xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 4a37e0e47618533b3792a6a999d156703203b7a8)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 static inline int gic_get_current_vcpu(GICState *s)
65 {
66     return gic_get_current_cpu(s) + GIC_NCPU;
67 }
68 
69 /* Return true if this GIC config has interrupt groups, which is
70  * true if we're a GICv2, or a GICv1 with the security extensions.
71  */
72 static inline bool gic_has_groups(GICState *s)
73 {
74     return s->revision == 2 || s->security_extn;
75 }
76 
77 /* TODO: Many places that call this routine could be optimized.  */
78 /* Update interrupt status after enabled or pending bits have been changed.  */
79 static void gic_update(GICState *s)
80 {
81     int best_irq;
82     int best_prio;
83     int irq;
84     int irq_level, fiq_level;
85     int cpu;
86     int cm;
87 
88     for (cpu = 0; cpu < s->num_cpu; cpu++) {
89         cm = 1 << cpu;
90         s->current_pending[cpu] = 1023;
91         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
92             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
93             qemu_irq_lower(s->parent_irq[cpu]);
94             qemu_irq_lower(s->parent_fiq[cpu]);
95             continue;
96         }
97         best_prio = 0x100;
98         best_irq = 1023;
99         for (irq = 0; irq < s->num_irq; irq++) {
100             if (GIC_DIST_TEST_ENABLED(irq, cm) &&
101                 gic_test_pending(s, irq, cm) &&
102                 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
103                 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
104                 if (GIC_DIST_GET_PRIORITY(irq, cpu) < best_prio) {
105                     best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
106                     best_irq = irq;
107                 }
108             }
109         }
110 
111         if (best_irq != 1023) {
112             trace_gic_update_bestirq(cpu, best_irq, best_prio,
113                 s->priority_mask[cpu], s->running_priority[cpu]);
114         }
115 
116         irq_level = fiq_level = 0;
117 
118         if (best_prio < s->priority_mask[cpu]) {
119             s->current_pending[cpu] = best_irq;
120             if (best_prio < s->running_priority[cpu]) {
121                 int group = GIC_DIST_TEST_GROUP(best_irq, cm);
122 
123                 if (extract32(s->ctlr, group, 1) &&
124                     extract32(s->cpu_ctlr[cpu], group, 1)) {
125                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
126                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
127                                 best_irq, cpu);
128                         fiq_level = 1;
129                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
130                     } else {
131                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
132                                 best_irq, cpu);
133                         irq_level = 1;
134                         trace_gic_update_set_irq(cpu, "irq", irq_level);
135                     }
136                 }
137             }
138         }
139 
140         qemu_set_irq(s->parent_irq[cpu], irq_level);
141         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
142     }
143 }
144 
145 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
146                                  int cm, int target)
147 {
148     if (level) {
149         GIC_DIST_SET_LEVEL(irq, cm);
150         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
151             DPRINTF("Set %d pending mask %x\n", irq, target);
152             GIC_DIST_SET_PENDING(irq, target);
153         }
154     } else {
155         GIC_DIST_CLEAR_LEVEL(irq, cm);
156     }
157 }
158 
159 static void gic_set_irq_generic(GICState *s, int irq, int level,
160                                 int cm, int target)
161 {
162     if (level) {
163         GIC_DIST_SET_LEVEL(irq, cm);
164         DPRINTF("Set %d pending mask %x\n", irq, target);
165         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
166             GIC_DIST_SET_PENDING(irq, target);
167         }
168     } else {
169         GIC_DIST_CLEAR_LEVEL(irq, cm);
170     }
171 }
172 
173 /* Process a change in an external IRQ input.  */
174 static void gic_set_irq(void *opaque, int irq, int level)
175 {
176     /* Meaning of the 'irq' parameter:
177      *  [0..N-1] : external interrupts
178      *  [N..N+31] : PPI (internal) interrupts for CPU 0
179      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
180      *  ...
181      */
182     GICState *s = (GICState *)opaque;
183     int cm, target;
184     if (irq < (s->num_irq - GIC_INTERNAL)) {
185         /* The first external input line is internal interrupt 32.  */
186         cm = ALL_CPU_MASK;
187         irq += GIC_INTERNAL;
188         target = GIC_DIST_TARGET(irq);
189     } else {
190         int cpu;
191         irq -= (s->num_irq - GIC_INTERNAL);
192         cpu = irq / GIC_INTERNAL;
193         irq %= GIC_INTERNAL;
194         cm = 1 << cpu;
195         target = cm;
196     }
197 
198     assert(irq >= GIC_NR_SGIS);
199 
200     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
201         return;
202     }
203 
204     if (s->revision == REV_11MPCORE) {
205         gic_set_irq_11mpcore(s, irq, level, cm, target);
206     } else {
207         gic_set_irq_generic(s, irq, level, cm, target);
208     }
209     trace_gic_set_irq(irq, level, cm, target);
210 
211     gic_update(s);
212 }
213 
214 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
215                                             MemTxAttrs attrs)
216 {
217     uint16_t pending_irq = s->current_pending[cpu];
218 
219     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
220         int group = GIC_DIST_TEST_GROUP(pending_irq, (1 << cpu));
221         /* On a GIC without the security extensions, reading this register
222          * behaves in the same way as a secure access to a GIC with them.
223          */
224         bool secure = !s->security_extn || attrs.secure;
225 
226         if (group == 0 && !secure) {
227             /* Group0 interrupts hidden from Non-secure access */
228             return 1023;
229         }
230         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
231             /* Group1 interrupts only seen by Secure access if
232              * AckCtl bit set.
