xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 439badd66d6f1bf82211f86131c7ce75d951756a)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 static inline int gic_get_current_vcpu(GICState *s)
65 {
66     return gic_get_current_cpu(s) + GIC_NCPU;
67 }
68 
69 /* Return true if this GIC config has interrupt groups, which is
70  * true if we're a GICv2, or a GICv1 with the security extensions.
71  */
72 static inline bool gic_has_groups(GICState *s)
73 {
74     return s->revision == 2 || s->security_extn;
75 }
76 
77 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
78 {
79     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
80 }
81 
82 /* TODO: Many places that call this routine could be optimized.  */
83 /* Update interrupt status after enabled or pending bits have been changed.  */
84 static void gic_update(GICState *s)
85 {
86     int best_irq;
87     int best_prio;
88     int irq;
89     int irq_level, fiq_level;
90     int cpu;
91     int cm;
92 
93     for (cpu = 0; cpu < s->num_cpu; cpu++) {
94         cm = 1 << cpu;
95         s->current_pending[cpu] = 1023;
96         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
97             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
98             qemu_irq_lower(s->parent_irq[cpu]);
99             qemu_irq_lower(s->parent_fiq[cpu]);
100             continue;
101         }
102         best_prio = 0x100;
103         best_irq = 1023;
104         for (irq = 0; irq < s->num_irq; irq++) {
105             if (GIC_DIST_TEST_ENABLED(irq, cm) &&
106                 gic_test_pending(s, irq, cm) &&
107                 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
108                 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
109                 if (GIC_DIST_GET_PRIORITY(irq, cpu) < best_prio) {
110                     best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
111                     best_irq = irq;
112                 }
113             }
114         }
115 
116         if (best_irq != 1023) {
117             trace_gic_update_bestirq(cpu, best_irq, best_prio,
118                 s->priority_mask[cpu], s->running_priority[cpu]);
119         }
120 
121         irq_level = fiq_level = 0;
122 
123         if (best_prio < s->priority_mask[cpu]) {
124             s->current_pending[cpu] = best_irq;
125             if (best_prio < s->running_priority[cpu]) {
126                 int group = GIC_DIST_TEST_GROUP(best_irq, cm);
127 
128                 if (extract32(s->ctlr, group, 1) &&
129                     extract32(s->cpu_ctlr[cpu], group, 1)) {
130                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
131                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
132                                 best_irq, cpu);
133                         fiq_level = 1;
134                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
135                     } else {
136                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
137                                 best_irq, cpu);
138                         irq_level = 1;
139                         trace_gic_update_set_irq(cpu, "irq", irq_level);
140                     }
141                 }
142             }
143         }
144 
145         qemu_set_irq(s->parent_irq[cpu], irq_level);
146         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
147     }
148 }
149 
150 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
151                                  int cm, int target)
152 {
153     if (level) {
154         GIC_DIST_SET_LEVEL(irq, cm);
155         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
156             DPRINTF("Set %d pending mask %x\n", irq, target);
157             GIC_DIST_SET_PENDING(irq, target);
158         }
159     } else {
160         GIC_DIST_CLEAR_LEVEL(irq, cm);
161     }
162 }
163 
164 static void gic_set_irq_generic(GICState *s, int irq, int level,
165                                 int cm, int target)
166 {
167     if (level) {
168         GIC_DIST_SET_LEVEL(irq, cm);
169         DPRINTF("Set %d pending mask %x\n", irq, target);
170         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
171             GIC_DIST_SET_PENDING(irq, target);
172         }
173     } else {
174         GIC_DIST_CLEAR_LEVEL(irq, cm);
175     }
176 }
177 
178 /* Process a change in an external IRQ input.  */
179 static void gic_set_irq(void *opaque, int irq, int level)
180 {
181     /* Meaning of the 'irq' parameter:
182      *  [0..N-1] : external interrupts
183      *  [N..N+31] : PPI (internal) interrupts for CPU 0
184      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
185      *  ...
186      */
187     GICState *s = (GICState *)opaque;
188     int cm, target;
189     if (irq < (s->num_irq - GIC_INTERNAL)) {
190         /* The first external input line is internal interrupt 32.  */
191         cm = ALL_CPU_MASK;
192         irq += GIC_INTERNAL;
193         target = GIC_DIST_TARGET(irq);
194     } else {
195         int cpu;
196         irq -= (s->num_irq - GIC_INTERNAL);
197         cpu = irq / GIC_INTERNAL;
198         irq %= GIC_INTERNAL;
199         cm = 1 << cpu;
200         target = cm;
201     }
202 
203     assert(irq >= GIC_NR_SGIS);
204 
205     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
206         return;
207     }
208 
209     if (s->revision == REV_11MPCORE) {
210         gic_set_irq_11mpcore(s, irq, level, cm, target);
211     } else {
212         gic_set_irq_generic(s, irq, level, cm, target);
213     }
214     trace_gic_set_irq(irq, level, cm, target);
215 
216     gic_update(s);
217 }
218 
219 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
220                                             MemTxAttrs attrs)
221 {
222     uint16_t pending_irq = s->current_pending[cpu];
223 
224     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
225         int group = gic_test_group(s, pending_irq, cpu);
226 
227         /* On a GIC without the security extensions, reading this register
228          * behaves in the same way as a secure access to a GIC with them.
229          */
230         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
231 
232         if (group == 0 && !secure) {
233             /* Group0 interrupts hidden from Non-secure access */
234             return 1023;
235         }
236         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
237             /* Group1 interrupts only seen by Secure access if
238              * AckCtl bit set.
239              */
240             return 1022;
241         }
242     }
243     return pending_irq;
244 }
245 
246 static int gic_get_group_priority(GICState *s, int cpu, int irq)
247 {
248     /* Return the group priority of the specified interrupt
249      * (which is the top bits of its priority, with the number
250      * of bits masked determined by the applicable binary point register).
