xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 3f53bc61)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 
29 /* #define DEBUG_GIC */
30 
31 #ifdef DEBUG_GIC
32 #define DEBUG_GIC_GATE 1
33 #else
34 #define DEBUG_GIC_GATE 0
35 #endif
36 
37 #define DPRINTF(fmt, ...) do {                                          \
38         if (DEBUG_GIC_GATE) {                                           \
39             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
40         }                                                               \
41     } while (0)
42 
43 static const uint8_t gic_id_11mpcore[] = {
44     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
45 };
46 
47 static const uint8_t gic_id_gicv1[] = {
48     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
49 };
50 
51 static const uint8_t gic_id_gicv2[] = {
52     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
53 };
54 
55 static inline int gic_get_current_cpu(GICState *s)
56 {
57     if (s->num_cpu > 1) {
58         return current_cpu->cpu_index;
59     }
60     return 0;
61 }
62 
63 /* Return true if this GIC config has interrupt groups, which is
64  * true if we're a GICv2, or a GICv1 with the security extensions.
65  */
66 static inline bool gic_has_groups(GICState *s)
67 {
68     return s->revision == 2 || s->security_extn;
69 }
70 
71 /* TODO: Many places that call this routine could be optimized.  */
72 /* Update interrupt status after enabled or pending bits have been changed.  */
73 void gic_update(GICState *s)
74 {
75     int best_irq;
76     int best_prio;
77     int irq;
78     int irq_level, fiq_level;
79     int cpu;
80     int cm;
81 
82     for (cpu = 0; cpu < s->num_cpu; cpu++) {
83         cm = 1 << cpu;
84         s->current_pending[cpu] = 1023;
85         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
86             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
87             qemu_irq_lower(s->parent_irq[cpu]);
88             qemu_irq_lower(s->parent_fiq[cpu]);
89             continue;
90         }
91         best_prio = 0x100;
92         best_irq = 1023;
93         for (irq = 0; irq < s->num_irq; irq++) {
94             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
95                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
96                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
97                     best_prio = GIC_GET_PRIORITY(irq, cpu);
98                     best_irq = irq;
99                 }
100             }
101         }
102 
103         if (best_irq != 1023) {
104             trace_gic_update_bestirq(cpu, best_irq, best_prio,
105                 s->priority_mask[cpu], s->running_priority[cpu]);
106         }
107 
108         irq_level = fiq_level = 0;
109 
110         if (best_prio < s->priority_mask[cpu]) {
111             s->current_pending[cpu] = best_irq;
112             if (best_prio < s->running_priority[cpu]) {
113                 int group = GIC_TEST_GROUP(best_irq, cm);
114 
115                 if (extract32(s->ctlr, group, 1) &&
116                     extract32(s->cpu_ctlr[cpu], group, 1)) {
117                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
118                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
119                                 best_irq, cpu);
120                         fiq_level = 1;
121                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
122                     } else {
123                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
124                                 best_irq, cpu);
125                         irq_level = 1;
126                         trace_gic_update_set_irq(cpu, "irq", irq_level);
127                     }
128                 }
129             }
130         }
131 
132         qemu_set_irq(s->parent_irq[cpu], irq_level);
133         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
134     }
135 }
136 
137 void gic_set_pending_private(GICState *s, int cpu, int irq)
138 {
139     int cm = 1 << cpu;
140 
141     if (gic_test_pending(s, irq, cm)) {
142         return;
143     }
144 
145     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
146     GIC_SET_PENDING(irq, cm);
147     gic_update(s);
148 }
149 
150 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
151                                  int cm, int target)
152 {
153     if (level) {
154         GIC_SET_LEVEL(irq, cm);
155         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
156             DPRINTF("Set %d pending mask %x\n", irq, target);
157             GIC_SET_PENDING(irq, target);
158         }
159     } else {
160         GIC_CLEAR_LEVEL(irq, cm);
161     }
162 }
163 
164 static void gic_set_irq_generic(GICState *s, int irq, int level,
165                                 int cm, int target)
166 {
167     if (level) {
168         GIC_SET_LEVEL(irq, cm);
169         DPRINTF("Set %d pending mask %x\n", irq, target);
170         if (GIC_TEST_EDGE_TRIGGER(irq)) {
171             GIC_SET_PENDING(irq, target);
172         }
173     } else {
174         GIC_CLEAR_LEVEL(irq, cm);
175     }
176 }
177 
178 /* Process a change in an external IRQ input.  */
179 static void gic_set_irq(void *opaque, int irq, int level)
180 {
181     /* Meaning of the 'irq' parameter:
182      *  [0..N-1] : external interrupts
183      *  [N..N+31] : PPI (internal) interrupts for CPU 0
184      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
185      *  ...
186      */
187     GICState *s = (GICState *)opaque;
188     int cm, target;
189     if (irq < (s->num_irq - GIC_INTERNAL)) {
190         /* The first external input line is internal interrupt 32.  */
191         cm = ALL_CPU_MASK;
192         irq += GIC_INTERNAL;
193         target = GIC_TARGET(irq);
194     } else {
195         int cpu;
196         irq -= (s->num_irq - GIC_INTERNAL);
197         cpu = irq / GIC_INTERNAL;
198         irq %= GIC_INTERNAL;
199         cm = 1 << cpu;
200         target = cm;
201     }
202 
203     assert(irq >= GIC_NR_SGIS);
204 
205     if (level == GIC_TEST_LEVEL(irq, cm)) {
206         return;
207     }
208 
209     if (s->revision == REV_11MPCORE) {
210         gic_set_irq_11mpcore(s, irq, level, cm, target);
211     } else {
212         gic_set_irq_generic(s, irq, level, cm, target);
213     }
214     trace_gic_set_irq(irq, level, cm, target);
215 
216     gic_update(s);
217 }
218 
219 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
220                                             MemTxAttrs attrs)
221 {
222     uint16_t pending_irq = s->current_pending[cpu];
223 
224     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
225         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
226         /* On a GIC without the security extensions, reading this register
227          * behaves in the same way as a secure access to a GIC with them.
