xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 520e210c)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 static inline int gic_get_current_vcpu(GICState *s)
65 {
66     return gic_get_current_cpu(s) + GIC_NCPU;
67 }
68 
69 /* Return true if this GIC config has interrupt groups, which is
70  * true if we're a GICv2, or a GICv1 with the security extensions.
71  */
72 static inline bool gic_has_groups(GICState *s)
73 {
74     return s->revision == 2 || s->security_extn;
75 }
76 
77 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
78 {
79     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
80 }
81 
82 static inline void gic_get_best_irq(GICState *s, int cpu,
83                                     int *best_irq, int *best_prio, int *group)
84 {
85     int irq;
86     int cm = 1 << cpu;
87 
88     *best_irq = 1023;
89     *best_prio = 0x100;
90 
91     for (irq = 0; irq < s->num_irq; irq++) {
92         if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
93             (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
94             (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
95             if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
96                 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
97                 *best_irq = irq;
98             }
99         }
100     }
101 
102     if (*best_irq < 1023) {
103         *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
104     }
105 }
106 
107 static inline void gic_get_best_virq(GICState *s, int cpu,
108                                      int *best_irq, int *best_prio, int *group)
109 {
110     int lr_idx = 0;
111 
112     *best_irq = 1023;
113     *best_prio = 0x100;
114 
115     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
116         uint32_t lr_entry = s->h_lr[lr_idx][cpu];
117         int state = GICH_LR_STATE(lr_entry);
118 
119         if (state == GICH_LR_STATE_PENDING) {
120             int prio = GICH_LR_PRIORITY(lr_entry);
121 
122             if (prio < *best_prio) {
123                 *best_prio = prio;
124                 *best_irq = GICH_LR_VIRT_ID(lr_entry);
125                 *group = GICH_LR_GROUP(lr_entry);
126             }
127         }
128     }
129 }
130 
131 /* Return true if IRQ signaling is enabled for the given cpu and at least one
132  * of the given groups:
133  *   - in the non-virt case, the distributor must be enabled for one of the
134  *   given groups
135  *   - in the virt case, the virtual interface must be enabled.
136  *   - in all cases, the (v)CPU interface must be enabled for one of the given
137  *   groups.
138  */
139 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
140                                     int group_mask)
141 {
142     if (!virt && !(s->ctlr & group_mask)) {
143         return false;
144     }
145 
146     if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
147         return false;
148     }
149 
150     if (!(s->cpu_ctlr[cpu] & group_mask)) {
151         return false;
152     }
153 
154     return true;
155 }
156 
157 /* TODO: Many places that call this routine could be optimized.  */
158 /* Update interrupt status after enabled or pending bits have been changed.  */
159 static inline void gic_update_internal(GICState *s, bool virt)
160 {
161     int best_irq;
162     int best_prio;
163     int irq_level, fiq_level;
164     int cpu, cpu_iface;
165     int group = 0;
166     qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
167     qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
168 
169     for (cpu = 0; cpu < s->num_cpu; cpu++) {
170         cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
171 
172         s->current_pending[cpu_iface] = 1023;
173         if (!gic_irq_signaling_enabled(s, cpu, virt,
174                                        GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
175             qemu_irq_lower(irq_lines[cpu]);
176             qemu_irq_lower(fiq_lines[cpu]);
177             continue;
178         }
179 
180         if (virt) {
181             gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
182         } else {
183             gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
184         }
185 
186         if (best_irq != 1023) {
187             trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
188                                      best_irq, best_prio,
189                                      s->priority_mask[cpu_iface],
190                                      s->running_priority[cpu_iface]);
191         }
192 
193         irq_level = fiq_level = 0;
194 
195         if (best_prio < s->priority_mask[cpu_iface]) {
196             s->current_pending[cpu_iface] = best_irq;
197             if (best_prio < s->running_priority[cpu_iface]) {
198                 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
199                     if (group == 0 &&
200                         s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
201                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
202                                 best_irq, cpu_iface);
203                         fiq_level = 1;
204                         trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
205                                                  fiq_level);
206                     } else {
207                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
208                                 best_irq, cpu_iface);
209                         irq_level = 1;
210                         trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
211                                                  irq_level);
212                     }
213                 }
214             }
215         }
216 
217         qemu_set_irq(irq_lines[cpu], irq_level);
218         qemu_set_irq(fiq_lines[cpu], fiq_level);
219     }
220 }
221 
222 static void gic_update(GICState *s)
223 {
224     gic_update_internal(s, false);
225 }
226 
227 /* Return true if this LR is empty, i.e. the corresponding bit
228  * in ELRSR is set.
229  */
230 static inline bool gic_lr_entry_is_free(uint32_t entry)
231 {
232     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
233         && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
234 }
235 
236 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
237  * corrsponding bit in EISR is set.
238  */
239 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
240 {
241     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
242         && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
243 }
244 
245 static inline void gic_extract_lr_info(GICState *s, int cpu,
246                                 int *num_eoi, int *num_valid, int *num_pending)
247 {
248     int lr_idx;
249 
250     *num_eoi = 0;
251     *num_valid = 0;
252     *num_pending = 0;
253 
254     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
255         uint32_t *entry = &s->h_lr[lr_idx][cpu];
256 
257         if (gic_lr_entry_is_eoi(*entry)) {
258             (*num_eoi)++;
259         }
260 
261         if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
262             (*num_valid)++;
263         }
264 
265         if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
266             (*num_pending)++;
267         }
268     }
269 }
270 
271 static void gic_compute_misr(GICState *s, int cpu)
272 {
273     uint32_t value = 0;
274     int vcpu = cpu + GIC_NCPU;
275 
276     int num_eoi, num_valid, num_pending;
277 
278     gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
279 
280     /* EOI */
281     if (num_eoi) {
282         value |= R_GICH_MISR_EOI_MASK;
283     }
284 
285     /* U: true if only 0 or 1 LR entry is valid */
286     if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
287         value |= R_GICH_MISR_U_MASK;
288     }
289 
290     /* LRENP: EOICount is not 0 */
291     if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
292         ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
293         value |= R_GICH_MISR_LRENP_MASK;
294     }
295 
296     /* NP: no pending interrupts */
297     if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
298         value |= R_GICH_MISR_NP_MASK;
299     }
300 
301     /* VGrp0E: group0 virq signaling enabled */
302     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
303         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
304         value |= R_GICH_MISR_VGrp0E_MASK;
305     }
306 
307     /* VGrp0D: group0 virq signaling disabled */
308     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
309         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
310         value |= R_GICH_MISR_VGrp0D_MASK;
311     }
312 
313     /* VGrp1E: group1 virq signaling enabled */
314     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
315         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
316         value |= R_GICH_MISR_VGrp1E_MASK;
317     }
318 
319     /* VGrp1D: group1 virq signaling disabled */
320     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
321         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
322         value |= R_GICH_MISR_VGrp1D_MASK;
323     }
324 
325     s->h_misr[cpu] = value;
326 }
327 
328 static void gic_update_maintenance(GICState *s)
329 {
330     int cpu = 0;
331     int maint_level;
332 
333     for (cpu = 0; cpu < s->num_cpu; cpu++) {
334         gic_compute_misr(s, cpu);
335         maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
336 
337         trace_gic_update_maintenance_irq(cpu, maint_level);
338         qemu_set_irq(s->maintenance_irq[cpu], maint_level);
339     }
340 }
341 
342 static void gic_update_virt(GICState *s)
343 {
344     gic_update_internal(s, true);
345     gic_update_maintenance(s);
346 }
347 
348 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
349                                  int cm, int target)
350 {
351     if (level) {
352         GIC_DIST_SET_LEVEL(irq, cm);
353         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
354             DPRINTF("Set %d pending mask %x\n", irq, target);
355             GIC_DIST_SET_PENDING(irq, target);
356         }
357     } else {
358         GIC_DIST_CLEAR_LEVEL(irq, cm);
359     }
360 }
361 
362 static void gic_set_irq_generic(GICState *s, int irq, int level,
363                                 int cm, int target)
364 {
365     if (level) {
366         GIC_DIST_SET_LEVEL(irq, cm);
367         DPRINTF("Set %d pending mask %x\n", irq, target);
368         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
369             GIC_DIST_SET_PENDING(irq, target);
370         }
371     } else {
372         GIC_DIST_CLEAR_LEVEL(irq, cm);
373     }
374 }
375 
376 /* Process a change in an external IRQ input.  */
377 static void gic_set_irq(void *opaque, int irq, int level)
378 {
379     /* Meaning of the 'irq' parameter:
380      *  [0..N-1] : external interrupts
381      *  [N..N+31] : PPI (internal) interrupts for CPU 0
382      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
383      *  ...