251      */
252     int bpr;
253     uint32_t mask;
254 
255     if (gic_has_groups(s) &&
256         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
257         gic_test_group(s, irq, cpu)) {
258         bpr = s->abpr[cpu] - 1;
259         assert(bpr >= 0);
260     } else {
261         bpr = s->bpr[cpu];
262     }
263 
264     /* a BPR of 0 means the group priority bits are [7:1];
265      * a BPR of 1 means they are [7:2], and so on down to
266      * a BPR of 7 meaning no group priority bits at all.
267      */
268     mask = ~0U << ((bpr & 7) + 1);
269 
270     return gic_get_priority(s, irq, cpu) & mask;
271 }
272 
273 static void gic_activate_irq(GICState *s, int cpu, int irq)
274 {
275     /* Set the appropriate Active Priority Register bit for this IRQ,
276      * and update the running priority.
277      */
278     int prio = gic_get_group_priority(s, cpu, irq);
279     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
280     int preemption_level = prio >> (min_bpr + 1);
281     int regno = preemption_level / 32;
282     int bitno = preemption_level % 32;
283     uint32_t *papr = NULL;
284 
285     if (gic_is_vcpu(cpu)) {
286         assert(regno == 0);
287         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
288     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
289         papr = &s->nsapr[regno][cpu];
290     } else {
291         papr = &s->apr[regno][cpu];
292     }
293 
294     *papr |= (1 << bitno);
295 
296     s->running_priority[cpu] = prio;
297     gic_set_active(s, irq, cpu);
298 }
299 
300 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
301 {
302     /* Recalculate the current running priority for this CPU based
303      * on the set bits in the Active Priority Registers.
304      */
305     int i;
306 
307     if (gic_is_vcpu(cpu)) {
308         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
309         if (apr) {
310             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
311         } else {
312             return 0x100;
313         }
314     }
315 
316     for (i = 0; i < GIC_NR_APRS; i++) {
317         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
318         if (!apr) {
319             continue;
320         }
321         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
322     }
323     return 0x100;
324 }
325 
326 static void gic_drop_prio(GICState *s, int cpu, int group)
327 {
328     /* Drop the priority of the currently active interrupt in the
329      * specified group.
330      *
331      * Note that we can guarantee (because of the requirement to nest
332      * GICC_IAR reads [which activate an interrupt and raise priority]
333      * with GICC_EOIR writes [which drop the priority for the interrupt])
334      * that the interrupt we're being called for is the highest priority
335      * active interrupt, meaning that it has the lowest set bit in the
336      * APR registers.
337      *
338      * If the guest does not honour the ordering constraints then the
339      * behaviour of the GIC is UNPREDICTABLE, which for us means that
340      * the values of the APR registers might become incorrect and the
341      * running priority will be wrong, so interrupts that should preempt
342      * might not do so, and interrupts that should not preempt might do so.
343      */
344     if (gic_is_vcpu(cpu)) {
345         int rcpu = gic_get_vcpu_real_id(cpu);
346 
347         if (s->h_apr[rcpu]) {
348             /* Clear lowest set bit */
349             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
350         }
351     } else {
352         int i;
353 
354         for (i = 0; i < GIC_NR_APRS; i++) {
355             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
356             if (!*papr) {
357                 continue;
358             }
359             /* Clear lowest set bit */
360             *papr &= *papr - 1;
361             break;
362         }
363     }
364 
365     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
366 }
367 
368 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
369 {
370     int src;
371     uint32_t ret;
372 
373     if (!gic_is_vcpu(cpu)) {
374         /* Lookup the source CPU for the SGI and clear this in the
375          * sgi_pending map.  Return the src and clear the overall pending
376          * state on this CPU if the SGI is not pending from any CPUs.
377          */
378         assert(s->sgi_pending[irq][cpu] != 0);
379         src = ctz32(s->sgi_pending[irq][cpu]);
380         s->sgi_pending[irq][cpu] &= ~(1 << src);
381         if (s->sgi_pending[irq][cpu] == 0) {
382             gic_clear_pending(s, irq, cpu);
383         }
384         ret = irq | ((src & 0x7) << 10);
385     } else {
386         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
387         src = GICH_LR_CPUID(*lr_entry);
388 
389         gic_clear_pending(s, irq, cpu);
390         ret = irq | (src << 10);
391     }
392 
393     return ret;
394 }
395 
396 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
397 {
398     int ret, irq;
399 
400     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
401      * for the case where this GIC supports grouping and the pending interrupt
402      * is in the wrong group.
403      */
404     irq = gic_get_current_pending_irq(s, cpu, attrs);
405     trace_gic_acknowledge_irq(gic_get_vcpu_real_id(cpu), irq);
406 
407     if (irq >= GIC_MAXIRQ) {
408         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
409         return irq;
410     }
411 
412     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
413         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
414         return 1023;
415     }
416 
417     gic_activate_irq(s, cpu, irq);
418 
419     if (s->revision == REV_11MPCORE) {
420         /* Clear pending flags for both level and edge triggered interrupts.
421          * Level triggered IRQs will be reasserted once they become inactive.