233              */
234             return 1022;
235         }
236     }
237     return pending_irq;
238 }
239 
240 static int gic_get_group_priority(GICState *s, int cpu, int irq)
241 {
242     /* Return the group priority of the specified interrupt
243      * (which is the top bits of its priority, with the number
244      * of bits masked determined by the applicable binary point register).
245      */
246     int bpr;
247     uint32_t mask;
248 
249     if (gic_has_groups(s) &&
250         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
251         GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
252         bpr = s->abpr[cpu] - 1;
253         assert(bpr >= 0);
254     } else {
255         bpr = s->bpr[cpu];
256     }
257 
258     /* a BPR of 0 means the group priority bits are [7:1];
259      * a BPR of 1 means they are [7:2], and so on down to
260      * a BPR of 7 meaning no group priority bits at all.
261      */
262     mask = ~0U << ((bpr & 7) + 1);
263 
264     return GIC_DIST_GET_PRIORITY(irq, cpu) & mask;
265 }
266 
267 static void gic_activate_irq(GICState *s, int cpu, int irq)
268 {
269     /* Set the appropriate Active Priority Register bit for this IRQ,
270      * and update the running priority.
271      */
272     int prio = gic_get_group_priority(s, cpu, irq);
273     int preemption_level = prio >> (GIC_MIN_BPR + 1);
274     int regno = preemption_level / 32;
275     int bitno = preemption_level % 32;
276 
277     if (gic_has_groups(s) && GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
278         s->nsapr[regno][cpu] |= (1 << bitno);
279     } else {
280         s->apr[regno][cpu] |= (1 << bitno);
281     }
282 
283     s->running_priority[cpu] = prio;
284     GIC_DIST_SET_ACTIVE(irq, 1 << cpu);
285 }
286 
287 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
288 {
289     /* Recalculate the current running priority for this CPU based
290      * on the set bits in the Active Priority Registers.
291      */
292     int i;
293     for (i = 0; i < GIC_NR_APRS; i++) {
294         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
295         if (!apr) {
296             continue;
297         }
298         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
299     }
300     return 0x100;
301 }
302 
303 static void gic_drop_prio(GICState *s, int cpu, int group)
304 {
305     /* Drop the priority of the currently active interrupt in the
306      * specified group.
307      *
308      * Note that we can guarantee (because of the requirement to nest
309      * GICC_IAR reads [which activate an interrupt and raise priority]
310      * with GICC_EOIR writes [which drop the priority for the interrupt])
311      * that the interrupt we're being called for is the highest priority
312      * active interrupt, meaning that it has the lowest set bit in the
313      * APR registers.
314      *
315      * If the guest does not honour the ordering constraints then the
316      * behaviour of the GIC is UNPREDICTABLE, which for us means that
317      * the values of the APR registers might become incorrect and the
318      * running priority will be wrong, so interrupts that should preempt
319      * might not do so, and interrupts that should not preempt might do so.
320      */
321     int i;
322 
323     for (i = 0; i < GIC_NR_APRS; i++) {
324         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
325         if (!*papr) {
326             continue;
327         }
328         /* Clear lowest set bit */
329         *papr &= *papr - 1;
330         break;
331     }
332 
333     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
334 }
335 
336 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
337 {
338     int ret, irq, src;
339     int cm = 1 << cpu;
340 
341     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
342      * for the case where this GIC supports grouping and the pending interrupt
343      * is in the wrong group.
344      */
345     irq = gic_get_current_pending_irq(s, cpu, attrs);
346     trace_gic_acknowledge_irq(cpu, irq);
347 
348     if (irq >= GIC_MAXIRQ) {
349         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
350         return irq;
351     }
352 
353     if (GIC_DIST_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
354         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
355         return 1023;
356     }
357 
358     if (s->revision == REV_11MPCORE) {
359         /* Clear pending flags for both level and edge triggered interrupts.
360          * Level triggered IRQs will be reasserted once they become inactive.
361          */
362         GIC_DIST_CLEAR_PENDING(irq, GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
363                                                              : cm);
364         ret = irq;
365     } else {
366         if (irq < GIC_NR_SGIS) {
367             /* Lookup the source CPU for the SGI and clear this in the
368              * sgi_pending map.  Return the src and clear the overall pending
369              * state on this CPU if the SGI is not pending from any CPUs.
370              */
371             assert(s->sgi_pending[irq][cpu] != 0);
372             src = ctz32(s->sgi_pending[irq][cpu]);
373             s->sgi_pending[irq][cpu] &= ~(1 << src);
374             if (s->sgi_pending[irq][cpu] == 0) {
375                 GIC_DIST_CLEAR_PENDING(irq,
376                                        GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
377                                                                 : cm);
378             }
379             ret = irq | ((src & 0x7) << 10);
380         } else {
381             /* Clear pending state for both level and edge triggered
382              * interrupts. (level triggered interrupts with an active line
383              * remain pending, see gic_test_pending)
384              */
385             GIC_DIST_CLEAR_PENDING(irq, GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
386                                                                  : cm);
387             ret = irq;
388         }
389     }
390 
391     gic_activate_irq(s, cpu, irq);
392     gic_update(s);
393     DPRINTF("ACK %d\n", irq);
394     return ret;
395 }
396 
397 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
398                       MemTxAttrs attrs)
399 {
400     if (s->security_extn && !attrs.secure) {
401         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
402             return; /* Ignore Non-secure access of Group0 IRQ */
403         }
404         val = 0x80 | (val >> 1); /* Non-secure view */
405     }
406 
407     if (irq < GIC_INTERNAL) {
408         s->priority1[irq][cpu] = val;
409     } else {
410         s->priority2[(irq) - GIC_INTERNAL] = val;
411     }
412 }
413 
414 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
415                                  MemTxAttrs attrs)
416 {
417     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
418 
419     if (s->security_extn && !attrs.secure) {
420         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
421             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
422         }
423         prio = (prio << 1) & 0xff; /* Non-secure view */
424     }
425     return prio;
426 }
427 
428 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
429                                   MemTxAttrs attrs)
430 {
431     if (s->security_extn && !attrs.secure) {
432         if (s->priority_mask[cpu] & 0x80) {
433             /* Priority Mask in upper half */
434             pmask = 0x80 | (pmask >> 1);
435         } else {
436             /* Non-secure write ignored if priority mask is in lower half */
437             return;
438         }
439     }
440     s->priority_mask[cpu] = pmask;
441 }
442 
443 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
444 {
445     uint32_t pmask = s->priority_mask[cpu];
446 
447     if (s->security_extn && !attrs.secure) {
448         if (pmask & 0x80) {
449             /* Priority Mask in upper half, return Non-secure view */
450             pmask = (pmask << 1) & 0xff;
451         } else {
452             /* Priority Mask in lower half, RAZ */
453             pmask = 0;
454         }
455     }
456     return pmask;
457 }
458 
459 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
460 {
461     uint32_t ret = s->cpu_ctlr[cpu];
462 
463     if (s->security_extn && !attrs.secure) {
464         /* Construct the NS banked view of GICC_CTLR from the correct
465          * bits of the S banked view. We don't need to move the bypass
466          * control bits because we don't implement that (IMPDEF) part
467          * of the GIC architecture.