228          */
229         bool secure = !s->security_extn || attrs.secure;
230 
231         if (group == 0 && !secure) {
232             /* Group0 interrupts hidden from Non-secure access */
233             return 1023;
234         }
235         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
236             /* Group1 interrupts only seen by Secure access if
237              * AckCtl bit set.
238              */
239             return 1022;
240         }
241     }
242     return pending_irq;
243 }
244 
245 static int gic_get_group_priority(GICState *s, int cpu, int irq)
246 {
247     /* Return the group priority of the specified interrupt
248      * (which is the top bits of its priority, with the number
249      * of bits masked determined by the applicable binary point register).
250      */
251     int bpr;
252     uint32_t mask;
253 
254     if (gic_has_groups(s) &&
255         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
256         GIC_TEST_GROUP(irq, (1 << cpu))) {
257         bpr = s->abpr[cpu];
258     } else {
259         bpr = s->bpr[cpu];
260     }
261 
262     /* a BPR of 0 means the group priority bits are [7:1];
263      * a BPR of 1 means they are [7:2], and so on down to
264      * a BPR of 7 meaning no group priority bits at all.
265      */
266     mask = ~0U << ((bpr & 7) + 1);
267 
268     return GIC_GET_PRIORITY(irq, cpu) & mask;
269 }
270 
271 static void gic_activate_irq(GICState *s, int cpu, int irq)
272 {
273     /* Set the appropriate Active Priority Register bit for this IRQ,
274      * and update the running priority.
275      */
276     int prio = gic_get_group_priority(s, cpu, irq);
277     int preemption_level = prio >> (GIC_MIN_BPR + 1);
278     int regno = preemption_level / 32;
279     int bitno = preemption_level % 32;
280 
281     if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
282         s->nsapr[regno][cpu] |= (1 << bitno);
283     } else {
284         s->apr[regno][cpu] |= (1 << bitno);
285     }
286 
287     s->running_priority[cpu] = prio;
288     GIC_SET_ACTIVE(irq, 1 << cpu);
289 }
290 
291 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
292 {
293     /* Recalculate the current running priority for this CPU based
294      * on the set bits in the Active Priority Registers.
295      */
296     int i;
297     for (i = 0; i < GIC_NR_APRS; i++) {
298         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
299         if (!apr) {
300             continue;
301         }
302         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
303     }
304     return 0x100;
305 }
306 
307 static void gic_drop_prio(GICState *s, int cpu, int group)
308 {
309     /* Drop the priority of the currently active interrupt in the
310      * specified group.
311      *
312      * Note that we can guarantee (because of the requirement to nest
313      * GICC_IAR reads [which activate an interrupt and raise priority]
314      * with GICC_EOIR writes [which drop the priority for the interrupt])
315      * that the interrupt we're being called for is the highest priority
316      * active interrupt, meaning that it has the lowest set bit in the
317      * APR registers.
318      *
319      * If the guest does not honour the ordering constraints then the
320      * behaviour of the GIC is UNPREDICTABLE, which for us means that
321      * the values of the APR registers might become incorrect and the
322      * running priority will be wrong, so interrupts that should preempt
323      * might not do so, and interrupts that should not preempt might do so.
324      */
325     int i;
326 
327     for (i = 0; i < GIC_NR_APRS; i++) {
328         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
329         if (!*papr) {
330             continue;
331         }
332         /* Clear lowest set bit */
333         *papr &= *papr - 1;
334         break;
335     }
336 
337     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
338 }
339 
340 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
341 {
342     int ret, irq, src;
343     int cm = 1 << cpu;
344 
345     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
346      * for the case where this GIC supports grouping and the pending interrupt
347      * is in the wrong group.
348      */
349     irq = gic_get_current_pending_irq(s, cpu, attrs);
350     trace_gic_acknowledge_irq(cpu, irq);
351 
352     if (irq >= GIC_MAXIRQ) {
353         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
354         return irq;
355     }
356 
357     if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
358         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
359         return 1023;
360     }
361 
362     if (s->revision == REV_11MPCORE) {
363         /* Clear pending flags for both level and edge triggered interrupts.
364          * Level triggered IRQs will be reasserted once they become inactive.
365          */
366         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
367         ret = irq;
368     } else {
369         if (irq < GIC_NR_SGIS) {
370             /* Lookup the source CPU for the SGI and clear this in the
371              * sgi_pending map.  Return the src and clear the overall pending
372              * state on this CPU if the SGI is not pending from any CPUs.