422          */
423         gic_clear_pending(s, irq, cpu);
424         ret = irq;
425     } else {
426         if (irq < GIC_NR_SGIS) {
427             ret = gic_clear_pending_sgi(s, irq, cpu);
428         } else {
429             gic_clear_pending(s, irq, cpu);
430             ret = irq;
431         }
432     }
433 
434     gic_update(s);
435     DPRINTF("ACK %d\n", irq);
436     return ret;
437 }
438 
439 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
440                       MemTxAttrs attrs)
441 {
442     if (s->security_extn && !attrs.secure) {
443         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
444             return; /* Ignore Non-secure access of Group0 IRQ */
445         }
446         val = 0x80 | (val >> 1); /* Non-secure view */
447     }
448 
449     if (irq < GIC_INTERNAL) {
450         s->priority1[irq][cpu] = val;
451     } else {
452         s->priority2[(irq) - GIC_INTERNAL] = val;
453     }
454 }
455 
456 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
457                                  MemTxAttrs attrs)
458 {
459     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
460 
461     if (s->security_extn && !attrs.secure) {
462         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
463             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
464         }
465         prio = (prio << 1) & 0xff; /* Non-secure view */
466     }
467     return prio;
468 }
469 
470 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
471                                   MemTxAttrs attrs)
472 {
473     if (gic_cpu_ns_access(s, cpu, attrs)) {
474         if (s->priority_mask[cpu] & 0x80) {
475             /* Priority Mask in upper half */
476             pmask = 0x80 | (pmask >> 1);
477         } else {
478             /* Non-secure write ignored if priority mask is in lower half */
479             return;
480         }
481     }
482     s->priority_mask[cpu] = pmask;
483 }
484 
485 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
486 {
487     uint32_t pmask = s->priority_mask[cpu];
488 
489     if (gic_cpu_ns_access(s, cpu, attrs)) {
490         if (pmask & 0x80) {
491             /* Priority Mask in upper half, return Non-secure view */
492             pmask = (pmask << 1) & 0xff;
493         } else {
494             /* Priority Mask in lower half, RAZ */
495             pmask = 0;
496         }
497     }
498     return pmask;
499 }
500 
501 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
502 {
503     uint32_t ret = s->cpu_ctlr[cpu];
504 
505     if (gic_cpu_ns_access(s, cpu, attrs)) {
506         /* Construct the NS banked view of GICC_CTLR from the correct
507          * bits of the S banked view. We don't need to move the bypass
508          * control bits because we don't implement that (IMPDEF) part
509          * of the GIC architecture.
510          */
511         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
512     }
513     return ret;
514 }
515 
516 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
517                                 MemTxAttrs attrs)
518 {
519     uint32_t mask;
520 
521     if (gic_cpu_ns_access(s, cpu, attrs)) {
522         /* The NS view can only write certain bits in the register;
523          * the rest are unchanged
524          */
525         mask = GICC_CTLR_EN_GRP1;
526         if (s->revision == 2) {
527             mask |= GICC_CTLR_EOIMODE_NS;
528         }
529         s->cpu_ctlr[cpu] &= ~mask;
530         s->cpu_ctlr[cpu] |= (value << 1) & mask;
531     } else {
532         if (s->revision == 2) {
533             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
534         } else {
535             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
536         }
537         s->cpu_ctlr[cpu] = value & mask;
538     }
539     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
540             "Group1 Interrupts %sabled\n", cpu,
541             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
542             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
543 }
544 
545 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
546 {
547     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
548         /* Idle priority */
549         return 0xff;
550     }
551 
552     if (gic_cpu_ns_access(s, cpu, attrs)) {
553         if (s->running_priority[cpu] & 0x80) {
554             /* Running priority in upper half of range: return the Non-secure
555              * view of the priority.
556              */
557             return s->running_priority[cpu] << 1;
558         } else {
559             /* Running priority in lower half of range: RAZ */
560             return 0;
561         }
562     } else {
563         return s->running_priority[cpu];
564     }
565 }
566 
567 /* Return true if we should split priority drop and interrupt deactivation,
568  * ie whether the relevant EOIMode bit is set.
569  */
570 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
571 {
572     if (s->revision != 2) {
573         /* Before GICv2 prio-drop and deactivate are not separable */
574         return false;
575     }
576     if (gic_cpu_ns_access(s, cpu, attrs)) {
577         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
578     }
579     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
580 }
581 
582 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
583 {
584     int group;
585 
586     if (irq >= s->num_irq) {
587         /*
588          * This handles two cases:
589          * 1. If software writes the ID of a spurious interrupt [ie 1023]
590          * to the GICC_DIR, the GIC ignores that write.
591          * 2. If software writes the number of a non-existent interrupt
592          * this must be a subcase of "value written is not an active interrupt"
593          * and so this is UNPREDICTABLE. We choose to ignore it.
594          */
595         return;
596     }
597 
598     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
599 
600     if (!gic_eoi_split(s, cpu, attrs)) {
601         /* This is UNPREDICTABLE; we choose to ignore it */
602         qemu_log_mask(LOG_GUEST_ERROR,
603                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
604         return;
605     }
606 
607     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
608         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
609         return;
610     }
611 
612     gic_clear_active(s, irq, cpu);
613 }
614 
615 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
616 {
617     int cm = 1 << cpu;
618     int group;
619 
620     DPRINTF("EOI %d\n", irq);
621     if (irq >= s->num_irq) {
622         /* This handles two cases:
623          * 1. If software writes the ID of a spurious interrupt [ie 1023]
624          * to the GICC_EOIR, the GIC ignores that write.
625          * 2. If software writes the number of a non-existent interrupt
626          * this must be a subcase of "value written does not match the last
627          * valid interrupt value read from the Interrupt Acknowledge
628          * register" and so this is UNPREDICTABLE. We choose to ignore it.
629          */
630         return;
631     }
632     if (s->running_priority[cpu] == 0x100) {
633         return; /* No active IRQ.  */
634     }
635 
636     if (s->revision == REV_11MPCORE) {
637         /* Mark level triggered interrupts as pending if they are still
638            raised.  */
639         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
640             && GIC_DIST_TEST_LEVEL(irq, cm)
641             && (GIC_DIST_TARGET(irq) & cm) != 0) {
642             DPRINTF("Set %d pending mask %x\n", irq, cm);
643             GIC_DIST_SET_PENDING(irq, cm);
644         }
645     }
646 
647     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
648 
649     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
650         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
651         return;
652     }
653 
654     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
655      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
656      * i.e. go ahead and complete the irq anyway.