384      */
385     GICState *s = (GICState *)opaque;
386     int cm, target;
387     if (irq < (s->num_irq - GIC_INTERNAL)) {
388         /* The first external input line is internal interrupt 32.  */
389         cm = ALL_CPU_MASK;
390         irq += GIC_INTERNAL;
391         target = GIC_DIST_TARGET(irq);
392     } else {
393         int cpu;
394         irq -= (s->num_irq - GIC_INTERNAL);
395         cpu = irq / GIC_INTERNAL;
396         irq %= GIC_INTERNAL;
397         cm = 1 << cpu;
398         target = cm;
399     }
400 
401     assert(irq >= GIC_NR_SGIS);
402 
403     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
404         return;
405     }
406 
407     if (s->revision == REV_11MPCORE) {
408         gic_set_irq_11mpcore(s, irq, level, cm, target);
409     } else {
410         gic_set_irq_generic(s, irq, level, cm, target);
411     }
412     trace_gic_set_irq(irq, level, cm, target);
413 
414     gic_update(s);
415 }
416 
417 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
418                                             MemTxAttrs attrs)
419 {
420     uint16_t pending_irq = s->current_pending[cpu];
421 
422     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
423         int group = gic_test_group(s, pending_irq, cpu);
424 
425         /* On a GIC without the security extensions, reading this register
426          * behaves in the same way as a secure access to a GIC with them.
427          */
428         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
429 
430         if (group == 0 && !secure) {
431             /* Group0 interrupts hidden from Non-secure access */
432             return 1023;
433         }
434         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
435             /* Group1 interrupts only seen by Secure access if
436              * AckCtl bit set.
437              */
438             return 1022;
439         }
440     }
441     return pending_irq;
442 }
443 
444 static int gic_get_group_priority(GICState *s, int cpu, int irq)
445 {
446     /* Return the group priority of the specified interrupt
447      * (which is the top bits of its priority, with the number
448      * of bits masked determined by the applicable binary point register).
449      */
450     int bpr;
451     uint32_t mask;
452 
453     if (gic_has_groups(s) &&
454         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
455         gic_test_group(s, irq, cpu)) {
456         bpr = s->abpr[cpu] - 1;
457         assert(bpr >= 0);
458     } else {
459         bpr = s->bpr[cpu];
460     }
461 
462     /* a BPR of 0 means the group priority bits are [7:1];
463      * a BPR of 1 means they are [7:2], and so on down to
464      * a BPR of 7 meaning no group priority bits at all.
465      */
466     mask = ~0U << ((bpr & 7) + 1);
467 
468     return gic_get_priority(s, irq, cpu) & mask;
469 }
470 
471 static void gic_activate_irq(GICState *s, int cpu, int irq)
472 {
473     /* Set the appropriate Active Priority Register bit for this IRQ,
474      * and update the running priority.
475      */
476     int prio = gic_get_group_priority(s, cpu, irq);
477     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
478     int preemption_level = prio >> (min_bpr + 1);
479     int regno = preemption_level / 32;
480     int bitno = preemption_level % 32;
481     uint32_t *papr = NULL;
482 
483     if (gic_is_vcpu(cpu)) {
484         assert(regno == 0);
485         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
486     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
487         papr = &s->nsapr[regno][cpu];
488     } else {
489         papr = &s->apr[regno][cpu];
490     }
491 
492     *papr |= (1 << bitno);
493 
494     s->running_priority[cpu] = prio;
495     gic_set_active(s, irq, cpu);
496 }
497 
498 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
499 {
500     /* Recalculate the current running priority for this CPU based
501      * on the set bits in the Active Priority Registers.
502      */
503     int i;
504 
505     if (gic_is_vcpu(cpu)) {
506         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
507         if (apr) {
508             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
509         } else {
510             return 0x100;
511         }
512     }
513 
514     for (i = 0; i < GIC_NR_APRS; i++) {
515         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
516         if (!apr) {
517             continue;
518         }
519         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
520     }
521     return 0x100;
522 }
523 
524 static void gic_drop_prio(GICState *s, int cpu, int group)
525 {
526     /* Drop the priority of the currently active interrupt in the
527      * specified group.
528      *
529      * Note that we can guarantee (because of the requirement to nest
530      * GICC_IAR reads [which activate an interrupt and raise priority]
531      * with GICC_EOIR writes [which drop the priority for the interrupt])
532      * that the interrupt we're being called for is the highest priority
533      * active interrupt, meaning that it has the lowest set bit in the
534      * APR registers.
535      *
536      * If the guest does not honour the ordering constraints then the
537      * behaviour of the GIC is UNPREDICTABLE, which for us means that
538      * the values of the APR registers might become incorrect and the
539      * running priority will be wrong, so interrupts that should preempt
540      * might not do so, and interrupts that should not preempt might do so.
541      */
542     if (gic_is_vcpu(cpu)) {
543         int rcpu = gic_get_vcpu_real_id(cpu);
544 
545         if (s->h_apr[rcpu]) {
546             /* Clear lowest set bit */
547             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
548         }
549     } else {
550         int i;
551 
552         for (i = 0; i < GIC_NR_APRS; i++) {
553             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
554             if (!*papr) {
555                 continue;
556             }
557             /* Clear lowest set bit */
558             *papr &= *papr - 1;
559             break;
560         }
561     }
562 
563     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
564 }
565 
566 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
567 {
568     int src;
569     uint32_t ret;
570 
571     if (!gic_is_vcpu(cpu)) {
572         /* Lookup the source CPU for the SGI and clear this in the
573          * sgi_pending map.  Return the src and clear the overall pending
574          * state on this CPU if the SGI is not pending from any CPUs.
575          */
576         assert(s->sgi_pending[irq][cpu] != 0);
577         src = ctz32(s->sgi_pending[irq][cpu]);
578         s->sgi_pending[irq][cpu] &= ~(1 << src);
579         if (s->sgi_pending[irq][cpu] == 0) {
580             gic_clear_pending(s, irq, cpu);
581         }
582         ret = irq | ((src & 0x7) << 10);
583     } else {
584         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
585         src = GICH_LR_CPUID(*lr_entry);
586 
587         gic_clear_pending(s, irq, cpu);
588         ret = irq | (src << 10);
589     }
590 
591     return ret;
592 }
593 
594 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
595 {
596     int ret, irq;
597 
598     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
599      * for the case where this GIC supports grouping and the pending interrupt
600      * is in the wrong group.