373              */
374             assert(s->sgi_pending[irq][cpu] != 0);
375             src = ctz32(s->sgi_pending[irq][cpu]);
376             s->sgi_pending[irq][cpu] &= ~(1 << src);
377             if (s->sgi_pending[irq][cpu] == 0) {
378                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
379             }
380             ret = irq | ((src & 0x7) << 10);
381         } else {
382             /* Clear pending state for both level and edge triggered
383              * interrupts. (level triggered interrupts with an active line
384              * remain pending, see gic_test_pending)
385              */
386             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
387             ret = irq;
388         }
389     }
390 
391     gic_activate_irq(s, cpu, irq);
392     gic_update(s);
393     DPRINTF("ACK %d\n", irq);
394     return ret;
395 }
396 
397 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
398                       MemTxAttrs attrs)
399 {
400     if (s->security_extn && !attrs.secure) {
401         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
402             return; /* Ignore Non-secure access of Group0 IRQ */
403         }
404         val = 0x80 | (val >> 1); /* Non-secure view */
405     }
406 
407     if (irq < GIC_INTERNAL) {
408         s->priority1[irq][cpu] = val;
409     } else {
410         s->priority2[(irq) - GIC_INTERNAL] = val;
411     }
412 }
413 
414 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
415                                  MemTxAttrs attrs)
416 {
417     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
418 
419     if (s->security_extn && !attrs.secure) {
420         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
421             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
422         }
423         prio = (prio << 1) & 0xff; /* Non-secure view */
424     }
425     return prio;
426 }
427 
428 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
429                                   MemTxAttrs attrs)
430 {
431     if (s->security_extn && !attrs.secure) {
432         if (s->priority_mask[cpu] & 0x80) {
433             /* Priority Mask in upper half */
434             pmask = 0x80 | (pmask >> 1);
435         } else {
436             /* Non-secure write ignored if priority mask is in lower half */
437             return;
438         }
439     }
440     s->priority_mask[cpu] = pmask;
441 }
442 
443 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
444 {
445     uint32_t pmask = s->priority_mask[cpu];
446 
447     if (s->security_extn && !attrs.secure) {
448         if (pmask & 0x80) {
449             /* Priority Mask in upper half, return Non-secure view */
450             pmask = (pmask << 1) & 0xff;
451         } else {
452             /* Priority Mask in lower half, RAZ */
453             pmask = 0;
454         }
455     }
456     return pmask;
457 }
458 
459 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
460 {
461     uint32_t ret = s->cpu_ctlr[cpu];
462 
463     if (s->security_extn && !attrs.secure) {
464         /* Construct the NS banked view of GICC_CTLR from the correct
465          * bits of the S banked view. We don't need to move the bypass
466          * control bits because we don't implement that (IMPDEF) part
467          * of the GIC architecture.
468          */
469         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
470     }
471     return ret;
472 }
473 
474 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
475                                 MemTxAttrs attrs)
476 {
477     uint32_t mask;
478 
479     if (s->security_extn && !attrs.secure) {
480         /* The NS view can only write certain bits in the register;
481          * the rest are unchanged
482          */
483         mask = GICC_CTLR_EN_GRP1;
484         if (s->revision == 2) {
485             mask |= GICC_CTLR_EOIMODE_NS;
486         }
487         s->cpu_ctlr[cpu] &= ~mask;
488         s->cpu_ctlr[cpu] |= (value << 1) & mask;
489     } else {
490         if (s->revision == 2) {
491             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
492         } else {
493             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
494         }
495         s->cpu_ctlr[cpu] = value & mask;
496     }
497     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
498             "Group1 Interrupts %sabled\n", cpu,
499             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
500             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
501 }
502 
503 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
504 {
505     if (s->security_extn && !attrs.secure) {
506         if (s->running_priority[cpu] & 0x80) {
507             /* Running priority in upper half of range: return the Non-secure
508              * view of the priority.
509              */
510             return s->running_priority[cpu] << 1;
511         } else {
512             /* Running priority in lower half of range: RAZ */
513             return 0;
514         }
515     } else {
516         return s->running_priority[cpu];
517     }
518 }
519 
520 /* Return true if we should split priority drop and interrupt deactivation,
521  * ie whether the relevant EOIMode bit is set.
522  */
523 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
524 {
525     if (s->revision != 2) {
526         /* Before GICv2 prio-drop and deactivate are not separable */
527         return false;
528     }
529     if (s->security_extn && !attrs.secure) {
530         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
531     }
532     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
533 }
534 
535 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
536 {
537     int cm = 1 << cpu;
538     int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
539 
540     if (!gic_eoi_split(s, cpu, attrs)) {
541         /* This is UNPREDICTABLE; we choose to ignore it */
542         qemu_log_mask(LOG_GUEST_ERROR,
543                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
544         return;
545     }
546 
547     if (s->security_extn && !attrs.secure && !group) {
548         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
549         return;
550     }
551 
552     GIC_CLEAR_ACTIVE(irq, cm);
553 }
554 
555 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
556 {
557     int cm = 1 << cpu;
558     int group;
559 
560     DPRINTF("EOI %d\n", irq);
561     if (irq >= s->num_irq) {
562         /* This handles two cases:
563          * 1. If software writes the ID of a spurious interrupt [ie 1023]
564          * to the GICC_EOIR, the GIC ignores that write.
565          * 2. If software writes the number of a non-existent interrupt
566          * this must be a subcase of "value written does not match the last
567          * valid interrupt value read from the Interrupt Acknowledge
568          * register" and so this is UNPREDICTABLE. We choose to ignore it.
569          */
570         return;
571     }
572     if (s->running_priority[cpu] == 0x100) {
573         return; /* No active IRQ.  */
574     }
575 
576     if (s->revision == REV_11MPCORE) {
577         /* Mark level triggered interrupts as pending if they are still
578            raised.  */
579         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
580             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
581             DPRINTF("Set %d pending mask %x\n", irq, cm);
582             GIC_SET_PENDING(irq, cm);
583         }
584     }
585 
586     group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
587 
588     if (s->security_extn && !attrs.secure && !group) {
589         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
590         return;
591     }
592 
593     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
594      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
595      * i.e. go ahead and complete the irq anyway.