657      */
658 
659     gic_drop_prio(s, cpu, group);
660 
661     /* In GICv2 the guest can choose to split priority-drop and deactivate */
662     if (!gic_eoi_split(s, cpu, attrs)) {
663         gic_clear_active(s, irq, cpu);
664     }
665     gic_update(s);
666 }
667 
668 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
669 {
670     GICState *s = (GICState *)opaque;
671     uint32_t res;
672     int irq;
673     int i;
674     int cpu;
675     int cm;
676     int mask;
677 
678     cpu = gic_get_current_cpu(s);
679     cm = 1 << cpu;
680     if (offset < 0x100) {
681         if (offset == 0) {      /* GICD_CTLR */
682             if (s->security_extn && !attrs.secure) {
683                 /* The NS bank of this register is just an alias of the
684                  * EnableGrp1 bit in the S bank version.
685                  */
686                 return extract32(s->ctlr, 1, 1);
687             } else {
688                 return s->ctlr;
689             }
690         }
691         if (offset == 4)
692             /* Interrupt Controller Type Register */
693             return ((s->num_irq / 32) - 1)
694                     | ((s->num_cpu - 1) << 5)
695                     | (s->security_extn << 10);
696         if (offset < 0x08)
697             return 0;
698         if (offset >= 0x80) {
699             /* Interrupt Group Registers: these RAZ/WI if this is an NS
700              * access to a GIC with the security extensions, or if the GIC
701              * doesn't have groups at all.
702              */
703             res = 0;
704             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
705                 /* Every byte offset holds 8 group status bits */
706                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
707                 if (irq >= s->num_irq) {
708                     goto bad_reg;
709                 }
710                 for (i = 0; i < 8; i++) {
711                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
712                         res |= (1 << i);
713                     }
714                 }
715             }
716             return res;
717         }
718         goto bad_reg;
719     } else if (offset < 0x200) {
720         /* Interrupt Set/Clear Enable.  */
721         if (offset < 0x180)
722             irq = (offset - 0x100) * 8;
723         else
724             irq = (offset - 0x180) * 8;
725         irq += GIC_BASE_IRQ;
726         if (irq >= s->num_irq)
727             goto bad_reg;
728         res = 0;
729         for (i = 0; i < 8; i++) {
730             if (s->security_extn && !attrs.secure &&
731                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
732                 continue; /* Ignore Non-secure access of Group0 IRQ */
733             }
734 
735             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
736                 res |= (1 << i);
737             }
738         }
739     } else if (offset < 0x300) {
740         /* Interrupt Set/Clear Pending.  */
741         if (offset < 0x280)
742             irq = (offset - 0x200) * 8;
743         else
744             irq = (offset - 0x280) * 8;
745         irq += GIC_BASE_IRQ;
746         if (irq >= s->num_irq)
747             goto bad_reg;
748         res = 0;
749         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
750         for (i = 0; i < 8; i++) {
751             if (s->security_extn && !attrs.secure &&
752                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
753                 continue; /* Ignore Non-secure access of Group0 IRQ */
754             }
755 
756             if (gic_test_pending(s, irq + i, mask)) {
757                 res |= (1 << i);
758             }
759         }
760     } else if (offset < 0x400) {
761         /* Interrupt Set/Clear Active.  */
762         if (offset < 0x380) {
763             irq = (offset - 0x300) * 8;
764         } else if (s->revision == 2) {
765             irq = (offset - 0x380) * 8;
766         } else {
767             goto bad_reg;
768         }
769 
770         irq += GIC_BASE_IRQ;
771         if (irq >= s->num_irq)
772             goto bad_reg;
773         res = 0;
774         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
775         for (i = 0; i < 8; i++) {
776             if (s->security_extn && !attrs.secure &&
777                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
778                 continue; /* Ignore Non-secure access of Group0 IRQ */
779             }
780 
781             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
782                 res |= (1 << i);
783             }
784         }
785     } else if (offset < 0x800) {
786         /* Interrupt Priority.  */
787         irq = (offset - 0x400) + GIC_BASE_IRQ;
788         if (irq >= s->num_irq)
789             goto bad_reg;
790         res = gic_dist_get_priority(s, cpu, irq, attrs);
791     } else if (offset < 0xc00) {
792         /* Interrupt CPU Target.  */
793         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
794             /* For uniprocessor GICs these RAZ/WI */
795             res = 0;
796         } else {
797             irq = (offset - 0x800) + GIC_BASE_IRQ;
798             if (irq >= s->num_irq) {
799                 goto bad_reg;
800             }
801             if (irq < 29 && s->revision == REV_11MPCORE) {
802                 res = 0;
803             } else if (irq < GIC_INTERNAL) {
804                 res = cm;
805             } else {
806                 res = GIC_DIST_TARGET(irq);
807             }
808         }
809     } else if (offset < 0xf00) {
810         /* Interrupt Configuration.  */
811         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
812         if (irq >= s->num_irq)
813             goto bad_reg;
814         res = 0;
815         for (i = 0; i < 4; i++) {
816             if (s->security_extn && !attrs.secure &&
817                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
818                 continue; /* Ignore Non-secure access of Group0 IRQ */
819             }
820 
821             if (GIC_DIST_TEST_MODEL(irq + i)) {
822                 res |= (1 << (i * 2));
823             }
824             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
825                 res |= (2 << (i * 2));
826             }
827         }
828     } else if (offset < 0xf10) {
829         goto bad_reg;
830     } else if (offset < 0xf30) {
831         if (s->revision == REV_11MPCORE) {
832             goto bad_reg;
833         }
834 
835         if (offset < 0xf20) {
836             /* GICD_CPENDSGIRn */
837             irq = (offset - 0xf10);
838         } else {
839             irq = (offset - 0xf20);
840             /* GICD_SPENDSGIRn */
841         }
842 
843         if (s->security_extn && !attrs.secure &&
844             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
845             res = 0; /* Ignore Non-secure access of Group0 IRQ */
846         } else {
847             res = s->sgi_pending[irq][cpu];
848         }
849     } else if (offset < 0xfd0) {
850         goto bad_reg;
851     } else if (offset < 0x1000) {
852         if (offset & 3) {
853             res = 0;
854         } else {
855             switch (s->revision) {
856             case REV_11MPCORE:
857                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
858                 break;
859             case 1:
860                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
861                 break;
862             case 2:
863                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