468          */
469         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
470     }
471     return ret;
472 }
473 
474 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
475                                 MemTxAttrs attrs)
476 {
477     uint32_t mask;
478 
479     if (s->security_extn && !attrs.secure) {
480         /* The NS view can only write certain bits in the register;
481          * the rest are unchanged
482          */
483         mask = GICC_CTLR_EN_GRP1;
484         if (s->revision == 2) {
485             mask |= GICC_CTLR_EOIMODE_NS;
486         }
487         s->cpu_ctlr[cpu] &= ~mask;
488         s->cpu_ctlr[cpu] |= (value << 1) & mask;
489     } else {
490         if (s->revision == 2) {
491             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
492         } else {
493             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
494         }
495         s->cpu_ctlr[cpu] = value & mask;
496     }
497     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
498             "Group1 Interrupts %sabled\n", cpu,
499             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
500             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
501 }
502 
503 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
504 {
505     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
506         /* Idle priority */
507         return 0xff;
508     }
509 
510     if (s->security_extn && !attrs.secure) {
511         if (s->running_priority[cpu] & 0x80) {
512             /* Running priority in upper half of range: return the Non-secure
513              * view of the priority.
514              */
515             return s->running_priority[cpu] << 1;
516         } else {
517             /* Running priority in lower half of range: RAZ */
518             return 0;
519         }
520     } else {
521         return s->running_priority[cpu];
522     }
523 }
524 
525 /* Return true if we should split priority drop and interrupt deactivation,
526  * ie whether the relevant EOIMode bit is set.
527  */
528 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
529 {
530     if (s->revision != 2) {
531         /* Before GICv2 prio-drop and deactivate are not separable */
532         return false;
533     }
534     if (s->security_extn && !attrs.secure) {
535         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
536     }
537     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
538 }
539 
540 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
541 {
542     int cm = 1 << cpu;
543     int group;
544 
545     if (irq >= s->num_irq) {
546         /*
547          * This handles two cases:
548          * 1. If software writes the ID of a spurious interrupt [ie 1023]
549          * to the GICC_DIR, the GIC ignores that write.
550          * 2. If software writes the number of a non-existent interrupt
551          * this must be a subcase of "value written is not an active interrupt"
552          * and so this is UNPREDICTABLE. We choose to ignore it.
553          */
554         return;
555     }
556 
557     group = gic_has_groups(s) && GIC_DIST_TEST_GROUP(irq, cm);
558 
559     if (!gic_eoi_split(s, cpu, attrs)) {
560         /* This is UNPREDICTABLE; we choose to ignore it */
561         qemu_log_mask(LOG_GUEST_ERROR,
562                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
563         return;
564     }
565 
566     if (s->security_extn && !attrs.secure && !group) {
567         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
568         return;
569     }
570 
571     GIC_DIST_CLEAR_ACTIVE(irq, cm);
572 }
573 
574 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
575 {
576     int cm = 1 << cpu;
577     int group;
578 
579     DPRINTF("EOI %d\n", irq);
580     if (irq >= s->num_irq) {
581         /* This handles two cases:
582          * 1. If software writes the ID of a spurious interrupt [ie 1023]
583          * to the GICC_EOIR, the GIC ignores that write.
584          * 2. If software writes the number of a non-existent interrupt
585          * this must be a subcase of "value written does not match the last
586          * valid interrupt value read from the Interrupt Acknowledge
587          * register" and so this is UNPREDICTABLE. We choose to ignore it.
588          */
589         return;
590     }
591     if (s->running_priority[cpu] == 0x100) {
592         return; /* No active IRQ.  */
593     }
594 
595     if (s->revision == REV_11MPCORE) {
596         /* Mark level triggered interrupts as pending if they are still
597            raised.  */
598         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
599             && GIC_DIST_TEST_LEVEL(irq, cm)
600             && (GIC_DIST_TARGET(irq) & cm) != 0) {
601             DPRINTF("Set %d pending mask %x\n", irq, cm);
602             GIC_DIST_SET_PENDING(irq, cm);
603         }
604     }
605 
606     group = gic_has_groups(s) && GIC_DIST_TEST_GROUP(irq, cm);
607 
608     if (s->security_extn && !attrs.secure && !group) {
609         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
610         return;
611     }
612 
613     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
614      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
615      * i.e. go ahead and complete the irq anyway.