596      */
597 
598     gic_drop_prio(s, cpu, group);
599 
600     /* In GICv2 the guest can choose to split priority-drop and deactivate */
601     if (!gic_eoi_split(s, cpu, attrs)) {
602         GIC_CLEAR_ACTIVE(irq, cm);
603     }
604     gic_update(s);
605 }
606 
607 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
608 {
609     GICState *s = (GICState *)opaque;
610     uint32_t res;
611     int irq;
612     int i;
613     int cpu;
614     int cm;
615     int mask;
616 
617     cpu = gic_get_current_cpu(s);
618     cm = 1 << cpu;
619     if (offset < 0x100) {
620         if (offset == 0) {      /* GICD_CTLR */
621             if (s->security_extn && !attrs.secure) {
622                 /* The NS bank of this register is just an alias of the
623                  * EnableGrp1 bit in the S bank version.
624                  */
625                 return extract32(s->ctlr, 1, 1);
626             } else {
627                 return s->ctlr;
628             }
629         }
630         if (offset == 4)
631             /* Interrupt Controller Type Register */
632             return ((s->num_irq / 32) - 1)
633                     | ((s->num_cpu - 1) << 5)
634                     | (s->security_extn << 10);
635         if (offset < 0x08)
636             return 0;
637         if (offset >= 0x80) {
638             /* Interrupt Group Registers: these RAZ/WI if this is an NS
639              * access to a GIC with the security extensions, or if the GIC
640              * doesn't have groups at all.
641              */
642             res = 0;
643             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
644                 /* Every byte offset holds 8 group status bits */
645                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
646                 if (irq >= s->num_irq) {
647                     goto bad_reg;
648                 }
649                 for (i = 0; i < 8; i++) {
650                     if (GIC_TEST_GROUP(irq + i, cm)) {
651                         res |= (1 << i);
652                     }
653                 }
654             }
655             return res;
656         }
657         goto bad_reg;
658     } else if (offset < 0x200) {
659         /* Interrupt Set/Clear Enable.  */
660         if (offset < 0x180)
661             irq = (offset - 0x100) * 8;
662         else
663             irq = (offset - 0x180) * 8;
664         irq += GIC_BASE_IRQ;
665         if (irq >= s->num_irq)
666             goto bad_reg;
667         res = 0;
668         for (i = 0; i < 8; i++) {
669             if (s->security_extn && !attrs.secure &&
670                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
671                 continue; /* Ignore Non-secure access of Group0 IRQ */
672             }
673 
674             if (GIC_TEST_ENABLED(irq + i, cm)) {
675                 res |= (1 << i);
676             }
677         }
678     } else if (offset < 0x300) {
679         /* Interrupt Set/Clear Pending.  */
680         if (offset < 0x280)
681             irq = (offset - 0x200) * 8;
682         else
683             irq = (offset - 0x280) * 8;
684         irq += GIC_BASE_IRQ;
685         if (irq >= s->num_irq)
686             goto bad_reg;
687         res = 0;
688         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
689         for (i = 0; i < 8; i++) {
690             if (s->security_extn && !attrs.secure &&
691                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
692                 continue; /* Ignore Non-secure access of Group0 IRQ */
693             }
694 
695             if (gic_test_pending(s, irq + i, mask)) {
696                 res |= (1 << i);
697             }
698         }
699     } else if (offset < 0x400) {
700         /* Interrupt Active.  */
701         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
702         if (irq >= s->num_irq)
703             goto bad_reg;
704         res = 0;
705         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
706         for (i = 0; i < 8; i++) {
707             if (s->security_extn && !attrs.secure &&
708                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
709                 continue; /* Ignore Non-secure access of Group0 IRQ */
710             }
711 
712             if (GIC_TEST_ACTIVE(irq + i, mask)) {
713                 res |= (1 << i);
714             }
715         }
716     } else if (offset < 0x800) {
717         /* Interrupt Priority.  */
718         irq = (offset - 0x400) + GIC_BASE_IRQ;
719         if (irq >= s->num_irq)
720             goto bad_reg;
721         res = gic_get_priority(s, cpu, irq, attrs);
722     } else if (offset < 0xc00) {
723         /* Interrupt CPU Target.  */
724         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
725             /* For uniprocessor GICs these RAZ/WI */
726             res = 0;
727         } else {
728             irq = (offset - 0x800) + GIC_BASE_IRQ;
729             if (irq >= s->num_irq) {
730                 goto bad_reg;
731             }
732             if (irq >= 29 && irq <= 31) {
733                 res = cm;
734             } else {
735                 res = GIC_TARGET(irq);
736             }
737         }
738     } else if (offset < 0xf00) {
739         /* Interrupt Configuration.  */
740         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
741         if (irq >= s->num_irq)
742             goto bad_reg;
743         res = 0;
744         for (i = 0; i < 4; i++) {
745             if (s->security_extn && !attrs.secure &&
746                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
747                 continue; /* Ignore Non-secure access of Group0 IRQ */
748             }
749 
750             if (GIC_TEST_MODEL(irq + i))
751                 res |= (1 << (i * 2));
752             if (GIC_TEST_EDGE_TRIGGER(irq + i))
753                 res |= (2 << (i * 2));
754         }
755     } else if (offset < 0xf10) {
756         goto bad_reg;
757     } else if (offset < 0xf30) {
758         if (s->revision == REV_11MPCORE) {
759             goto bad_reg;
760         }
761 
762         if (offset < 0xf20) {
763             /* GICD_CPENDSGIRn */
764             irq = (offset - 0xf10);
765         } else {
766             irq = (offset - 0xf20);
767             /* GICD_SPENDSGIRn */
768         }
769 
770         if (s->security_extn && !attrs.secure &&
771             !GIC_TEST_GROUP(irq, 1 << cpu)) {
772             res = 0; /* Ignore Non-secure access of Group0 IRQ */
773         } else {
774             res = s->sgi_pending[irq][cpu];
775         }
776     } else if (offset < 0xfd0) {
777         goto bad_reg;
778     } else if (offset < 0x1000) {
779         if (offset & 3) {
780             res = 0;
781         } else {