864                 break;
865             default:
866                 res = 0;
867             }
868         }
869     } else {
870         g_assert_not_reached();
871     }
872     return res;
873 bad_reg:
874     qemu_log_mask(LOG_GUEST_ERROR,
875                   "gic_dist_readb: Bad offset %x\n", (int)offset);
876     return 0;
877 }
878 
879 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
880                                  unsigned size, MemTxAttrs attrs)
881 {
882     switch (size) {
883     case 1:
884         *data = gic_dist_readb(opaque, offset, attrs);
885         return MEMTX_OK;
886     case 2:
887         *data = gic_dist_readb(opaque, offset, attrs);
888         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
889         return MEMTX_OK;
890     case 4:
891         *data = gic_dist_readb(opaque, offset, attrs);
892         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
893         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
894         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
895         return MEMTX_OK;
896     default:
897         return MEMTX_ERROR;
898     }
899 }
900 
901 static void gic_dist_writeb(void *opaque, hwaddr offset,
902                             uint32_t value, MemTxAttrs attrs)
903 {
904     GICState *s = (GICState *)opaque;
905     int irq;
906     int i;
907     int cpu;
908 
909     cpu = gic_get_current_cpu(s);
910     if (offset < 0x100) {
911         if (offset == 0) {
912             if (s->security_extn && !attrs.secure) {
913                 /* NS version is just an alias of the S version's bit 1 */
914                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
915             } else if (gic_has_groups(s)) {
916                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
917             } else {
918                 s->ctlr = value & GICD_CTLR_EN_GRP0;
919             }
920             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
921                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
922                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
923         } else if (offset < 4) {
924             /* ignored.  */
925         } else if (offset >= 0x80) {
926             /* Interrupt Group Registers: RAZ/WI for NS access to secure
927              * GIC, or for GICs without groups.
928              */
929             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
930                 /* Every byte offset holds 8 group status bits */
931                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
932                 if (irq >= s->num_irq) {
933                     goto bad_reg;
934                 }
935                 for (i = 0; i < 8; i++) {
936                     /* Group bits are banked for private interrupts */
937                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
938                     if (value & (1 << i)) {
939                         /* Group1 (Non-secure) */
940                         GIC_DIST_SET_GROUP(irq + i, cm);
941                     } else {
942                         /* Group0 (Secure) */
943                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
944                     }
945                 }
946             }
947         } else {
948             goto bad_reg;
949         }
950     } else if (offset < 0x180) {
951         /* Interrupt Set Enable.  */
952         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
953         if (irq >= s->num_irq)
954             goto bad_reg;
955         if (irq < GIC_NR_SGIS) {
956             value = 0xff;
957         }
958 
959         for (i = 0; i < 8; i++) {
960             if (value & (1 << i)) {
961                 int mask =
962                     (irq < GIC_INTERNAL) ? (1 << cpu)
963                                          : GIC_DIST_TARGET(irq + i);
964                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
965 
966                 if (s->security_extn && !attrs.secure &&
967                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
968                     continue; /* Ignore Non-secure access of Group0 IRQ */
969                 }
970 
971                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
972                     DPRINTF("Enabled IRQ %d\n", irq + i);
973                     trace_gic_enable_irq(irq + i);
974                 }
975                 GIC_DIST_SET_ENABLED(irq + i, cm);
976                 /* If a raised level triggered IRQ enabled then mark
977                    is as pending.  */
978                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
979                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
980                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
981                     GIC_DIST_SET_PENDING(irq + i, mask);
982                 }
983             }
984         }
985     } else if (offset < 0x200) {
986         /* Interrupt Clear Enable.  */
987         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
988         if (irq >= s->num_irq)
989             goto bad_reg;
990         if (irq < GIC_NR_SGIS) {
991             value = 0;
992         }
993 
994         for (i = 0; i < 8; i++) {
995             if (value & (1 << i)) {
996                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
997 
998                 if (s->security_extn && !attrs.secure &&
999                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1000                     continue; /* Ignore Non-secure access of Group0 IRQ */
1001                 }
1002 
1003                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1004                     DPRINTF("Disabled IRQ %d\n", irq + i);
1005                     trace_gic_disable_irq(irq + i);
1006                 }
1007                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1008             }
1009         }
1010     } else if (offset < 0x280) {
1011         /* Interrupt Set Pending.  */
1012         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
1013         if (irq >= s->num_irq)
1014             goto bad_reg;
1015         if (irq < GIC_NR_SGIS) {
1016             value = 0;
1017         }
1018 
1019         for (i = 0; i < 8; i++) {
1020             if (value & (1 << i)) {
1021                 if (s->security_extn && !attrs.secure &&
1022                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1023                     continue; /* Ignore Non-secure access of Group0 IRQ */
1024                 }
1025 
1026                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1027             }
1028         }
1029     } else if (offset < 0x300) {
1030         /* Interrupt Clear Pending.  */
1031         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
1032         if (irq >= s->num_irq)
1033             goto bad_reg;
1034         if (irq < GIC_NR_SGIS) {
1035             value = 0;
1036         }
1037 
1038         for (i = 0; i < 8; i++) {
1039             if (s->security_extn && !attrs.secure &&
1040                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1041                 continue; /* Ignore Non-secure access of Group0 IRQ */
1042             }
1043 
1044             /* ??? This currently clears the pending bit for all CPUs, even
1045                for per-CPU interrupts.  It's unclear whether this is the
1046                corect behavior.  */
1047             if (value & (1 << i)) {
1048                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1049             }