601      */
602     irq = gic_get_current_pending_irq(s, cpu, attrs);
603     trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
604                               gic_get_vcpu_real_id(cpu), irq);
605 
606     if (irq >= GIC_MAXIRQ) {
607         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
608         return irq;
609     }
610 
611     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
612         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
613         return 1023;
614     }
615 
616     gic_activate_irq(s, cpu, irq);
617 
618     if (s->revision == REV_11MPCORE) {
619         /* Clear pending flags for both level and edge triggered interrupts.
620          * Level triggered IRQs will be reasserted once they become inactive.
621          */
622         gic_clear_pending(s, irq, cpu);
623         ret = irq;
624     } else {
625         if (irq < GIC_NR_SGIS) {
626             ret = gic_clear_pending_sgi(s, irq, cpu);
627         } else {
628             gic_clear_pending(s, irq, cpu);
629             ret = irq;
630         }
631     }
632 
633     if (gic_is_vcpu(cpu)) {
634         gic_update_virt(s);
635     } else {
636         gic_update(s);
637     }
638     DPRINTF("ACK %d\n", irq);
639     return ret;
640 }
641 
642 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
643                       MemTxAttrs attrs)
644 {
645     if (s->security_extn && !attrs.secure) {
646         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
647             return; /* Ignore Non-secure access of Group0 IRQ */
648         }
649         val = 0x80 | (val >> 1); /* Non-secure view */
650     }
651 
652     if (irq < GIC_INTERNAL) {
653         s->priority1[irq][cpu] = val;
654     } else {
655         s->priority2[(irq) - GIC_INTERNAL] = val;
656     }
657 }
658 
659 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
660                                  MemTxAttrs attrs)
661 {
662     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
663 
664     if (s->security_extn && !attrs.secure) {
665         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
666             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
667         }
668         prio = (prio << 1) & 0xff; /* Non-secure view */
669     }
670     return prio;
671 }
672 
673 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
674                                   MemTxAttrs attrs)
675 {
676     if (gic_cpu_ns_access(s, cpu, attrs)) {
677         if (s->priority_mask[cpu] & 0x80) {
678             /* Priority Mask in upper half */
679             pmask = 0x80 | (pmask >> 1);
680         } else {
681             /* Non-secure write ignored if priority mask is in lower half */
682             return;
683         }
684     }
685     s->priority_mask[cpu] = pmask;
686 }
687 
688 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
689 {
690     uint32_t pmask = s->priority_mask[cpu];
691 
692     if (gic_cpu_ns_access(s, cpu, attrs)) {
693         if (pmask & 0x80) {
694             /* Priority Mask in upper half, return Non-secure view */
695             pmask = (pmask << 1) & 0xff;
696         } else {
697             /* Priority Mask in lower half, RAZ */
698             pmask = 0;
699         }
700     }
701     return pmask;
702 }
703 
704 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
705 {
706     uint32_t ret = s->cpu_ctlr[cpu];
707 
708     if (gic_cpu_ns_access(s, cpu, attrs)) {
709         /* Construct the NS banked view of GICC_CTLR from the correct
710          * bits of the S banked view. We don't need to move the bypass
711          * control bits because we don't implement that (IMPDEF) part
712          * of the GIC architecture.
713          */
714         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
715     }
716     return ret;
717 }
718 
719 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
720                                 MemTxAttrs attrs)
721 {
722     uint32_t mask;
723 
724     if (gic_cpu_ns_access(s, cpu, attrs)) {
725         /* The NS view can only write certain bits in the register;
726          * the rest are unchanged
727          */
728         mask = GICC_CTLR_EN_GRP1;
729         if (s->revision == 2) {
730             mask |= GICC_CTLR_EOIMODE_NS;
731         }
732         s->cpu_ctlr[cpu] &= ~mask;
733         s->cpu_ctlr[cpu] |= (value << 1) & mask;
734     } else {
735         if (s->revision == 2) {
736             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
737         } else {
738             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
739         }
740         s->cpu_ctlr[cpu] = value & mask;
741     }
742     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
743             "Group1 Interrupts %sabled\n", cpu,
744             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
745             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
746 }
747 
748 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
749 {
750     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
751         /* Idle priority */
752         return 0xff;
753     }
754 
755     if (gic_cpu_ns_access(s, cpu, attrs)) {
756         if (s->running_priority[cpu] & 0x80) {
757             /* Running priority in upper half of range: return the Non-secure
758              * view of the priority.
759              */
760             return s->running_priority[cpu] << 1;
761         } else {
762             /* Running priority in lower half of range: RAZ */
763             return 0;
764         }
765     } else {
766         return s->running_priority[cpu];
767     }
768 }
769 
770 /* Return true if we should split priority drop and interrupt deactivation,
771  * ie whether the relevant EOIMode bit is set.
772  */
773 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
774 {
775     if (s->revision != 2) {
776         /* Before GICv2 prio-drop and deactivate are not separable */
777         return false;
778     }
779     if (gic_cpu_ns_access(s, cpu, attrs)) {
780         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
781     }
782     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
783 }
784 
785 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
786 {
787     int group;
788 
789     if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
790         /*
791          * This handles two cases:
792          * 1. If software writes the ID of a spurious interrupt [ie 1023]
793          * to the GICC_DIR, the GIC ignores that write.
794          * 2. If software writes the number of a non-existent interrupt
795          * this must be a subcase of "value written is not an active interrupt"
796          * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
797          * all IRQs potentially exist, so this limit does not apply.
798          */
799         return;
800     }
801 
802     if (!gic_eoi_split(s, cpu, attrs)) {
803         /* This is UNPREDICTABLE; we choose to ignore it */
804         qemu_log_mask(LOG_GUEST_ERROR,
805                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
806         return;
807     }
808 
809     if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
810         /* This vIRQ does not have an LR entry which is either active or
811          * pending and active. Increment EOICount and ignore the write.
812          */
813         int rcpu = gic_get_vcpu_real_id(cpu);
814         s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
815 
816         /* Update the virtual interface in case a maintenance interrupt should
817          * be raised.
818          */
819         gic_update_virt(s);
820         return;
821     }
822 
823     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
824 
825     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
826         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
827         return;
828     }
829 
830     gic_clear_active(s, irq, cpu);
831 }
832 
833 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
834 {
835     int cm = 1 << cpu;
836     int group;
837 
838     DPRINTF("EOI %d\n", irq);
839     if (gic_is_vcpu(cpu)) {
840         /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
841          * running prio is < 0x100.
842          */
843         bool prio_drop = s->running_priority[cpu] < 0x100;
844 
845         if (irq >= GIC_MAXIRQ) {
846             /* Ignore spurious interrupt */
847             return;
848         }
849 
850         gic_drop_prio(s, cpu, 0);
851 
852         if (!gic_eoi_split(s, cpu, attrs)) {
853             bool valid = gic_virq_is_valid(s, irq, cpu);
854             if (prio_drop && !valid) {
855                 /* We are in a situation where:
856                  *   - V_CTRL.EOIMode is false (no EOI split),
857                  *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
858                  *   - This vIRQ does not have an LR entry which is either
859                  *     active or pending and active.
860                  * In that case, we must increment EOICount.
861                  */
862                 int rcpu = gic_get_vcpu_real_id(cpu);
863                 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
864             } else if (valid) {
865                 gic_clear_active(s, irq, cpu);
866             }
867         }
868 
869         gic_update_virt(s);
870         return;
871     }
872 
873     if (irq >= s->num_irq) {
874         /* This handles two cases:
875          * 1. If software writes the ID of a spurious interrupt [ie 1023]
876          * to the GICC_EOIR, the GIC ignores that write.