616      */
617 
618     gic_drop_prio(s, cpu, group);
619 
620     /* In GICv2 the guest can choose to split priority-drop and deactivate */
621     if (!gic_eoi_split(s, cpu, attrs)) {
622         GIC_DIST_CLEAR_ACTIVE(irq, cm);
623     }
624     gic_update(s);
625 }
626 
627 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
628 {
629     GICState *s = (GICState *)opaque;
630     uint32_t res;
631     int irq;
632     int i;
633     int cpu;
634     int cm;
635     int mask;
636 
637     cpu = gic_get_current_cpu(s);
638     cm = 1 << cpu;
639     if (offset < 0x100) {
640         if (offset == 0) {      /* GICD_CTLR */
641             if (s->security_extn && !attrs.secure) {
642                 /* The NS bank of this register is just an alias of the
643                  * EnableGrp1 bit in the S bank version.
644                  */
645                 return extract32(s->ctlr, 1, 1);
646             } else {
647                 return s->ctlr;
648             }
649         }
650         if (offset == 4)
651             /* Interrupt Controller Type Register */
652             return ((s->num_irq / 32) - 1)
653                     | ((s->num_cpu - 1) << 5)
654                     | (s->security_extn << 10);
655         if (offset < 0x08)
656             return 0;
657         if (offset >= 0x80) {
658             /* Interrupt Group Registers: these RAZ/WI if this is an NS
659              * access to a GIC with the security extensions, or if the GIC
660              * doesn't have groups at all.
661              */
662             res = 0;
663             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
664                 /* Every byte offset holds 8 group status bits */
665                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
666                 if (irq >= s->num_irq) {
667                     goto bad_reg;
668                 }
669                 for (i = 0; i < 8; i++) {
670                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
671                         res |= (1 << i);
672                     }
673                 }
674             }
675             return res;
676         }
677         goto bad_reg;
678     } else if (offset < 0x200) {
679         /* Interrupt Set/Clear Enable.  */
680         if (offset < 0x180)
681             irq = (offset - 0x100) * 8;
682         else
683             irq = (offset - 0x180) * 8;
684         irq += GIC_BASE_IRQ;
685         if (irq >= s->num_irq)
686             goto bad_reg;
687         res = 0;
688         for (i = 0; i < 8; i++) {
689             if (s->security_extn && !attrs.secure &&
690                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
691                 continue; /* Ignore Non-secure access of Group0 IRQ */
692             }
693 
694             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
695                 res |= (1 << i);
696             }
697         }
698     } else if (offset < 0x300) {
699         /* Interrupt Set/Clear Pending.  */
700         if (offset < 0x280)
701             irq = (offset - 0x200) * 8;
702         else
703             irq = (offset - 0x280) * 8;
704         irq += GIC_BASE_IRQ;
705         if (irq >= s->num_irq)
706             goto bad_reg;
707         res = 0;
708         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
709         for (i = 0; i < 8; i++) {
710             if (s->security_extn && !attrs.secure &&
711                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
712                 continue; /* Ignore Non-secure access of Group0 IRQ */
713             }
714 
715             if (gic_test_pending(s, irq + i, mask)) {
716                 res |= (1 << i);
717             }
718         }
719     } else if (offset < 0x400) {
720         /* Interrupt Set/Clear Active.  */
721         if (offset < 0x380) {
722             irq = (offset - 0x300) * 8;
723         } else if (s->revision == 2) {
724             irq = (offset - 0x380) * 8;
725         } else {
726             goto bad_reg;
727         }
728 
729         irq += GIC_BASE_IRQ;
730         if (irq >= s->num_irq)
731             goto bad_reg;
732         res = 0;
733         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
734         for (i = 0; i < 8; i++) {
735             if (s->security_extn && !attrs.secure &&
736                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
737                 continue; /* Ignore Non-secure access of Group0 IRQ */
738             }
739 
740             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
741                 res |= (1 << i);
742             }
743         }
744     } else if (offset < 0x800) {
745         /* Interrupt Priority.  */
746         irq = (offset - 0x400) + GIC_BASE_IRQ;
747         if (irq >= s->num_irq)
748             goto bad_reg;
749         res = gic_dist_get_priority(s, cpu, irq, attrs);
750     } else if (offset < 0xc00) {
751         /* Interrupt CPU Target.  */
752         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
753             /* For uniprocessor GICs these RAZ/WI */
754             res = 0;
755         } else {
756             irq = (offset - 0x800) + GIC_BASE_IRQ;
757             if (irq >= s->num_irq) {
758                 goto bad_reg;
759             }
760             if (irq < 29 && s->revision == REV_11MPCORE) {
761                 res = 0;
762             } else if (irq < GIC_INTERNAL) {
763                 res = cm;
764             } else {
765                 res = GIC_DIST_TARGET(irq);
766             }
767         }
768     } else if (offset < 0xf00) {
769         /* Interrupt Configuration.  */
770         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
771         if (irq >= s->num_irq)
772             goto bad_reg;
773         res = 0;
774         for (i = 0; i < 4; i++) {
775             if (s->security_extn && !attrs.secure &&
776                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
777                 continue; /* Ignore Non-secure access of Group0 IRQ */
778             }
779 
780             if (GIC_DIST_TEST_MODEL(irq + i)) {
781                 res |= (1 << (i * 2));
782             }
783             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
784                 res |= (2 << (i * 2));
785             }
786         }
787     } else if (offset < 0xf10) {
788         goto bad_reg;
789     } else if (offset < 0xf30) {
790         if (s->revision == REV_11MPCORE) {
791             goto bad_reg;
792         }
793 
794         if (offset < 0xf20) {
795             /* GICD_CPENDSGIRn */
796             irq = (offset - 0xf10);
797         } else {
798             irq = (offset - 0xf20);
799             /* GICD_SPENDSGIRn */
800         }
801 
802         if (s->security_extn && !attrs.secure &&
803             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
804             res = 0; /* Ignore Non-secure access of Group0 IRQ */
805         } else {
806             res = s->sgi_pending[irq][cpu];
807         }
808     } else if (offset < 0xfd0) {
809         goto bad_reg;
810     } else if (offset < 0x1000) {
811         if (offset & 3) {
812             res = 0;
813         } else {
814             switch (s->revision) {
815             case REV_11MPCORE:
816                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
817                 break;
818             case 1:
819                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
820                 break;
821             case 2:
822                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
823                 break;
824             default:
825                 res = 0;
826             }
827         }
828     } else {
829         g_assert_not_reached();
830     }
831     return res;
832 bad_reg:
833     qemu_log_mask(LOG_GUEST_ERROR,
834                   "gic_dist_readb: Bad offset %x\n", (int)offset);
835     return 0;
836 }
837 
838 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
839                                  unsigned size, MemTxAttrs attrs)
840 {
841     switch (size) {
842     case 1:
843         *data = gic_dist_readb(opaque, offset, attrs);
844         return MEMTX_OK;
845     case 2:
846         *data = gic_dist_readb(opaque, offset, attrs);
847         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
848         return MEMTX_OK;
849     case 4:
850         *data = gic_dist_readb(opaque, offset, attrs);
851         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
852         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
853         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
854         return MEMTX_OK;
855     default:
856         return MEMTX_ERROR;
857     }
858 }
859 
860 static void gic_dist_writeb(void *opaque, hwaddr offset,
861                             uint32_t value, MemTxAttrs attrs)
862 {
863     GICState *s = (GICState *)opaque;
864     int irq;
865     int i;
866     int cpu;
867 
868     cpu = gic_get_current_cpu(s);
869     if (offset < 0x100) {
870         if (offset == 0) {
871             if (s->security_extn && !attrs.secure) {
872                 /* NS version is just an alias of the S version's bit 1 */
873                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
874             } else if (gic_has_groups(s)) {
875                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
876             } else {
877                 s->ctlr = value & GICD_CTLR_EN_GRP0;
878             }
879             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
880                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
881                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
882         } else if (offset < 4) {
883             /* ignored.  */
884         } else if (offset >= 0x80) {
885             /* Interrupt Group Registers: RAZ/WI for NS access to secure
886              * GIC, or for GICs without groups.
887              */
888             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
889                 /* Every byte offset holds 8 group status bits */
890                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
891                 if (irq >= s->num_irq) {
892                     goto bad_reg;
893                 }
894                 for (i = 0; i < 8; i++) {
895                     /* Group bits are banked for private interrupts */
896                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
897                     if (value & (1 << i)) {
898                         /* Group1 (Non-secure) */
899                         GIC_DIST_SET_GROUP(irq + i, cm);
900                     } else {
901                         /* Group0 (Secure) */
902                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
903                     }
904                 }
905             }
906         } else {
907             goto bad_reg;
908         }
909     } else if (offset < 0x180) {
910         /* Interrupt Set Enable.  */
911         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
912         if (irq >= s->num_irq)
913             goto bad_reg;
914         if (irq < GIC_NR_SGIS) {
915             value = 0xff;
916         }
917 
918         for (i = 0; i < 8; i++) {
919             if (value & (1 << i)) {
920                 int mask =
921                     (irq < GIC_INTERNAL) ? (1 << cpu)
922                                          : GIC_DIST_TARGET(irq + i);
923                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
924 
925                 if (s->security_extn && !attrs.secure &&
926                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
927                     continue; /* Ignore Non-secure access of Group0 IRQ */
928                 }
929 
930                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
931                     DPRINTF("Enabled IRQ %d\n", irq + i);
932                     trace_gic_enable_irq(irq + i);
933                 }
934                 GIC_DIST_SET_ENABLED(irq + i, cm);
935                 /* If a raised level triggered IRQ enabled then mark
936                    is as pending.  */
937                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
938                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
939                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
940                     GIC_DIST_SET_PENDING(irq + i, mask);
941                 }
942             }
943         }
944     } else if (offset < 0x200) {
945         /* Interrupt Clear Enable.  */
946         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
947         if (irq >= s->num_irq)
948             goto bad_reg;
949         if (irq < GIC_NR_SGIS) {
950             value = 0;
951         }
952 
953         for (i = 0; i < 8; i++) {
954             if (value & (1 << i)) {
955                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
956 
957                 if (s->security_extn && !attrs.secure &&
958                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
959                     continue; /* Ignore Non-secure access of Group0 IRQ */
960                 }
961 
962                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
963                     DPRINTF("Disabled IRQ %d\n", irq + i);
964                     trace_gic_disable_irq(irq + i);
965                 }
966                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
967             }
968         }
969     } else if (offset < 0x280) {
970         /* Interrupt Set Pending.  */
971         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
972         if (irq >= s->num_irq)
973             goto bad_reg;
974         if (irq < GIC_NR_SGIS) {
975             value = 0;
976         }
977 
978         for (i = 0; i < 8; i++) {
979             if (value & (1 << i)) {
980                 if (s->security_extn && !attrs.secure &&
981                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
982                     continue; /* Ignore Non-secure access of Group0 IRQ */
983                 }
984 
985                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
986             }
987         }
988     } else if (offset < 0x300) {
989         /* Interrupt Clear Pending.  */
990         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
991         if (irq >= s->num_irq)
992             goto bad_reg;
993         if (irq < GIC_NR_SGIS) {
994             value = 0;
995         }
996 
997         for (i = 0; i < 8; i++) {
998             if (s->security_extn && !attrs.secure &&
999                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1000                 continue; /* Ignore Non-secure access of Group0 IRQ */
1001             }
1002 
1003             /* ??? This currently clears the pending bit for all CPUs, even
1004                for per-CPU interrupts.  It's unclear whether this is the
1005                corect behavior.  */
1006             if (value & (1 << i)) {
1007                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1008             }