782             switch (s->revision) {
783             case REV_11MPCORE:
784                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
785                 break;
786             case 1:
787                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
788                 break;
789             case 2:
790                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
791                 break;
792             default:
793                 res = 0;
794             }
795         }
796     } else {
797         g_assert_not_reached();
798     }
799     return res;
800 bad_reg:
801     qemu_log_mask(LOG_GUEST_ERROR,
802                   "gic_dist_readb: Bad offset %x\n", (int)offset);
803     return 0;
804 }
805 
806 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
807                                  unsigned size, MemTxAttrs attrs)
808 {
809     switch (size) {
810     case 1:
811         *data = gic_dist_readb(opaque, offset, attrs);
812         return MEMTX_OK;
813     case 2:
814         *data = gic_dist_readb(opaque, offset, attrs);
815         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
816         return MEMTX_OK;
817     case 4:
818         *data = gic_dist_readb(opaque, offset, attrs);
819         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
820         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
821         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
822         return MEMTX_OK;
823     default:
824         return MEMTX_ERROR;
825     }
826 }
827 
828 static void gic_dist_writeb(void *opaque, hwaddr offset,
829                             uint32_t value, MemTxAttrs attrs)
830 {
831     GICState *s = (GICState *)opaque;
832     int irq;
833     int i;
834     int cpu;
835 
836     cpu = gic_get_current_cpu(s);
837     if (offset < 0x100) {
838         if (offset == 0) {
839             if (s->security_extn && !attrs.secure) {
840                 /* NS version is just an alias of the S version's bit 1 */
841                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
842             } else if (gic_has_groups(s)) {
843                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
844             } else {
845                 s->ctlr = value & GICD_CTLR_EN_GRP0;
846             }
847             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
848                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
849                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
850         } else if (offset < 4) {
851             /* ignored.  */
852         } else if (offset >= 0x80) {
853             /* Interrupt Group Registers: RAZ/WI for NS access to secure
854              * GIC, or for GICs without groups.
855              */
856             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
857                 /* Every byte offset holds 8 group status bits */
858                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
859                 if (irq >= s->num_irq) {
860                     goto bad_reg;
861                 }
862                 for (i = 0; i < 8; i++) {
863                     /* Group bits are banked for private interrupts */
864                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
865                     if (value & (1 << i)) {
866                         /* Group1 (Non-secure) */
867                         GIC_SET_GROUP(irq + i, cm);
868                     } else {
869                         /* Group0 (Secure) */
870                         GIC_CLEAR_GROUP(irq + i, cm);
871                     }
872                 }
873             }
874         } else {
875             goto bad_reg;
876         }
877     } else if (offset < 0x180) {
878         /* Interrupt Set Enable.  */
879         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
880         if (irq >= s->num_irq)
881             goto bad_reg;
882         if (irq < GIC_NR_SGIS) {
883             value = 0xff;
884         }
885 
886         for (i = 0; i < 8; i++) {
887             if (value & (1 << i)) {
888                 int mask =
889                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
890                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
891 
892                 if (s->security_extn && !attrs.secure &&
893                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
894                     continue; /* Ignore Non-secure access of Group0 IRQ */
895                 }
896 
897                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
898                     DPRINTF("Enabled IRQ %d\n", irq + i);
899                     trace_gic_enable_irq(irq + i);
900                 }
901                 GIC_SET_ENABLED(irq + i, cm);
902                 /* If a raised level triggered IRQ enabled then mark
903                    is as pending.  */
904                 if (GIC_TEST_LEVEL(irq + i, mask)
905                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
906                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
907                     GIC_SET_PENDING(irq + i, mask);
908                 }
909             }
910         }
911     } else if (offset < 0x200) {
912         /* Interrupt Clear Enable.  */
913         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
914         if (irq >= s->num_irq)
915             goto bad_reg;
916         if (irq < GIC_NR_SGIS) {
917             value = 0;
918         }
919 
920         for (i = 0; i < 8; i++) {
921             if (value & (1 << i)) {
922                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
923 
924                 if (s->security_extn && !attrs.secure &&
925                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
926                     continue; /* Ignore Non-secure access of Group0 IRQ */
927                 }
928 
929                 if (GIC_TEST_ENABLED(irq + i, cm)) {
930                     DPRINTF("Disabled IRQ %d\n", irq + i);
931                     trace_gic_disable_irq(irq + i);
932                 }
933                 GIC_CLEAR_ENABLED(irq + i, cm);
934             }
935         }
936     } else if (offset < 0x280) {
937         /* Interrupt Set Pending.  */
938         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
939         if (irq >= s->num_irq)
940             goto bad_reg;
941         if (irq < GIC_NR_SGIS) {
942             value = 0;
943         }
944 
945         for (i = 0; i < 8; i++) {
946             if (value & (1 << i)) {
947                 if (s->security_extn && !attrs.secure &&
948                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
949                     continue; /* Ignore Non-secure access of Group0 IRQ */