877          * 2. If software writes the number of a non-existent interrupt
878          * this must be a subcase of "value written does not match the last
879          * valid interrupt value read from the Interrupt Acknowledge
880          * register" and so this is UNPREDICTABLE. We choose to ignore it.
881          */
882         return;
883     }
884     if (s->running_priority[cpu] == 0x100) {
885         return; /* No active IRQ.  */
886     }
887 
888     if (s->revision == REV_11MPCORE) {
889         /* Mark level triggered interrupts as pending if they are still
890            raised.  */
891         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
892             && GIC_DIST_TEST_LEVEL(irq, cm)
893             && (GIC_DIST_TARGET(irq) & cm) != 0) {
894             DPRINTF("Set %d pending mask %x\n", irq, cm);
895             GIC_DIST_SET_PENDING(irq, cm);
896         }
897     }
898 
899     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
900 
901     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
902         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
903         return;
904     }
905 
906     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
907      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
908      * i.e. go ahead and complete the irq anyway.
909      */
910 
911     gic_drop_prio(s, cpu, group);
912 
913     /* In GICv2 the guest can choose to split priority-drop and deactivate */
914     if (!gic_eoi_split(s, cpu, attrs)) {
915         gic_clear_active(s, irq, cpu);
916     }
917     gic_update(s);
918 }
919 
920 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
921 {
922     GICState *s = (GICState *)opaque;
923     uint32_t res;
924     int irq;
925     int i;
926     int cpu;
927     int cm;
928     int mask;
929 
930     cpu = gic_get_current_cpu(s);
931     cm = 1 << cpu;
932     if (offset < 0x100) {
933         if (offset == 0) {      /* GICD_CTLR */
934             if (s->security_extn && !attrs.secure) {
935                 /* The NS bank of this register is just an alias of the
936                  * EnableGrp1 bit in the S bank version.
937                  */
938                 return extract32(s->ctlr, 1, 1);
939             } else {
940                 return s->ctlr;
941             }
942         }
943         if (offset == 4)
944             /* Interrupt Controller Type Register */
945             return ((s->num_irq / 32) - 1)
946                     | ((s->num_cpu - 1) << 5)
947                     | (s->security_extn << 10);
948         if (offset < 0x08)
949             return 0;
950         if (offset >= 0x80) {
951             /* Interrupt Group Registers: these RAZ/WI if this is an NS
952              * access to a GIC with the security extensions, or if the GIC
953              * doesn't have groups at all.
954              */
955             res = 0;
956             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
957                 /* Every byte offset holds 8 group status bits */
958                 irq = (offset - 0x080) * 8;
959                 if (irq >= s->num_irq) {
960                     goto bad_reg;
961                 }
962                 for (i = 0; i < 8; i++) {
963                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
964                         res |= (1 << i);
965                     }
966                 }
967             }
968             return res;
969         }
970         goto bad_reg;
971     } else if (offset < 0x200) {
972         /* Interrupt Set/Clear Enable.  */
973         if (offset < 0x180)
974             irq = (offset - 0x100) * 8;
975         else
976             irq = (offset - 0x180) * 8;
977         if (irq >= s->num_irq)
978             goto bad_reg;
979         res = 0;
980         for (i = 0; i < 8; i++) {
981             if (s->security_extn && !attrs.secure &&
982                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
983                 continue; /* Ignore Non-secure access of Group0 IRQ */
984             }
985 
986             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
987                 res |= (1 << i);
988             }
989         }
990     } else if (offset < 0x300) {
991         /* Interrupt Set/Clear Pending.  */
992         if (offset < 0x280)
993             irq = (offset - 0x200) * 8;
994         else
995             irq = (offset - 0x280) * 8;
996         if (irq >= s->num_irq)
997             goto bad_reg;
998         res = 0;
999         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1000         for (i = 0; i < 8; i++) {
1001             if (s->security_extn && !attrs.secure &&
1002                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1003                 continue; /* Ignore Non-secure access of Group0 IRQ */
1004             }
1005 
1006             if (gic_test_pending(s, irq + i, mask)) {
1007                 res |= (1 << i);
1008             }
1009         }
1010     } else if (offset < 0x400) {
1011         /* Interrupt Set/Clear Active.  */
1012         if (offset < 0x380) {
1013             irq = (offset - 0x300) * 8;
1014         } else if (s->revision == 2) {
1015             irq = (offset - 0x380) * 8;
1016         } else {
1017             goto bad_reg;
1018         }
1019 
1020         if (irq >= s->num_irq)
1021             goto bad_reg;
1022         res = 0;
1023         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1024         for (i = 0; i < 8; i++) {
1025             if (s->security_extn && !attrs.secure &&
1026                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1027                 continue; /* Ignore Non-secure access of Group0 IRQ */
1028             }
1029 
1030             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1031                 res |= (1 << i);
1032             }
1033         }
1034     } else if (offset < 0x800) {
1035         /* Interrupt Priority.  */
1036         irq = (offset - 0x400);
1037         if (irq >= s->num_irq)
1038             goto bad_reg;
1039         res = gic_dist_get_priority(s, cpu, irq, attrs);
1040     } else if (offset < 0xc00) {
1041         /* Interrupt CPU Target.  */
1042         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1043             /* For uniprocessor GICs these RAZ/WI */
1044             res = 0;
1045         } else {
1046             irq = (offset - 0x800);
1047             if (irq >= s->num_irq) {
1048                 goto bad_reg;
1049             }
1050             if (irq < 29 && s->revision == REV_11MPCORE) {
1051                 res = 0;
1052             } else if (irq < GIC_INTERNAL) {
1053                 res = cm;
1054             } else {
1055                 res = GIC_DIST_TARGET(irq);
1056             }
1057         }
1058     } else if (offset < 0xf00) {
1059         /* Interrupt Configuration.  */
1060         irq = (offset - 0xc00) * 4;
1061         if (irq >= s->num_irq)
1062             goto bad_reg;
1063         res = 0;
1064         for (i = 0; i < 4; i++) {
1065             if (s->security_extn && !attrs.secure &&
1066                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1067                 continue; /* Ignore Non-secure access of Group0 IRQ */
1068             }
1069 
1070             if (GIC_DIST_TEST_MODEL(irq + i)) {
1071                 res |= (1 << (i * 2));
1072             }
1073             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1074                 res |= (2 << (i * 2));
1075             }
1076         }
1077     } else if (offset < 0xf10) {
1078         goto bad_reg;
1079     } else if (offset < 0xf30) {
1080         if (s->revision == REV_11MPCORE) {
1081             goto bad_reg;
1082         }
1083 
1084         if (offset < 0xf20) {
1085             /* GICD_CPENDSGIRn */
1086             irq = (offset - 0xf10);
1087         } else {
1088             irq = (offset - 0xf20);
1089             /* GICD_SPENDSGIRn */
1090         }
1091 
1092         if (s->security_extn && !attrs.secure &&
1093             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1094             res = 0; /* Ignore Non-secure access of Group0 IRQ */
1095         } else {
1096             res = s->sgi_pending[irq][cpu];
1097         }
1098     } else if (offset < 0xfd0) {
1099         goto bad_reg;
1100     } else if (offset < 0x1000) {
1101         if (offset & 3) {
1102             res = 0;
1103         } else {
1104             switch (s->revision) {
1105             case REV_11MPCORE:
1106                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1107                 break;
1108             case 1:
1109                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1110                 break;
1111             case 2:
1112                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1113                 break;
1114             default:
1115                 res = 0;
1116             }
1117         }
1118     } else {
1119         g_assert_not_reached();
1120     }
1121     return res;
1122 bad_reg:
1123     qemu_log_mask(LOG_GUEST_ERROR,
1124                   "gic_dist_readb: Bad offset %x\n", (int)offset);
1125     return 0;
1126 }
1127 
1128 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1129                                  unsigned size, MemTxAttrs attrs)
1130 {
1131     switch (size) {
1132     case 1:
1133         *data = gic_dist_readb(opaque, offset, attrs);
1134         break;
1135     case 2:
1136         *data = gic_dist_readb(opaque, offset, attrs);
1137         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1138         break;
1139     case 4:
1140         *data = gic_dist_readb(opaque, offset, attrs);
1141         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1142         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1143         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1144         break;
1145     default:
1146         return MEMTX_ERROR;
1147     }
1148 
1149     trace_gic_dist_read(offset, size, *data);
1150     return MEMTX_OK;
1151 }
1152 
1153 static void gic_dist_writeb(void *opaque, hwaddr offset,
1154                             uint32_t value, MemTxAttrs attrs)
1155 {
1156     GICState *s = (GICState *)opaque;
1157     int irq;
1158     int i;
1159     int cpu;
1160 
1161     cpu = gic_get_current_cpu(s);
1162     if (offset < 0x100) {
1163         if (offset == 0) {
1164             if (s->security_extn && !attrs.secure) {
1165                 /* NS version is just an alias of the S version's bit 1 */
1166                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1167             } else if (gic_has_groups(s)) {
1168                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1169             } else {
1170                 s->ctlr = value & GICD_CTLR_EN_GRP0;
1171             }
1172             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1173                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1174                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1175         } else if (offset < 4) {
1176             /* ignored.  */
1177         } else if (offset >= 0x80) {
1178             /* Interrupt Group Registers: RAZ/WI for NS access to secure
1179              * GIC, or for GICs without groups.