1050         }
1051     } else if (offset < 0x380) {
1052         /* Interrupt Set Active.  */
1053         if (s->revision != 2) {
1054             goto bad_reg;
1055         }
1056 
1057         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
1058         if (irq >= s->num_irq) {
1059             goto bad_reg;
1060         }
1061 
1062         /* This register is banked per-cpu for PPIs */
1063         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1064 
1065         for (i = 0; i < 8; i++) {
1066             if (s->security_extn && !attrs.secure &&
1067                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1068                 continue; /* Ignore Non-secure access of Group0 IRQ */
1069             }
1070 
1071             if (value & (1 << i)) {
1072                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1073             }
1074         }
1075     } else if (offset < 0x400) {
1076         /* Interrupt Clear Active.  */
1077         if (s->revision != 2) {
1078             goto bad_reg;
1079         }
1080 
1081         irq = (offset - 0x380) * 8 + GIC_BASE_IRQ;
1082         if (irq >= s->num_irq) {
1083             goto bad_reg;
1084         }
1085 
1086         /* This register is banked per-cpu for PPIs */
1087         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1088 
1089         for (i = 0; i < 8; i++) {
1090             if (s->security_extn && !attrs.secure &&
1091                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1092                 continue; /* Ignore Non-secure access of Group0 IRQ */
1093             }
1094 
1095             if (value & (1 << i)) {
1096                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1097             }
1098         }
1099     } else if (offset < 0x800) {
1100         /* Interrupt Priority.  */
1101         irq = (offset - 0x400) + GIC_BASE_IRQ;
1102         if (irq >= s->num_irq)
1103             goto bad_reg;
1104         gic_dist_set_priority(s, cpu, irq, value, attrs);
1105     } else if (offset < 0xc00) {
1106         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1107          * annoying exception of the 11MPCore's GIC.
1108          */
1109         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1110             irq = (offset - 0x800) + GIC_BASE_IRQ;
1111             if (irq >= s->num_irq) {
1112                 goto bad_reg;
1113             }
1114             if (irq < 29 && s->revision == REV_11MPCORE) {
1115                 value = 0;
1116             } else if (irq < GIC_INTERNAL) {
1117                 value = ALL_CPU_MASK;
1118             }
1119             s->irq_target[irq] = value & ALL_CPU_MASK;
1120         }
1121     } else if (offset < 0xf00) {
1122         /* Interrupt Configuration.  */
1123         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1124         if (irq >= s->num_irq)
1125             goto bad_reg;
1126         if (irq < GIC_NR_SGIS)
1127             value |= 0xaa;
1128         for (i = 0; i < 4; i++) {
1129             if (s->security_extn && !attrs.secure &&
1130                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1131                 continue; /* Ignore Non-secure access of Group0 IRQ */
1132             }
1133 
1134             if (s->revision == REV_11MPCORE) {
1135                 if (value & (1 << (i * 2))) {
1136                     GIC_DIST_SET_MODEL(irq + i);
1137                 } else {
1138                     GIC_DIST_CLEAR_MODEL(irq + i);
1139                 }
1140             }
1141             if (value & (2 << (i * 2))) {
1142                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1143             } else {
1144                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1145             }
1146         }
1147     } else if (offset < 0xf10) {
1148         /* 0xf00 is only handled for 32-bit writes.  */
1149         goto bad_reg;
1150     } else if (offset < 0xf20) {
1151         /* GICD_CPENDSGIRn */
1152         if (s->revision == REV_11MPCORE) {
1153             goto bad_reg;
1154         }
1155         irq = (offset - 0xf10);
1156 
1157         if (!s->security_extn || attrs.secure ||
1158             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1159             s->sgi_pending[irq][cpu] &= ~value;
1160             if (s->sgi_pending[irq][cpu] == 0) {
1161                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1162             }
1163         }
1164     } else if (offset < 0xf30) {
1165         /* GICD_SPENDSGIRn */
1166         if (s->revision == REV_11MPCORE) {
1167             goto bad_reg;
1168         }
1169         irq = (offset - 0xf20);
1170 
1171         if (!s->security_extn || attrs.secure ||
1172             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1173             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1174             s->sgi_pending[irq][cpu] |= value;
1175         }
1176     } else {
1177         goto bad_reg;
1178     }
1179     gic_update(s);
1180     return;
1181 bad_reg:
1182     qemu_log_mask(LOG_GUEST_ERROR,
1183                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1184 }
1185 
1186 static void gic_dist_writew(void *opaque, hwaddr offset,
1187                             uint32_t value, MemTxAttrs attrs)
1188 {
1189     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1190     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1191 }
1192 
1193 static void gic_dist_writel(void *opaque, hwaddr offset,
1194                             uint32_t value, MemTxAttrs attrs)
1195 {
1196     GICState *s = (GICState *)opaque;
1197     if (offset == 0xf00) {
1198         int cpu;
1199         int irq;
1200         int mask;
1201         int target_cpu;
1202 
1203         cpu = gic_get_current_cpu(s);
1204         irq = value & 0x3ff;
1205         switch ((value >> 24) & 3) {
1206         case 0:
1207             mask = (value >> 16) & ALL_CPU_MASK;
1208             break;
1209         case 1:
1210             mask = ALL_CPU_MASK ^ (1 << cpu);
1211             break;
1212         case 2:
1213             mask = 1 << cpu;
1214             break;
1215         default:
1216             DPRINTF("Bad Soft Int target filter\n");
1217             mask = ALL_CPU_MASK;
1218             break;
1219         }
1220         GIC_DIST_SET_PENDING(irq, mask);
1221         target_cpu = ctz32(mask);
1222         while (target_cpu < GIC_NCPU) {
1223             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1224             mask &= ~(1 << target_cpu);
1225             target_cpu = ctz32(mask);
1226         }
1227         gic_update(s);
1228         return;
1229     }
1230     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1231     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1232 }
1233 
1234 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1235                                   unsigned size, MemTxAttrs attrs)
1236 {
1237     switch (size) {
1238     case 1:
1239         gic_dist_writeb(opaque, offset, data, attrs);
1240         return MEMTX_OK;
1241     case 2:
1242         gic_dist_writew(opaque, offset, data, attrs);
1243         return MEMTX_OK;
1244     case 4:
1245         gic_dist_writel(opaque, offset, data, attrs);
1246         return MEMTX_OK;
1247     default:
1248         return MEMTX_ERROR;
1249     }
1250 }
1251 
1252 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1253 {
1254     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1255      * second half of GICC_NSAPR.