950                 }
951 
952                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
953             }
954         }
955     } else if (offset < 0x300) {
956         /* Interrupt Clear Pending.  */
957         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
958         if (irq >= s->num_irq)
959             goto bad_reg;
960         if (irq < GIC_NR_SGIS) {
961             value = 0;
962         }
963 
964         for (i = 0; i < 8; i++) {
965             if (s->security_extn && !attrs.secure &&
966                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
967                 continue; /* Ignore Non-secure access of Group0 IRQ */
968             }
969 
970             /* ??? This currently clears the pending bit for all CPUs, even
971                for per-CPU interrupts.  It's unclear whether this is the
972                corect behavior.  */
973             if (value & (1 << i)) {
974                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
975             }
976         }
977     } else if (offset < 0x400) {
978         /* Interrupt Active.  */
979         goto bad_reg;
980     } else if (offset < 0x800) {
981         /* Interrupt Priority.  */
982         irq = (offset - 0x400) + GIC_BASE_IRQ;
983         if (irq >= s->num_irq)
984             goto bad_reg;
985         gic_set_priority(s, cpu, irq, value, attrs);
986     } else if (offset < 0xc00) {
987         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
988          * annoying exception of the 11MPCore's GIC.
989          */
990         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
991             irq = (offset - 0x800) + GIC_BASE_IRQ;
992             if (irq >= s->num_irq) {
993                 goto bad_reg;
994             }
995             if (irq < 29) {
996                 value = 0;
997             } else if (irq < GIC_INTERNAL) {
998                 value = ALL_CPU_MASK;
999             }
1000             s->irq_target[irq] = value & ALL_CPU_MASK;
1001         }
1002     } else if (offset < 0xf00) {
1003         /* Interrupt Configuration.  */
1004         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1005         if (irq >= s->num_irq)
1006             goto bad_reg;
1007         if (irq < GIC_NR_SGIS)
1008             value |= 0xaa;
1009         for (i = 0; i < 4; i++) {
1010             if (s->security_extn && !attrs.secure &&
1011                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
1012                 continue; /* Ignore Non-secure access of Group0 IRQ */
1013             }
1014 
1015             if (s->revision == REV_11MPCORE) {
1016                 if (value & (1 << (i * 2))) {
1017                     GIC_SET_MODEL(irq + i);
1018                 } else {
1019                     GIC_CLEAR_MODEL(irq + i);
1020                 }
1021             }
1022             if (value & (2 << (i * 2))) {
1023                 GIC_SET_EDGE_TRIGGER(irq + i);
1024             } else {
1025                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
1026             }
1027         }
1028     } else if (offset < 0xf10) {
1029         /* 0xf00 is only handled for 32-bit writes.  */
1030         goto bad_reg;
1031     } else if (offset < 0xf20) {
1032         /* GICD_CPENDSGIRn */
1033         if (s->revision == REV_11MPCORE) {
1034             goto bad_reg;
1035         }
1036         irq = (offset - 0xf10);
1037 
1038         if (!s->security_extn || attrs.secure ||
1039             GIC_TEST_GROUP(irq, 1 << cpu)) {
1040             s->sgi_pending[irq][cpu] &= ~value;
1041             if (s->sgi_pending[irq][cpu] == 0) {
1042                 GIC_CLEAR_PENDING(irq, 1 << cpu);
1043             }
1044         }
1045     } else if (offset < 0xf30) {
1046         /* GICD_SPENDSGIRn */
1047         if (s->revision == REV_11MPCORE) {
1048             goto bad_reg;
1049         }
1050         irq = (offset - 0xf20);
1051 
1052         if (!s->security_extn || attrs.secure ||
1053             GIC_TEST_GROUP(irq, 1 << cpu)) {
1054             GIC_SET_PENDING(irq, 1 << cpu);
1055             s->sgi_pending[irq][cpu] |= value;
1056         }
1057     } else {
1058         goto bad_reg;
1059     }
1060     gic_update(s);
1061     return;
1062 bad_reg:
1063     qemu_log_mask(LOG_GUEST_ERROR,
1064                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1065 }
1066 
1067 static void gic_dist_writew(void *opaque, hwaddr offset,
1068                             uint32_t value, MemTxAttrs attrs)
1069 {
1070     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1071     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1072 }
1073 
1074 static void gic_dist_writel(void *opaque, hwaddr offset,
1075                             uint32_t value, MemTxAttrs attrs)
1076 {
1077     GICState *s = (GICState *)opaque;
1078     if (offset == 0xf00) {
1079         int cpu;
1080         int irq;
1081         int mask;
1082         int target_cpu;
1083 
1084         cpu = gic_get_current_cpu(s);
1085         irq = value & 0x3ff;
1086         switch ((value >> 24) & 3) {
1087         case 0:
1088             mask = (value >> 16) & ALL_CPU_MASK;
1089             break;
1090         case 1:
1091             mask = ALL_CPU_MASK ^ (1 << cpu);
1092             break;
1093         case 2:
1094             mask = 1 << cpu;
1095             break;
1096         default:
1097             DPRINTF("Bad Soft Int target filter\n");
1098             mask = ALL_CPU_MASK;
1099             break;
1100         }
1101         GIC_SET_PENDING(irq, mask);
1102         target_cpu = ctz32(mask);
1103         while (target_cpu < GIC_NCPU) {
1104             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1105             mask &= ~(1 << target_cpu);
1106             target_cpu = ctz32(mask);
1107         }
1108         gic_update(s);
1109         return;
1110     }
1111     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1112     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1113 }
1114 
1115 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1116                                   unsigned size, MemTxAttrs attrs)
1117 {
1118     switch (size) {
1119     case 1:
1120         gic_dist_writeb(opaque, offset, data, attrs);
1121         return MEMTX_OK;
1122     case 2:
1123         gic_dist_writew(opaque, offset, data, attrs);
1124         return MEMTX_OK;
1125     case 4:
1126         gic_dist_writel(opaque, offset, data, attrs);
1127         return MEMTX_OK;
1128     default:
1129         return MEMTX_ERROR;
1130     }
1131 }
1132 
1133 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1134 {
1135     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1136      * second half of GICC_NSAPR.