1180              */
1181             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1182                 /* Every byte offset holds 8 group status bits */
1183                 irq = (offset - 0x80) * 8;
1184                 if (irq >= s->num_irq) {
1185                     goto bad_reg;
1186                 }
1187                 for (i = 0; i < 8; i++) {
1188                     /* Group bits are banked for private interrupts */
1189                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1190                     if (value & (1 << i)) {
1191                         /* Group1 (Non-secure) */
1192                         GIC_DIST_SET_GROUP(irq + i, cm);
1193                     } else {
1194                         /* Group0 (Secure) */
1195                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
1196                     }
1197                 }
1198             }
1199         } else {
1200             goto bad_reg;
1201         }
1202     } else if (offset < 0x180) {
1203         /* Interrupt Set Enable.  */
1204         irq = (offset - 0x100) * 8;
1205         if (irq >= s->num_irq)
1206             goto bad_reg;
1207         if (irq < GIC_NR_SGIS) {
1208             value = 0xff;
1209         }
1210 
1211         for (i = 0; i < 8; i++) {
1212             if (value & (1 << i)) {
1213                 int mask =
1214                     (irq < GIC_INTERNAL) ? (1 << cpu)
1215                                          : GIC_DIST_TARGET(irq + i);
1216                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1217 
1218                 if (s->security_extn && !attrs.secure &&
1219                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1220                     continue; /* Ignore Non-secure access of Group0 IRQ */
1221                 }
1222 
1223                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1224                     DPRINTF("Enabled IRQ %d\n", irq + i);
1225                     trace_gic_enable_irq(irq + i);
1226                 }
1227                 GIC_DIST_SET_ENABLED(irq + i, cm);
1228                 /* If a raised level triggered IRQ enabled then mark
1229                    is as pending.  */
1230                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1231                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1232                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1233                     GIC_DIST_SET_PENDING(irq + i, mask);
1234                 }
1235             }
1236         }
1237     } else if (offset < 0x200) {
1238         /* Interrupt Clear Enable.  */
1239         irq = (offset - 0x180) * 8;
1240         if (irq >= s->num_irq)
1241             goto bad_reg;
1242         if (irq < GIC_NR_SGIS) {
1243             value = 0;
1244         }
1245 
1246         for (i = 0; i < 8; i++) {
1247             if (value & (1 << i)) {
1248                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1249 
1250                 if (s->security_extn && !attrs.secure &&
1251                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1252                     continue; /* Ignore Non-secure access of Group0 IRQ */
1253                 }
1254 
1255                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1256                     DPRINTF("Disabled IRQ %d\n", irq + i);
1257                     trace_gic_disable_irq(irq + i);
1258                 }
1259                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1260             }
1261         }
1262     } else if (offset < 0x280) {
1263         /* Interrupt Set Pending.  */
1264         irq = (offset - 0x200) * 8;
1265         if (irq >= s->num_irq)
1266             goto bad_reg;
1267         if (irq < GIC_NR_SGIS) {
1268             value = 0;
1269         }
1270 
1271         for (i = 0; i < 8; i++) {
1272             if (value & (1 << i)) {
1273                 if (s->security_extn && !attrs.secure &&
1274                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1275                     continue; /* Ignore Non-secure access of Group0 IRQ */
1276                 }
1277 
1278                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1279             }
1280         }
1281     } else if (offset < 0x300) {
1282         /* Interrupt Clear Pending.  */
1283         irq = (offset - 0x280) * 8;
1284         if (irq >= s->num_irq)
1285             goto bad_reg;
1286         if (irq < GIC_NR_SGIS) {
1287             value = 0;
1288         }
1289 
1290         for (i = 0; i < 8; i++) {
1291             if (s->security_extn && !attrs.secure &&
1292                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1293                 continue; /* Ignore Non-secure access of Group0 IRQ */
1294             }
1295 
1296             /* ??? This currently clears the pending bit for all CPUs, even
1297                for per-CPU interrupts.  It's unclear whether this is the
1298                corect behavior.  */
1299             if (value & (1 << i)) {
1300                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1301             }
1302         }
1303     } else if (offset < 0x380) {
1304         /* Interrupt Set Active.  */
1305         if (s->revision != 2) {
1306             goto bad_reg;
1307         }
1308 
1309         irq = (offset - 0x300) * 8;
1310         if (irq >= s->num_irq) {
1311             goto bad_reg;
1312         }
1313 
1314         /* This register is banked per-cpu for PPIs */
1315         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1316 
1317         for (i = 0; i < 8; i++) {
1318             if (s->security_extn && !attrs.secure &&
1319                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1320                 continue; /* Ignore Non-secure access of Group0 IRQ */
1321             }
1322 
1323             if (value & (1 << i)) {
1324                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1325             }
1326         }
1327     } else if (offset < 0x400) {
1328         /* Interrupt Clear Active.  */
1329         if (s->revision != 2) {
1330             goto bad_reg;
1331         }
1332 
1333         irq = (offset - 0x380) * 8;
1334         if (irq >= s->num_irq) {
1335             goto bad_reg;
1336         }
1337 
1338         /* This register is banked per-cpu for PPIs */
1339         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1340 
1341         for (i = 0; i < 8; i++) {
1342             if (s->security_extn && !attrs.secure &&
1343                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1344                 continue; /* Ignore Non-secure access of Group0 IRQ */
1345             }
1346 
1347             if (value & (1 << i)) {
1348                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1349             }
1350         }
1351     } else if (offset < 0x800) {
1352         /* Interrupt Priority.  */
1353         irq = (offset - 0x400);
1354         if (irq >= s->num_irq)
1355             goto bad_reg;
1356         gic_dist_set_priority(s, cpu, irq, value, attrs);
1357     } else if (offset < 0xc00) {
1358         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1359          * annoying exception of the 11MPCore's GIC.