1256      */
1257     switch (GIC_MIN_BPR) {
1258     case 0:
1259         if (regno < 2) {
1260             return s->nsapr[regno + 2][cpu];
1261         }
1262         break;
1263     case 1:
1264         if (regno == 0) {
1265             return s->nsapr[regno + 1][cpu];
1266         }
1267         break;
1268     case 2:
1269         if (regno == 0) {
1270             return extract32(s->nsapr[0][cpu], 16, 16);
1271         }
1272         break;
1273     case 3:
1274         if (regno == 0) {
1275             return extract32(s->nsapr[0][cpu], 8, 8);
1276         }
1277         break;
1278     default:
1279         g_assert_not_reached();
1280     }
1281     return 0;
1282 }
1283 
1284 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1285                                          uint32_t value)
1286 {
1287     /* Write the Nonsecure view of GICC_APR<regno>. */
1288     switch (GIC_MIN_BPR) {
1289     case 0:
1290         if (regno < 2) {
1291             s->nsapr[regno + 2][cpu] = value;
1292         }
1293         break;
1294     case 1:
1295         if (regno == 0) {
1296             s->nsapr[regno + 1][cpu] = value;
1297         }
1298         break;
1299     case 2:
1300         if (regno == 0) {
1301             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1302         }
1303         break;
1304     case 3:
1305         if (regno == 0) {
1306             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1307         }
1308         break;
1309     default:
1310         g_assert_not_reached();
1311     }
1312 }
1313 
1314 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1315                                 uint64_t *data, MemTxAttrs attrs)
1316 {
1317     switch (offset) {
1318     case 0x00: /* Control */
1319         *data = gic_get_cpu_control(s, cpu, attrs);
1320         break;
1321     case 0x04: /* Priority mask */
1322         *data = gic_get_priority_mask(s, cpu, attrs);
1323         break;
1324     case 0x08: /* Binary Point */
1325         if (gic_cpu_ns_access(s, cpu, attrs)) {
1326             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1327                 /* NS view of BPR when CBPR is 1 */
1328                 *data = MIN(s->bpr[cpu] + 1, 7);
1329             } else {
1330                 /* BPR is banked. Non-secure copy stored in ABPR. */
1331                 *data = s->abpr[cpu];
1332             }
1333         } else {
1334             *data = s->bpr[cpu];
1335         }
1336         break;
1337     case 0x0c: /* Acknowledge */
1338         *data = gic_acknowledge_irq(s, cpu, attrs);
1339         break;
1340     case 0x14: /* Running Priority */
1341         *data = gic_get_running_priority(s, cpu, attrs);
1342         break;
1343     case 0x18: /* Highest Pending Interrupt */
1344         *data = gic_get_current_pending_irq(s, cpu, attrs);
1345         break;
1346     case 0x1c: /* Aliased Binary Point */
1347         /* GIC v2, no security: ABPR
1348          * GIC v1, no security: not implemented (RAZ/WI)
1349          * With security extensions, secure access: ABPR (alias of NS BPR)
1350          * With security extensions, nonsecure access: RAZ/WI
1351          */
1352         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1353             *data = 0;
1354         } else {
1355             *data = s->abpr[cpu];
1356         }
1357         break;
1358     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1359     {
1360         int regno = (offset - 0xd0) / 4;
1361 
1362         if (regno >= GIC_NR_APRS || s->revision != 2) {
1363             *data = 0;
1364         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1365             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1366             *data = gic_apr_ns_view(s, regno, cpu);
1367         } else {
1368             *data = s->apr[regno][cpu];
1369         }
1370         break;
1371     }
1372     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1373     {
1374         int regno = (offset - 0xe0) / 4;
1375 
1376         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1377             gic_cpu_ns_access(s, cpu, attrs)) {
1378             *data = 0;
1379         } else {
1380             *data = s->nsapr[regno][cpu];
1381         }
1382         break;
1383     }
1384     default:
1385         qemu_log_mask(LOG_GUEST_ERROR,
1386                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1387         *data = 0;
1388         break;
1389     }
1390     return MEMTX_OK;
1391 }
1392 
1393 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1394                                  uint32_t value, MemTxAttrs attrs)
1395 {
1396     switch (offset) {
1397     case 0x00: /* Control */
1398         gic_set_cpu_control(s, cpu, value, attrs);
1399         break;
1400     case 0x04: /* Priority mask */
1401         gic_set_priority_mask(s, cpu, value, attrs);
1402         break;
1403     case 0x08: /* Binary Point */
1404         if (gic_cpu_ns_access(s, cpu, attrs)) {
1405             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1406                 /* WI when CBPR is 1 */
1407                 return MEMTX_OK;
1408             } else {
1409                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1410             }
1411         } else {
1412             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1413         }
1414         break;
1415     case 0x10: /* End Of Interrupt */
1416         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1417         return MEMTX_OK;
1418     case 0x1c: /* Aliased Binary Point */
1419         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1420             /* unimplemented, or NS access: RAZ/WI */
1421             return MEMTX_OK;
1422         } else {
1423             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1424         }