1009         }
1010     } else if (offset < 0x380) {
1011         /* Interrupt Set Active.  */
1012         if (s->revision != 2) {
1013             goto bad_reg;
1014         }
1015 
1016         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
1017         if (irq >= s->num_irq) {
1018             goto bad_reg;
1019         }
1020 
1021         /* This register is banked per-cpu for PPIs */
1022         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1023 
1024         for (i = 0; i < 8; i++) {
1025             if (s->security_extn && !attrs.secure &&
1026                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1027                 continue; /* Ignore Non-secure access of Group0 IRQ */
1028             }
1029 
1030             if (value & (1 << i)) {
1031                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1032             }
1033         }
1034     } else if (offset < 0x400) {
1035         /* Interrupt Clear Active.  */
1036         if (s->revision != 2) {
1037             goto bad_reg;
1038         }
1039 
1040         irq = (offset - 0x380) * 8 + GIC_BASE_IRQ;
1041         if (irq >= s->num_irq) {
1042             goto bad_reg;
1043         }
1044 
1045         /* This register is banked per-cpu for PPIs */
1046         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1047 
1048         for (i = 0; i < 8; i++) {
1049             if (s->security_extn && !attrs.secure &&
1050                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1051                 continue; /* Ignore Non-secure access of Group0 IRQ */
1052             }
1053 
1054             if (value & (1 << i)) {
1055                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1056             }
1057         }
1058     } else if (offset < 0x800) {
1059         /* Interrupt Priority.  */
1060         irq = (offset - 0x400) + GIC_BASE_IRQ;
1061         if (irq >= s->num_irq)
1062             goto bad_reg;
1063         gic_dist_set_priority(s, cpu, irq, value, attrs);
1064     } else if (offset < 0xc00) {
1065         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1066          * annoying exception of the 11MPCore's GIC.
1067          */
1068         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1069             irq = (offset - 0x800) + GIC_BASE_IRQ;
1070             if (irq >= s->num_irq) {
1071                 goto bad_reg;
1072             }
1073             if (irq < 29 && s->revision == REV_11MPCORE) {
1074                 value = 0;
1075             } else if (irq < GIC_INTERNAL) {
1076                 value = ALL_CPU_MASK;
1077             }
1078             s->irq_target[irq] = value & ALL_CPU_MASK;
1079         }
1080     } else if (offset < 0xf00) {
1081         /* Interrupt Configuration.  */
1082         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1083         if (irq >= s->num_irq)
1084             goto bad_reg;
1085         if (irq < GIC_NR_SGIS)
1086             value |= 0xaa;
1087         for (i = 0; i < 4; i++) {
1088             if (s->security_extn && !attrs.secure &&
1089                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1090                 continue; /* Ignore Non-secure access of Group0 IRQ */
1091             }
1092 
1093             if (s->revision == REV_11MPCORE) {
1094                 if (value & (1 << (i * 2))) {
1095                     GIC_DIST_SET_MODEL(irq + i);
1096                 } else {
1097                     GIC_DIST_CLEAR_MODEL(irq + i);
1098                 }
1099             }
1100             if (value & (2 << (i * 2))) {
1101                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1102             } else {
1103                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1104             }
1105         }
1106     } else if (offset < 0xf10) {
1107         /* 0xf00 is only handled for 32-bit writes.  */
1108         goto bad_reg;
1109     } else if (offset < 0xf20) {
1110         /* GICD_CPENDSGIRn */
1111         if (s->revision == REV_11MPCORE) {
1112             goto bad_reg;
1113         }
1114         irq = (offset - 0xf10);
1115 
1116         if (!s->security_extn || attrs.secure ||
1117             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1118             s->sgi_pending[irq][cpu] &= ~value;
1119             if (s->sgi_pending[irq][cpu] == 0) {
1120                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1121             }
1122         }
1123     } else if (offset < 0xf30) {
1124         /* GICD_SPENDSGIRn */
1125         if (s->revision == REV_11MPCORE) {
1126             goto bad_reg;
1127         }
1128         irq = (offset - 0xf20);
1129 
1130         if (!s->security_extn || attrs.secure ||
1131             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1132             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1133             s->sgi_pending[irq][cpu] |= value;
1134         }
1135     } else {
1136         goto bad_reg;
1137     }
1138     gic_update(s);
1139     return;
1140 bad_reg:
1141     qemu_log_mask(LOG_GUEST_ERROR,
1142                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1143 }
1144 
1145 static void gic_dist_writew(void *opaque, hwaddr offset,
1146                             uint32_t value, MemTxAttrs attrs)
1147 {
1148     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1149     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1150 }
1151 
1152 static void gic_dist_writel(void *opaque, hwaddr offset,
1153                             uint32_t value, MemTxAttrs attrs)
1154 {
1155     GICState *s = (GICState *)opaque;
1156     if (offset == 0xf00) {
1157         int cpu;
1158         int irq;
1159         int mask;
1160         int target_cpu;
1161 
1162         cpu = gic_get_current_cpu(s);
1163         irq = value & 0x3ff;
1164         switch ((value >> 24) & 3) {
1165         case 0:
1166             mask = (value >> 16) & ALL_CPU_MASK;
1167             break;
1168         case 1:
1169             mask = ALL_CPU_MASK ^ (1 << cpu);
1170             break;
1171         case 2:
1172             mask = 1 << cpu;
1173             break;
1174         default:
1175             DPRINTF("Bad Soft Int target filter\n");
1176             mask = ALL_CPU_MASK;
1177             break;
1178         }
1179         GIC_DIST_SET_PENDING(irq, mask);
1180         target_cpu = ctz32(mask);
1181         while (target_cpu < GIC_NCPU) {
1182             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1183             mask &= ~(1 << target_cpu);
1184             target_cpu = ctz32(mask);
1185         }
1186         gic_update(s);
1187         return;
1188     }
1189     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1190     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1191 }
1192 
1193 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1194                                   unsigned size, MemTxAttrs attrs)
1195 {
1196     switch (size) {
1197     case 1:
1198         gic_dist_writeb(opaque, offset, data, attrs);
1199         return MEMTX_OK;
1200     case 2:
1201         gic_dist_writew(opaque, offset, data, attrs);
1202         return MEMTX_OK;
1203     case 4:
1204         gic_dist_writel(opaque, offset, data, attrs);
1205         return MEMTX_OK;
1206     default:
1207         return MEMTX_ERROR;
1208     }
1209 }
1210 
1211 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1212 {
1213     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1214      * second half of GICC_NSAPR.