1360          */
1361         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1362             irq = (offset - 0x800);
1363             if (irq >= s->num_irq) {
1364                 goto bad_reg;
1365             }
1366             if (irq < 29 && s->revision == REV_11MPCORE) {
1367                 value = 0;
1368             } else if (irq < GIC_INTERNAL) {
1369                 value = ALL_CPU_MASK;
1370             }
1371             s->irq_target[irq] = value & ALL_CPU_MASK;
1372         }
1373     } else if (offset < 0xf00) {
1374         /* Interrupt Configuration.  */
1375         irq = (offset - 0xc00) * 4;
1376         if (irq >= s->num_irq)
1377             goto bad_reg;
1378         if (irq < GIC_NR_SGIS)
1379             value |= 0xaa;
1380         for (i = 0; i < 4; i++) {
1381             if (s->security_extn && !attrs.secure &&
1382                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1383                 continue; /* Ignore Non-secure access of Group0 IRQ */
1384             }
1385 
1386             if (s->revision == REV_11MPCORE) {
1387                 if (value & (1 << (i * 2))) {
1388                     GIC_DIST_SET_MODEL(irq + i);
1389                 } else {
1390                     GIC_DIST_CLEAR_MODEL(irq + i);
1391                 }
1392             }
1393             if (value & (2 << (i * 2))) {
1394                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1395             } else {
1396                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1397             }
1398         }
1399     } else if (offset < 0xf10) {
1400         /* 0xf00 is only handled for 32-bit writes.  */
1401         goto bad_reg;
1402     } else if (offset < 0xf20) {
1403         /* GICD_CPENDSGIRn */
1404         if (s->revision == REV_11MPCORE) {
1405             goto bad_reg;
1406         }
1407         irq = (offset - 0xf10);
1408 
1409         if (!s->security_extn || attrs.secure ||
1410             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1411             s->sgi_pending[irq][cpu] &= ~value;
1412             if (s->sgi_pending[irq][cpu] == 0) {
1413                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1414             }
1415         }
1416     } else if (offset < 0xf30) {
1417         /* GICD_SPENDSGIRn */
1418         if (s->revision == REV_11MPCORE) {
1419             goto bad_reg;
1420         }
1421         irq = (offset - 0xf20);
1422 
1423         if (!s->security_extn || attrs.secure ||
1424             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1425             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1426             s->sgi_pending[irq][cpu] |= value;
1427         }
1428     } else {
1429         goto bad_reg;
1430     }
1431     gic_update(s);
1432     return;
1433 bad_reg:
1434     qemu_log_mask(LOG_GUEST_ERROR,
1435                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1436 }
1437 
1438 static void gic_dist_writew(void *opaque, hwaddr offset,
1439                             uint32_t value, MemTxAttrs attrs)
1440 {
1441     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1442     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1443 }
1444 
1445 static void gic_dist_writel(void *opaque, hwaddr offset,
1446                             uint32_t value, MemTxAttrs attrs)
1447 {
1448     GICState *s = (GICState *)opaque;
1449     if (offset == 0xf00) {
1450         int cpu;
1451         int irq;
1452         int mask;
1453         int target_cpu;
1454 
1455         cpu = gic_get_current_cpu(s);
1456         irq = value & 0x3ff;
1457         switch ((value >> 24) & 3) {
1458         case 0:
1459             mask = (value >> 16) & ALL_CPU_MASK;
1460             break;
1461         case 1:
1462             mask = ALL_CPU_MASK ^ (1 << cpu);
1463             break;
1464         case 2:
1465             mask = 1 << cpu;
1466             break;
1467         default:
1468             DPRINTF("Bad Soft Int target filter\n");
1469             mask = ALL_CPU_MASK;
1470             break;
1471         }
1472         GIC_DIST_SET_PENDING(irq, mask);
1473         target_cpu = ctz32(mask);
1474         while (target_cpu < GIC_NCPU) {
1475             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1476             mask &= ~(1 << target_cpu);
1477             target_cpu = ctz32(mask);
1478         }
1479         gic_update(s);
1480         return;
1481     }
1482     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1483     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1484 }
1485 
1486 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1487                                   unsigned size, MemTxAttrs attrs)
1488 {
1489     trace_gic_dist_write(offset, size, data);
1490 
1491     switch (size) {
1492     case 1:
1493         gic_dist_writeb(opaque, offset, data, attrs);
1494         return MEMTX_OK;
1495     case 2:
1496         gic_dist_writew(opaque, offset, data, attrs);
1497         return MEMTX_OK;
1498     case 4:
1499         gic_dist_writel(opaque, offset, data, attrs);
1500         return MEMTX_OK;
1501     default:
1502         return MEMTX_ERROR;
1503     }
1504 }
1505 
1506 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1507 {
1508     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1509      * second half of GICC_NSAPR.
1510      */
1511     switch (GIC_MIN_BPR) {
1512     case 0:
1513         if (regno < 2) {
1514             return s->nsapr[regno + 2][cpu];
1515         }
1516         break;
1517     case 1:
1518         if (regno == 0) {
1519             return s->nsapr[regno + 1][cpu];
1520         }
1521         break;
1522     case 2:
1523         if (regno == 0) {
1524             return extract32(s->nsapr[0][cpu], 16, 16);
1525         }
1526         break;
1527     case 3:
1528         if (regno == 0) {
1529             return extract32(s->nsapr[0][cpu], 8, 8);
1530         }
1531         break;
1532     default:
1533         g_assert_not_reached();
1534     }
1535     return 0;
1536 }
1537 
1538 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1539                                          uint32_t value)
1540 {
1541     /* Write the Nonsecure view of GICC_APR<regno>. */
1542     switch (GIC_MIN_BPR) {
1543     case 0:
1544         if (regno < 2) {
1545             s->nsapr[regno + 2][cpu] = value;
1546         }
1547         break;
1548     case 1:
1549         if (regno == 0) {
1550             s->nsapr[regno + 1][cpu] = value;
1551         }
1552         break;
1553     case 2:
1554         if (regno == 0) {
1555             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1556         }
1557         break;
1558     case 3:
1559         if (regno == 0) {
1560             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1561         }
1562         break;
1563     default:
1564         g_assert_not_reached();
1565     }
1566 }
1567 
1568 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1569                                 uint64_t *data, MemTxAttrs attrs)
1570 {
1571     switch (offset) {
1572     case 0x00: /* Control */
1573         *data = gic_get_cpu_control(s, cpu, attrs);
1574         break;
1575     case 0x04: /* Priority mask */
1576         *data = gic_get_priority_mask(s, cpu, attrs);
1577         break;
1578     case 0x08: /* Binary Point */
1579         if (gic_cpu_ns_access(s, cpu, attrs)) {
1580             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1581                 /* NS view of BPR when CBPR is 1 */
1582                 *data = MIN(s->bpr[cpu] + 1, 7);
1583             } else {
1584                 /* BPR is banked. Non-secure copy stored in ABPR. */
1585                 *data = s->abpr[cpu];
1586             }
1587         } else {
1588             *data = s->bpr[cpu];
1589         }
1590         break;
1591     case 0x0c: /* Acknowledge */
1592         *data = gic_acknowledge_irq(s, cpu, attrs);
1593         break;
1594     case 0x14: /* Running Priority */
1595         *data = gic_get_running_priority(s, cpu, attrs);
1596         break;
1597     case 0x18: /* Highest Pending Interrupt */
1598         *data = gic_get_current_pending_irq(s, cpu, attrs);
1599         break;
1600     case 0x1c: /* Aliased Binary Point */
1601         /* GIC v2, no security: ABPR
1602          * GIC v1, no security: not implemented (RAZ/WI)
1603          * With security extensions, secure access: ABPR (alias of NS BPR)
1604          * With security extensions, nonsecure access: RAZ/WI
1605          */
1606         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1607             *data = 0;
1608         } else {
1609             *data = s->abpr[cpu];
1610         }
1611         break;
1612     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1613     {
1614         int regno = (offset - 0xd0) / 4;
