s = *backref;
2030     int id = (backref - s->backref);
2031 
2032     return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2033 
2034 }
2035 
2036 static const MemoryRegionOps gic_ops[2] = {
2037     {
2038         .read_with_attrs = gic_dist_read,
2039         .write_with_attrs = gic_dist_write,
2040         .endianness = DEVICE_NATIVE_ENDIAN,
2041     },
2042     {
2043         .read_with_attrs = gic_thiscpu_read,
2044         .write_with_attrs = gic_thiscpu_write,
2045         .endianness = DEVICE_NATIVE_ENDIAN,
2046     }
2047 };
2048 
2049 static const MemoryRegionOps gic_cpu_ops = {
2050     .read_with_attrs = gic_do_cpu_read,
2051     .write_with_attrs = gic_do_cpu_write,
2052     .endianness = DEVICE_NATIVE_ENDIAN,
2053 };
2054 
2055 static const MemoryRegionOps gic_virt_ops[2] = {
2056     {
2057         .read_with_attrs = gic_thiscpu_hyp_read,
2058         .write_with_attrs = gic_thiscpu_hyp_write,
2059         .endianness = DEVICE_NATIVE_ENDIAN,
2060     },
2061     {
2062         .read_with_attrs = gic_thisvcpu_read,
2063         .write_with_attrs = gic_thisvcpu_write,
2064         .endianness = DEVICE_NATIVE_ENDIAN,
2065     }
2066 };
2067 
2068 static const MemoryRegionOps gic_viface_ops = {
2069     .read_with_attrs = gic_do_hyp_read,
2070     .write_with_attrs = gic_do_hyp_write,
2071     .endianness = DEVICE_NATIVE_ENDIAN,
2072 };
2073 
2074 static void arm_gic_realize(DeviceState *dev, Error **errp)
2075 {
2076     /* Device instance realize function for the GIC sysbus device */
2077     int i;
2078     GICState *s = ARM_GIC(dev);
2079     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2080     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2081     Error *local_err = NULL;
2082 
2083     agc->parent_realize(dev, &local_err);
2084     if (local_err) {
2085         error_propagate(errp, local_err);
2086         return;
2087     }
2088 
2089     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2090         error_setg(errp, "KVM with user space irqchip only works when the "
2091                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
2092         return;
2093     }
2094 
2095     if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2096        (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2097         s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2098         error_setg(errp, "num-priority-bits cannot be greater than %d"
2099                    " or less than %d", GIC_MAX_PRIORITY_BITS,
2100                    s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2101                    GIC_MIN_PRIORITY_BITS);
2102         return;
2103     }
2104 
2105     /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2106      * enabled, virtualization extensions related interfaces (main virtual
2107      * interface (s->vifaceiomem[0]) and virtual CPU interface).
2108      */
2109     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2110 
2111     /* Extra core-specific regions for the CPU interfaces. This is
2112      * necessary for "franken-GIC" implementations, for example on
2113      * Exynos 4.
2114      * NB that the memory region size of 0x100 applies for the 11MPCore
2115      * and also cores following the GIC v1 spec (ie A9).
2116      * GIC v2 defines a larger memory region (0x1000) so this will need
2117      * to be extended when we implement A15.
2118      */
2119     for (i = 0; i < s->num_cpu; i++) {
2120         s->backref[i] = s;
2121         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2122                               &s->backref[i], "gic_cpu", 0x100);
2123         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2124     }
2125 
2126     /* Extra core-specific regions for virtual interfaces. This is required by
2127      * the GICv2 specification.
2128      */
2129     if (s->virt_extn) {
2130         for (i = 0; i < s->num_cpu; i++) {
2131             memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2132                                   &gic_viface_ops, &s->backref[i],
2133                                   "gic_viface", 0x200);
2134             sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2135         }
2136     }
2137 
2138 }
2139 
2140 static void arm_gic_class_init(ObjectClass *klass, void *data)
2141 {
2142     DeviceClass *dc = DEVICE_CLASS(klass);
2143     ARMGICClass *agc = ARM_GIC_CLASS(klass);
2144 
2145     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2146 }
2147 
2148 static const TypeInfo arm_gic_info = {
2149     .name = TYPE_ARM_GIC,
2150     .parent = TYPE_ARM_GIC_COMMON,
2151     .instance_size = sizeof(GICState),
2152     .class_init = arm_gic_class_init,
2153     .class_size = sizeof(ARMGICClass),
2154 };
2155 
2156 static void arm_gic_register_types(void)
2157 {
2158     type_register_static(&arm_gic_info);
2159 }
2160 
2161 type_init(arm_gic_register_types)
2162