1215      */
1216     switch (GIC_MIN_BPR) {
1217     case 0:
1218         if (regno < 2) {
1219             return s->nsapr[regno + 2][cpu];
1220         }
1221         break;
1222     case 1:
1223         if (regno == 0) {
1224             return s->nsapr[regno + 1][cpu];
1225         }
1226         break;
1227     case 2:
1228         if (regno == 0) {
1229             return extract32(s->nsapr[0][cpu], 16, 16);
1230         }
1231         break;
1232     case 3:
1233         if (regno == 0) {
1234             return extract32(s->nsapr[0][cpu], 8, 8);
1235         }
1236         break;
1237     default:
1238         g_assert_not_reached();
1239     }
1240     return 0;
1241 }
1242 
1243 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1244                                          uint32_t value)
1245 {
1246     /* Write the Nonsecure view of GICC_APR<regno>. */
1247     switch (GIC_MIN_BPR) {
1248     case 0:
1249         if (regno < 2) {
1250             s->nsapr[regno + 2][cpu] = value;
1251         }
1252         break;
1253     case 1:
1254         if (regno == 0) {
1255             s->nsapr[regno + 1][cpu] = value;
1256         }
1257         break;
1258     case 2:
1259         if (regno == 0) {
1260             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1261         }
1262         break;
1263     case 3:
1264         if (regno == 0) {
1265             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1266         }
1267         break;
1268     default:
1269         g_assert_not_reached();
1270     }
1271 }
1272 
1273 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1274                                 uint64_t *data, MemTxAttrs attrs)
1275 {
1276     switch (offset) {
1277     case 0x00: /* Control */
1278         *data = gic_get_cpu_control(s, cpu, attrs);
1279         break;
1280     case 0x04: /* Priority mask */
1281         *data = gic_get_priority_mask(s, cpu, attrs);
1282         break;
1283     case 0x08: /* Binary Point */
1284         if (s->security_extn && !attrs.secure) {
1285             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1286                 /* NS view of BPR when CBPR is 1 */
1287                 *data = MIN(s->bpr[cpu] + 1, 7);
1288             } else {
1289                 /* BPR is banked. Non-secure copy stored in ABPR. */
1290                 *data = s->abpr[cpu];
1291             }
1292         } else {
1293             *data = s->bpr[cpu];
1294         }
1295         break;
1296     case 0x0c: /* Acknowledge */
1297         *data = gic_acknowledge_irq(s, cpu, attrs);
1298         break;
1299     case 0x14: /* Running Priority */
1300         *data = gic_get_running_priority(s, cpu, attrs);
1301         break;
1302     case 0x18: /* Highest Pending Interrupt */
1303         *data = gic_get_current_pending_irq(s, cpu, attrs);
1304         break;
1305     case 0x1c: /* Aliased Binary Point */
1306         /* GIC v2, no security: ABPR
1307          * GIC v1, no security: not implemented (RAZ/WI)
1308          * With security extensions, secure access: ABPR (alias of NS BPR)
1309          * With security extensions, nonsecure access: RAZ/WI
1310          */
1311         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1312             *data = 0;
1313         } else {
1314             *data = s->abpr[cpu];
1315         }
1316         break;
1317     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1318     {
1319         int regno = (offset - 0xd0) / 4;
1320 
1321         if (regno >= GIC_NR_APRS || s->revision != 2) {
1322             *data = 0;
1323         } else if (s->security_extn && !attrs.secure) {
1324             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1325             *data = gic_apr_ns_view(s, regno, cpu);
1326         } else {
1327             *data = s->apr[regno][cpu];
1328         }
1329         break;
1330     }
1331     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1332     {
1333         int regno = (offset - 0xe0) / 4;
1334 
1335         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1336             (s->security_extn && !attrs.secure)) {
1337             *data = 0;
1338         } else {
1339             *data = s->nsapr[regno][cpu];
1340         }
1341         break;
1342     }
1343     default:
1344         qemu_log_mask(LOG_GUEST_ERROR,
1345                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1346         *data = 0;
1347         break;
1348     }
1349     return MEMTX_OK;
1350 }
1351 
1352 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1353                                  uint32_t value, MemTxAttrs attrs)
1354 {
1355     switch (offset) {
1356     case 0x00: /* Control */
1357         gic_set_cpu_control(s, cpu, value, attrs);
1358         break;
1359     case 0x04: /* Priority mask */
1360         gic_set_priority_mask(s, cpu, value, attrs);
1361         break;
1362     case 0x08: /* Binary Point */
1363         if (s->security_extn && !attrs.secure) {
1364             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1365                 /* WI when CBPR is 1 */
1366                 return MEMTX_OK;
1367             } else {
1368                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1369             }
1370         } else {
1371             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1372         }
1373         break;
1374     case 0x10: /* End Of Interrupt */
1375         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1376         return MEMTX_OK;
1377     case 0x1c: /* Aliased Binary Point */
1378         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1379             /* unimplemented, or NS access: RAZ/WI */
1380             return MEMTX_OK;
1381         } else {
1382             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1383         }