1615         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1616 
1617         if (regno >= nr_aprs || s->revision != 2) {
1618             *data = 0;
1619         } else if (gic_is_vcpu(cpu)) {
1620             *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1621         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1622             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1623             *data = gic_apr_ns_view(s, regno, cpu);
1624         } else {
1625             *data = s->apr[regno][cpu];
1626         }
1627         break;
1628     }
1629     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1630     {
1631         int regno = (offset - 0xe0) / 4;
1632 
1633         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1634             gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1635             *data = 0;
1636         } else {
1637             *data = s->nsapr[regno][cpu];
1638         }
1639         break;
1640     }
1641     default:
1642         qemu_log_mask(LOG_GUEST_ERROR,
1643                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1644         *data = 0;
1645         break;
1646     }
1647 
1648     trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1649                        gic_get_vcpu_real_id(cpu), offset, *data);
1650     return MEMTX_OK;
1651 }
1652 
1653 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1654                                  uint32_t value, MemTxAttrs attrs)
1655 {
1656     trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1657                         gic_get_vcpu_real_id(cpu), offset, value);
1658 
1659     switch (offset) {
1660     case 0x00: /* Control */
1661         gic_set_cpu_control(s, cpu, value, attrs);
1662         break;
1663     case 0x04: /* Priority mask */
1664         gic_set_priority_mask(s, cpu, value, attrs);
1665         break;
1666     case 0x08: /* Binary Point */
1667         if (gic_cpu_ns_access(s, cpu, attrs)) {
1668             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1669                 /* WI when CBPR is 1 */
1670                 return MEMTX_OK;
1671             } else {
1672                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1673             }
1674         } else {
1675             int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1676             s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1677         }
1678         break;
1679     case 0x10: /* End Of Interrupt */
1680         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1681         return MEMTX_OK;
1682     case 0x1c: /* Aliased Binary Point */
1683         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1684             /* unimplemented, or NS access: RAZ/WI */
1685             return MEMTX_OK;
1686         } else {
1687             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1688         }
1689         break;
1690     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1691     {
1692         int regno = (offset - 0xd0) / 4;
1693         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1694 
1695         if (regno >= nr_aprs || s->revision != 2) {
1696             return MEMTX_OK;
1697         }
1698         if (gic_is_vcpu(cpu)) {
1699             s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1700         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1701             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1702             gic_apr_write_ns_view(s, regno, cpu, value);
1703         } else {
1704             s->apr[regno][cpu] = value;
1705         }
1706         break;
1707     }
1708     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1709     {
1710         int regno = (offset - 0xe0) / 4;
1711 
1712         if (regno >= GIC_NR_APRS || s->revision != 2) {
1713             return MEMTX_OK;
1714         }
1715         if (gic_is_vcpu(cpu)) {
1716             return MEMTX_OK;
1717         }
1718         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1719             return MEMTX_OK;
1720         }
1721         s->nsapr[regno][cpu] = value;
1722         break;
1723     }
1724     case 0x1000:
1725         /* GICC_DIR */
1726         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1727         break;
1728     default:
1729         qemu_log_mask(LOG_GUEST_ERROR,
1730                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1731         return MEMTX_OK;
1732     }
1733 
1734     if (gic_is_vcpu(cpu)) {
1735         gic_update_virt(s);
1736     } else {
1737         gic_update(s);
1738     }
1739 
1740     return MEMTX_OK;
1741 }
1742 
1743 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1744 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1745                                     unsigned size, MemTxAttrs attrs)
1746 {
1747     GICState *s = (GICState *)opaque;
1748     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1749 }
1750 
1751 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1752                                      uint64_t value, unsigned size,
1753                                      MemTxAttrs attrs)
1754 {
1755     GICState *s = (GICState *)opaque;
1756     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1757 }
1758 
1759 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1760  * These just decode the opaque pointer into GICState* + cpu id.
1761  */
1762 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1763                                    unsigned size, MemTxAttrs attrs)
1764 {
1765     GICState **backref = (GICState **)opaque;
1766     GICState *s = *backref;
1767     int id = (backref - s->backref);
1768     return gic_cpu_read(s, id, addr, data, attrs);
1769 }
1770 
1771 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1772                                     uint64_t value, unsigned size,
1773                                     MemTxAttrs attrs)
1774 {
1775     GICState **backref = (GICState **)opaque;
1776     GICState *s = *backref;
1777     int id = (backref - s->backref);
1778     return gic_cpu_write(s, id, addr, value, attrs);
1779 }
1780 
1781 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1782                                     unsigned size, MemTxAttrs attrs)
1783 {
1784     GICState *s = (GICState *)opaque;
1785 
1786     return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1787 }
1788 
1789 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1790                                      uint64_t value, unsigned size,
1791                                      MemTxAttrs attrs)
1792 {
1793     GICState *s = (GICState *)opaque;
1794 
1795     return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1796 }
1797 
1798 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1799 {
1800     int lr_idx;
1801     uint32_t ret = 0;
1802 
1803     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1804         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1805         ret = deposit32(ret, lr_idx - lr_start, 1,
1806                         gic_lr_entry_is_eoi(*entry));
1807     }
1808 
1809     return ret;
1810 }
1811 
1812 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1813 {
1814     int lr_idx;
1815     uint32_t ret = 0;
1816 
1817     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1818         uint32_t *entry = &s->h_lr[lr_idx][cpu];
1819         ret = deposit32(ret, lr_idx - lr_start, 1,
1820                         gic_lr_entry_is_free(*entry));
1821     }
1822 
1823     return ret;
1824 }
1825 
1826 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1827 {
1828     int vcpu = gic_get_current_vcpu(s);
1829     uint32_t ctlr;
1830     uint32_t abpr;
1831     uint32_t bpr;
1832     uint32_t prio_mask;
1833 
1834     ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1835     abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1836     bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1837     prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1838 
1839     gic_set_cpu_control(s, vcpu, ctlr, attrs);
1840     s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1841     s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1842     gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1843 }
1844 
1845 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1846                                 uint64_t *data, MemTxAttrs attrs)
1847 {
1848     GICState *s = ARM_GIC(opaque);
1849     int vcpu = cpu + GIC_NCPU;
1850 
1851     switch (addr) {
1852     case A_GICH_HCR: /* Hypervisor Control */
1853         *data = s->h_hcr[cpu];
1854         break;
1855 
1856     case A_GICH_VTR: /* VGIC Type */
1857         *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1858         *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1859                            GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1860         *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1861                            (7 - GIC_VIRT_MIN_BPR) - 1);