1137      */
1138     switch (GIC_MIN_BPR) {
1139     case 0:
1140         if (regno < 2) {
1141             return s->nsapr[regno + 2][cpu];
1142         }
1143         break;
1144     case 1:
1145         if (regno == 0) {
1146             return s->nsapr[regno + 1][cpu];
1147         }
1148         break;
1149     case 2:
1150         if (regno == 0) {
1151             return extract32(s->nsapr[0][cpu], 16, 16);
1152         }
1153         break;
1154     case 3:
1155         if (regno == 0) {
1156             return extract32(s->nsapr[0][cpu], 8, 8);
1157         }
1158         break;
1159     default:
1160         g_assert_not_reached();
1161     }
1162     return 0;
1163 }
1164 
1165 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1166                                          uint32_t value)
1167 {
1168     /* Write the Nonsecure view of GICC_APR<regno>. */
1169     switch (GIC_MIN_BPR) {
1170     case 0:
1171         if (regno < 2) {
1172             s->nsapr[regno + 2][cpu] = value;
1173         }
1174         break;
1175     case 1:
1176         if (regno == 0) {
1177             s->nsapr[regno + 1][cpu] = value;
1178         }
1179         break;
1180     case 2:
1181         if (regno == 0) {
1182             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1183         }
1184         break;
1185     case 3:
1186         if (regno == 0) {
1187             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1188         }
1189         break;
1190     default:
1191         g_assert_not_reached();
1192     }
1193 }
1194 
1195 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1196                                 uint64_t *data, MemTxAttrs attrs)
1197 {
1198     switch (offset) {
1199     case 0x00: /* Control */
1200         *data = gic_get_cpu_control(s, cpu, attrs);
1201         break;
1202     case 0x04: /* Priority mask */
1203         *data = gic_get_priority_mask(s, cpu, attrs);
1204         break;
1205     case 0x08: /* Binary Point */
1206         if (s->security_extn && !attrs.secure) {
1207             /* BPR is banked. Non-secure copy stored in ABPR. */
1208             *data = s->abpr[cpu];
1209         } else {
1210             *data = s->bpr[cpu];
1211         }
1212         break;
1213     case 0x0c: /* Acknowledge */
1214         *data = gic_acknowledge_irq(s, cpu, attrs);
1215         break;
1216     case 0x14: /* Running Priority */
1217         *data = gic_get_running_priority(s, cpu, attrs);
1218         break;
1219     case 0x18: /* Highest Pending Interrupt */
1220         *data = gic_get_current_pending_irq(s, cpu, attrs);
1221         break;
1222     case 0x1c: /* Aliased Binary Point */
1223         /* GIC v2, no security: ABPR
1224          * GIC v1, no security: not implemented (RAZ/WI)
1225          * With security extensions, secure access: ABPR (alias of NS BPR)
1226          * With security extensions, nonsecure access: RAZ/WI
1227          */
1228         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1229             *data = 0;
1230         } else {
1231             *data = s->abpr[cpu];
1232         }
1233         break;
1234     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1235     {
1236         int regno = (offset - 0xd0) / 4;
1237 
1238         if (regno >= GIC_NR_APRS || s->revision != 2) {
1239             *data = 0;
1240         } else if (s->security_extn && !attrs.secure) {
1241             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1242             *data = gic_apr_ns_view(s, regno, cpu);
1243         } else {
1244             *data = s->apr[regno][cpu];
1245         }
1246         break;
1247     }
1248     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1249     {
1250         int regno = (offset - 0xe0) / 4;
1251 
1252         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1253             (s->security_extn && !attrs.secure)) {
1254             *data = 0;
1255         } else {
1256             *data = s->nsapr[regno][cpu];
1257         }
1258         break;
1259     }
1260     default:
1261         qemu_log_mask(LOG_GUEST_ERROR,
1262                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1263         return MEMTX_ERROR;
1264     }
1265     return MEMTX_OK;
1266 }
1267 
1268 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1269                                  uint32_t value, MemTxAttrs attrs)
1270 {
1271     switch (offset) {
1272     case 0x00: /* Control */
1273         gic_set_cpu_control(s, cpu, value, attrs);
1274         break;
1275     case 0x04: /* Priority mask */
1276         gic_set_priority_mask(s, cpu, value, attrs);
1277         break;
1278     case 0x08: /* Binary Point */
1279         if (s->security_extn && !attrs.secure) {
1280             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1281         } else {
1282             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1283         }
1284         break;
1285     case 0x10: /* End Of Interrupt */
1286         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1287         return MEMTX_OK;
1288     case 0x1c: /* Aliased Binary Point */
1289         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1290             /* unimplemented, or NS access: RAZ/WI */
1291             return MEMTX_OK;
1292         } else {
1293             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1294         }
1295         break;
1296     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1297     {
1298         int regno = (offset - 0xd0) / 4;
1299 