1384         break;
1385     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1386     {
1387         int regno = (offset - 0xd0) / 4;
1388 
1389         if (regno >= GIC_NR_APRS || s->revision != 2) {
1390             return MEMTX_OK;
1391         }
1392         if (s->security_extn && !attrs.secure) {
1393             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1394             gic_apr_write_ns_view(s, regno, cpu, value);
1395         } else {
1396             s->apr[regno][cpu] = value;
1397         }
1398         break;
1399     }
1400     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1401     {
1402         int regno = (offset - 0xe0) / 4;
1403 
1404         if (regno >= GIC_NR_APRS || s->revision != 2) {
1405             return MEMTX_OK;
1406         }
1407         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1408             return MEMTX_OK;
1409         }
1410         s->nsapr[regno][cpu] = value;
1411         break;
1412     }
1413     case 0x1000:
1414         /* GICC_DIR */
1415         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1416         break;
1417     default:
1418         qemu_log_mask(LOG_GUEST_ERROR,
1419                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1420         return MEMTX_OK;
1421     }
1422     gic_update(s);
1423     return MEMTX_OK;
1424 }
1425 
1426 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1427 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1428                                     unsigned size, MemTxAttrs attrs)
1429 {
1430     GICState *s = (GICState *)opaque;
1431     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1432 }
1433 
1434 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1435                                      uint64_t value, unsigned size,
1436                                      MemTxAttrs attrs)
1437 {
1438     GICState *s = (GICState *)opaque;
1439     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1440 }
1441 
1442 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1443  * These just decode the opaque pointer into GICState* + cpu id.
1444  */
1445 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1446                                    unsigned size, MemTxAttrs attrs)
1447 {
1448     GICState **backref = (GICState **)opaque;
1449     GICState *s = *backref;
1450     int id = (backref - s->backref);
1451     return gic_cpu_read(s, id, addr, data, attrs);
1452 }
1453 
1454 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1455                                     uint64_t value, unsigned size,
1456                                     MemTxAttrs attrs)
1457 {
1458     GICState **backref = (GICState **)opaque;
1459     GICState *s = *backref;
1460     int id = (backref - s->backref);
1461     return gic_cpu_write(s, id, addr, value, attrs);
1462 }
1463 
1464 static const MemoryRegionOps gic_ops[2] = {
1465     {
1466         .read_with_attrs = gic_dist_read,
1467         .write_with_attrs = gic_dist_write,
1468         .endianness = DEVICE_NATIVE_ENDIAN,
1469     },
1470     {
1471         .read_with_attrs = gic_thiscpu_read,
1472         .write_with_attrs = gic_thiscpu_write,
1473         .endianness = DEVICE_NATIVE_ENDIAN,
1474     }
1475 };
1476 
1477 static const MemoryRegionOps gic_cpu_ops = {
1478     .read_with_attrs = gic_do_cpu_read,
1479     .write_with_attrs = gic_do_cpu_write,
1480     .endianness = DEVICE_NATIVE_ENDIAN,
1481 };
1482 
1483 static void arm_gic_realize(DeviceState *dev, Error **errp)
1484 {
1485     /* Device instance realize function for the GIC sysbus device */
1486     int i;
1487     GICState *s = ARM_GIC(dev);
1488     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1489     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1490     Error *local_err = NULL;
1491 
1492     agc->parent_realize(dev, &local_err);
1493     if (local_err) {
1494         error_propagate(errp, local_err);
1495         return;
1496     }
1497 
1498     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1499         error_setg(errp, "KVM with user space irqchip only works when the "
1500                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
1501         return;
1502     }
1503 
1504     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1505     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, NULL);
1506 
1507     /* Extra core-specific regions for the CPU interfaces. This is
1508      * necessary for "franken-GIC" implementations, for example on
1509      * Exynos 4.
1510      * NB that the memory region size of 0x100 applies for the 11MPCore
1511      * and also cores following the GIC v1 spec (ie A9).
1512      * GIC v2 defines a larger memory region (0x1000) so this will need
1513      * to be extended when we implement A15.
1514      */
1515     for (i = 0; i < s->num_cpu; i++) {
1516         s->backref[i] = s;
1517         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1518                               &s->backref[i], "gic_cpu", 0x100);
1519         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1520     }
1521 }
1522 
1523 static void arm_gic_class_init(ObjectClass *klass, void *data)
1524 {
1525     DeviceClass *dc = DEVICE_CLASS(klass);
1526     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1527 
1528     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1529 }
1530 
1531 static const TypeInfo arm_gic_info = {
1532     .name = TYPE_ARM_GIC,
1533     .parent = TYPE_ARM_GIC_COMMON,
1534     .instance_size = sizeof(GICState),
1535     .class_init = arm_gic_class_init,
1536     .class_size = sizeof(ARMGICClass),
1537 };
1538 
1539 static void arm_gic_register_types(void)
1540 {
1541     type_register_static(&arm_gic_info);
1542 }
1543 
1544 type_init(arm_gic_register_types)
1545