1862         break;
1863 
1864     case A_GICH_VMCR: /* Virtual Machine Control */
1865         *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1866                            extract32(s->cpu_ctlr[vcpu], 0, 10));
1867         *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1868         *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1869         *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1870                            extract32(s->priority_mask[vcpu], 3, 5));
1871         break;
1872 
1873     case A_GICH_MISR: /* Maintenance Interrupt Status */
1874         *data = s->h_misr[cpu];
1875         break;
1876 
1877     case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1878     case A_GICH_EISR1:
1879         *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1880         break;
1881 
1882     case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1883     case A_GICH_ELRSR1:
1884         *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1885         break;
1886 
1887     case A_GICH_APR: /* Active Priorities */
1888         *data = s->h_apr[cpu];
1889         break;
1890 
1891     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1892     {
1893         int lr_idx = (addr - A_GICH_LR0) / 4;
1894 
1895         if (lr_idx > s->num_lrs) {
1896             *data = 0;
1897         } else {
1898             *data = s->h_lr[lr_idx][cpu];
1899         }
1900         break;
1901     }
1902 
1903     default:
1904         qemu_log_mask(LOG_GUEST_ERROR,
1905                       "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1906         return MEMTX_OK;
1907     }
1908 
1909     trace_gic_hyp_read(addr, *data);
1910     return MEMTX_OK;
1911 }
1912 
1913 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1914                                  uint64_t value, MemTxAttrs attrs)
1915 {
1916     GICState *s = ARM_GIC(opaque);
1917     int vcpu = cpu + GIC_NCPU;
1918 
1919     trace_gic_hyp_write(addr, value);
1920 
1921     switch (addr) {
1922     case A_GICH_HCR: /* Hypervisor Control */
1923         s->h_hcr[cpu] = value & GICH_HCR_MASK;
1924         break;
1925 
1926     case A_GICH_VMCR: /* Virtual Machine Control */
1927         gic_vmcr_write(s, value, attrs);
1928         break;
1929 
1930     case A_GICH_APR: /* Active Priorities */
1931         s->h_apr[cpu] = value;
1932         s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1933         break;
1934 
1935     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1936     {
1937         int lr_idx = (addr - A_GICH_LR0) / 4;
1938 
1939         if (lr_idx > s->num_lrs) {
1940             return MEMTX_OK;
1941         }
1942 
1943         s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1944         trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1945         break;
1946     }
1947 
1948     default:
1949         qemu_log_mask(LOG_GUEST_ERROR,
1950                       "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1951         return MEMTX_OK;
1952     }
1953 
1954     gic_update_virt(s);
1955     return MEMTX_OK;
1956 }
1957 
1958 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1959                                     unsigned size, MemTxAttrs attrs)
1960 {
1961     GICState *s = (GICState *)opaque;
1962 
1963     return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1964 }
1965 
1966 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1967                                      uint64_t value, unsigned size,
1968                                      MemTxAttrs attrs)
1969 {
1970     GICState *s = (GICState *)opaque;
1971 
1972     return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1973 }
1974 
1975 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1976                                     unsigned size, MemTxAttrs attrs)
1977 {
1978     GICState **backref = (GICState **)opaque;
1979     GICState *s = *backref;
1980     int id = (backref - s->backref);
1981 
1982     return gic_hyp_read(s, id, addr, data, attrs);
1983 }
1984 
1985 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
1986                                      uint64_t value, unsigned size,
1987                                      MemTxAttrs attrs)
1988 {
1989     GICState **backref = (GICState **)opaque;
1990     GICState *s = *backref;
1991     int id = (backref - s->backref);
1992 
1993     return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
1994 
1995 }
1996 
1997 static const MemoryRegionOps gic_ops[2] = {
1998     {
1999         .read_with_attrs = gic_dist_read,
2000         .write_with_attrs = gic_dist_write,
2001         .endianness = DEVICE_NATIVE_ENDIAN,
2002     },
2003     {
2004         .read_with_attrs = gic_thiscpu_read,
2005         .write_with_attrs = gic_thiscpu_write,
2006         .endianness = DEVICE_NATIVE_ENDIAN,
2007     }
2008 };
2009 
2010 static const MemoryRegionOps gic_cpu_ops = {
2011     .read_with_attrs = gic_do_cpu_read,
2012     .write_with_attrs = gic_do_cpu_write,
2013     .endianness = DEVICE_NATIVE_ENDIAN,
2014 };
2015 
2016 static const MemoryRegionOps gic_virt_ops[2] = {
2017     {
2018         .read_with_attrs = gic_thiscpu_hyp_read,
2019         .write_with_attrs = gic_thiscpu_hyp_write,
2020         .endianness = DEVICE_NATIVE_ENDIAN,
2021     },
2022     {
2023         .read_with_attrs = gic_thisvcpu_read,
2024         .write_with_attrs = gic_thisvcpu_write,
2025         .endianness = DEVICE_NATIVE_ENDIAN,
2026     }
2027 };
2028 
2029 static const MemoryRegionOps gic_viface_ops = {
2030     .read_with_attrs = gic_do_hyp_read,
2031     .write_with_attrs = gic_do_hyp_write,
2032     .endianness = DEVICE_NATIVE_ENDIAN,
2033 };
2034 
2035 static void arm_gic_realize(DeviceState *dev, Error **errp)
2036 {
2037     /* Device instance realize function for the GIC sysbus device */
2038     int i;
2039     GICState *s = ARM_GIC(dev);
2040     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2041     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2042     Error *local_err = NULL;
2043 
2044     agc->parent_realize(dev, &local_err);
2045     if (local_err) {
2046         error_propagate(errp, local_err);
2047         return;
2048     }
2049 
2050     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2051         error_setg(errp, "KVM with user space irqchip only works when the "
2052                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
2053         return;
2054     }
2055 
2056     /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2057      * enabled, virtualization extensions related interfaces (main virtual
2058      * interface (s->vifaceiomem[0]) and virtual CPU interface).
2059      */
2060     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2061 
2062     /* Extra core-specific regions for the CPU interfaces. This is
2063      * necessary for "franken-GIC" implementations, for example on
2064      * Exynos 4.
2065      * NB that the memory region size of 0x100 applies for the 11MPCore
2066      * and also cores following the GIC v1 spec (ie A9).
2067      * GIC v2 defines a larger memory region (0x1000) so this will need
2068      * to be extended when we implement A15.
2069      */
2070     for (i = 0; i < s->num_cpu; i++) {
2071         s->backref[i] = s;
2072         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2073                               &s->backref[i], "gic_cpu", 0x100);
2074         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2075     }
2076 
2077     /* Extra core-specific regions for virtual interfaces. This is required by
2078      * the GICv2 specification.
2079      */
2080     if (s->virt_extn) {
2081         for (i = 0; i < s->num_cpu; i++) {
2082             memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2083                                   &gic_viface_ops, &s->backref[i],
2084                                   "gic_viface", 0x200);
2085             sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2086         }
2087     }
2088 
2089 }
2090 
2091 static void arm_gic_class_init(ObjectClass *klass, void *data)
2092 {
2093     DeviceClass *dc = DEVICE_CLASS(klass);
2094     ARMGICClass *agc = ARM_GIC_CLASS(klass);
2095 
2096     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2097 }
2098 
2099 static const TypeInfo arm_gic_info = {
2100     .name = TYPE_ARM_GIC,
2101     .parent = TYPE_ARM_GIC_COMMON,
2102     .instance_size = sizeof(GICState),
2103     .class_init = arm_gic_class_init,
2104     .class_size = sizeof(ARMGICClass),
2105 };
2106 
2107 static void arm_gic_register_types(void)
2108 {
2109     type_register_static(&arm_gic_info);
2110 }
2111 
2112 type_init(arm_gic_register_types)
2113