1300         if (regno >= GIC_NR_APRS || s->revision != 2) {
1301             return MEMTX_OK;
1302         }
1303         if (s->security_extn && !attrs.secure) {
1304             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1305             gic_apr_write_ns_view(s, regno, cpu, value);
1306         } else {
1307             s->apr[regno][cpu] = value;
1308         }
1309         break;
1310     }
1311     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1312     {
1313         int regno = (offset - 0xe0) / 4;
1314 
1315         if (regno >= GIC_NR_APRS || s->revision != 2) {
1316             return MEMTX_OK;
1317         }
1318         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1319             return MEMTX_OK;
1320         }
1321         s->nsapr[regno][cpu] = value;
1322         break;
1323     }
1324     case 0x1000:
1325         /* GICC_DIR */
1326         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1327         break;
1328     default:
1329         qemu_log_mask(LOG_GUEST_ERROR,
1330                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1331         return MEMTX_ERROR;
1332     }
1333     gic_update(s);
1334     return MEMTX_OK;
1335 }
1336 
1337 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1338 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1339                                     unsigned size, MemTxAttrs attrs)
1340 {
1341     GICState *s = (GICState *)opaque;
1342     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1343 }
1344 
1345 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1346                                      uint64_t value, unsigned size,
1347                                      MemTxAttrs attrs)
1348 {
1349     GICState *s = (GICState *)opaque;
1350     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1351 }
1352 
1353 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1354  * These just decode the opaque pointer into GICState* + cpu id.
1355  */
1356 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1357                                    unsigned size, MemTxAttrs attrs)
1358 {
1359     GICState **backref = (GICState **)opaque;
1360     GICState *s = *backref;
1361     int id = (backref - s->backref);
1362     return gic_cpu_read(s, id, addr, data, attrs);
1363 }
1364 
1365 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1366                                     uint64_t value, unsigned size,
1367                                     MemTxAttrs attrs)
1368 {
1369     GICState **backref = (GICState **)opaque;
1370     GICState *s = *backref;
1371     int id = (backref - s->backref);
1372     return gic_cpu_write(s, id, addr, value, attrs);
1373 }
1374 
1375 static const MemoryRegionOps gic_ops[2] = {
1376     {
1377         .read_with_attrs = gic_dist_read,
1378         .write_with_attrs = gic_dist_write,
1379         .endianness = DEVICE_NATIVE_ENDIAN,
1380     },
1381     {
1382         .read_with_attrs = gic_thiscpu_read,
1383         .write_with_attrs = gic_thiscpu_write,
1384         .endianness = DEVICE_NATIVE_ENDIAN,
1385     }
1386 };
1387 
1388 static const MemoryRegionOps gic_cpu_ops = {
1389     .read_with_attrs = gic_do_cpu_read,
1390     .write_with_attrs = gic_do_cpu_write,
1391     .endianness = DEVICE_NATIVE_ENDIAN,
1392 };
1393 
1394 /* This function is used by nvic model */
1395 void gic_init_irqs_and_distributor(GICState *s)
1396 {
1397     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1398 }
1399 
1400 static void arm_gic_realize(DeviceState *dev, Error **errp)
1401 {
1402     /* Device instance realize function for the GIC sysbus device */
1403     int i;
1404     GICState *s = ARM_GIC(dev);
1405     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1406     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1407     Error *local_err = NULL;
1408 
1409     agc->parent_realize(dev, &local_err);
1410     if (local_err) {
1411         error_propagate(errp, local_err);
1412         return;
1413     }
1414 
1415     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1416     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1417 
1418     /* Extra core-specific regions for the CPU interfaces. This is
1419      * necessary for "franken-GIC" implementations, for example on
1420      * Exynos 4.
1421      * NB that the memory region size of 0x100 applies for the 11MPCore
1422      * and also cores following the GIC v1 spec (ie A9).
1423      * GIC v2 defines a larger memory region (0x1000) so this will need
1424      * to be extended when we implement A15.
1425      */
1426     for (i = 0; i < s->num_cpu; i++) {
1427         s->backref[i] = s;
1428         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1429                               &s->backref[i], "gic_cpu", 0x100);
1430         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1431     }
1432 }
1433 
1434 static void arm_gic_class_init(ObjectClass *klass, void *data)
1435 {
1436     DeviceClass *dc = DEVICE_CLASS(klass);
1437     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1438 
1439     agc->parent_realize = dc->realize;
1440     dc->realize = arm_gic_realize;
1441 }
1442 
1443 static const TypeInfo arm_gic_info = {
1444     .name = TYPE_ARM_GIC,
1445     .parent = TYPE_ARM_GIC_COMMON,
1446     .instance_size = sizeof(GICState),
1447     .class_init = arm_gic_class_init,
1448     .class_size = sizeof(ARMGICClass),
1449 };
1450 
1451 static void arm_gic_register_types(void)
1452 {
1453     type_register_static(&arm_gic_info);
1454 }
1455 
1456 type_init(arm_gic_register_types)
1457