1425         break;
1426     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1427     {
1428         int regno = (offset - 0xd0) / 4;
1429 
1430         if (regno >= GIC_NR_APRS || s->revision != 2) {
1431             return MEMTX_OK;
1432         }
1433         if (gic_cpu_ns_access(s, cpu, attrs)) {
1434             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1435             gic_apr_write_ns_view(s, regno, cpu, value);
1436         } else {
1437             s->apr[regno][cpu] = value;
1438         }
1439         break;
1440     }
1441     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1442     {
1443         int regno = (offset - 0xe0) / 4;
1444 
1445         if (regno >= GIC_NR_APRS || s->revision != 2) {
1446             return MEMTX_OK;
1447         }
1448         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1449             return MEMTX_OK;
1450         }
1451         s->nsapr[regno][cpu] = value;
1452         break;
1453     }
1454     case 0x1000:
1455         /* GICC_DIR */
1456         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1457         break;
1458     default:
1459         qemu_log_mask(LOG_GUEST_ERROR,
1460                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1461         return MEMTX_OK;
1462     }
1463     gic_update(s);
1464     return MEMTX_OK;
1465 }
1466 
1467 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1468 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1469                                     unsigned size, MemTxAttrs attrs)
1470 {
1471     GICState *s = (GICState *)opaque;
1472     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1473 }
1474 
1475 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1476                                      uint64_t value, unsigned size,
1477                                      MemTxAttrs attrs)
1478 {
1479     GICState *s = (GICState *)opaque;
1480     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1481 }
1482 
1483 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1484  * These just decode the opaque pointer into GICState* + cpu id.
1485  */
1486 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1487                                    unsigned size, MemTxAttrs attrs)
1488 {
1489     GICState **backref = (GICState **)opaque;
1490     GICState *s = *backref;
1491     int id = (backref - s->backref);
1492     return gic_cpu_read(s, id, addr, data, attrs);
1493 }
1494 
1495 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1496                                     uint64_t value, unsigned size,
1497                                     MemTxAttrs attrs)
1498 {
1499     GICState **backref = (GICState **)opaque;
1500     GICState *s = *backref;
1501     int id = (backref - s->backref);
1502     return gic_cpu_write(s, id, addr, value, attrs);
1503 }
1504 
1505 static const MemoryRegionOps gic_ops[2] = {
1506     {
1507         .read_with_attrs = gic_dist_read,
1508         .write_with_attrs = gic_dist_write,
1509         .endianness = DEVICE_NATIVE_ENDIAN,
1510     },
1511     {
1512         .read_with_attrs = gic_thiscpu_read,
1513         .write_with_attrs = gic_thiscpu_write,
1514         .endianness = DEVICE_NATIVE_ENDIAN,
1515     }
1516 };
1517 
1518 static const MemoryRegionOps gic_cpu_ops = {
1519     .read_with_attrs = gic_do_cpu_read,
1520     .write_with_attrs = gic_do_cpu_write,
1521     .endianness = DEVICE_NATIVE_ENDIAN,
1522 };
1523 
1524 static void arm_gic_realize(DeviceState *dev, Error **errp)
1525 {
1526     /* Device instance realize function for the GIC sysbus device */
1527     int i;
1528     GICState *s = ARM_GIC(dev);
1529     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1530     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1531     Error *local_err = NULL;
1532 
1533     agc->parent_realize(dev, &local_err);
1534     if (local_err) {
1535         error_propagate(errp, local_err);
1536         return;
1537     }
1538 
1539     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1540         error_setg(errp, "KVM with user space irqchip only works when the "
1541                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
1542         return;
1543     }
1544 
1545     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1546     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, NULL);
1547 
1548     /* Extra core-specific regions for the CPU interfaces. This is
1549      * necessary for "franken-GIC" implementations, for example on
1550      * Exynos 4.
1551      * NB that the memory region size of 0x100 applies for the 11MPCore
1552      * and also cores following the GIC v1 spec (ie A9).
1553      * GIC v2 defines a larger memory region (0x1000) so this will need
1554      * to be extended when we implement A15.
1555      */
1556     for (i = 0; i < s->num_cpu; i++) {
1557         s->backref[i] = s;
1558         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1559                               &s->backref[i], "gic_cpu", 0x100);
1560         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1561     }
1562 }
1563 
1564 static void arm_gic_class_init(ObjectClass *klass, void *data)
1565 {
1566     DeviceClass *dc = DEVICE_CLASS(klass);
1567     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1568 
1569     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1570 }
1571 
1572 static const TypeInfo arm_gic_info = {
1573     .name = TYPE_ARM_GIC,
1574     .parent = TYPE_ARM_GIC_COMMON,
1575     .instance_size = sizeof(GICState),
1576     .class_init = arm_gic_class_init,
1577     .class_size = sizeof(ARMGICClass),
1578 };
1579 
1580 static void arm_gic_register_types(void)
1581 {
1582     type_register_static(&arm_gic_info);
1583 }
1584 
1585 type_init(arm_gic_register_types)
1586