xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 3dd0471b7584df8efc79c2e669460303d7394440)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 static inline int gic_get_current_vcpu(GICState *s)
65 {
66     return gic_get_current_cpu(s) + GIC_NCPU;
67 }
68 
69 /* Return true if this GIC config has interrupt groups, which is
70  * true if we're a GICv2, or a GICv1 with the security extensions.
71  */
72 static inline bool gic_has_groups(GICState *s)
73 {
74     return s->revision == 2 || s->security_extn;
75 }
76 
77 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
78 {
79     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
80 }
81 
82 /* TODO: Many places that call this routine could be optimized.  */
83 /* Update interrupt status after enabled or pending bits have been changed.  */
84 static void gic_update(GICState *s)
85 {
86     int best_irq;
87     int best_prio;
88     int irq;
89     int irq_level, fiq_level;
90     int cpu;
91     int cm;
92 
93     for (cpu = 0; cpu < s->num_cpu; cpu++) {
94         cm = 1 << cpu;
95         s->current_pending[cpu] = 1023;
96         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
97             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
98             qemu_irq_lower(s->parent_irq[cpu]);
99             qemu_irq_lower(s->parent_fiq[cpu]);
100             continue;
101         }
102         best_prio = 0x100;
103         best_irq = 1023;
104         for (irq = 0; irq < s->num_irq; irq++) {
105             if (GIC_DIST_TEST_ENABLED(irq, cm) &&
106                 gic_test_pending(s, irq, cm) &&
107                 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
108                 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
109                 if (GIC_DIST_GET_PRIORITY(irq, cpu) < best_prio) {
110                     best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
111                     best_irq = irq;
112                 }
113             }
114         }
115 
116         if (best_irq != 1023) {
117             trace_gic_update_bestirq(cpu, best_irq, best_prio,
118                 s->priority_mask[cpu], s->running_priority[cpu]);
119         }
120 
121         irq_level = fiq_level = 0;
122 
123         if (best_prio < s->priority_mask[cpu]) {
124             s->current_pending[cpu] = best_irq;
125             if (best_prio < s->running_priority[cpu]) {
126                 int group = GIC_DIST_TEST_GROUP(best_irq, cm);
127 
128                 if (extract32(s->ctlr, group, 1) &&
129                     extract32(s->cpu_ctlr[cpu], group, 1)) {
130                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
131                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
132                                 best_irq, cpu);
133                         fiq_level = 1;
134                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
135                     } else {
136                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
137                                 best_irq, cpu);
138                         irq_level = 1;
139                         trace_gic_update_set_irq(cpu, "irq", irq_level);
140                     }
141                 }
142             }
143         }
144 
145         qemu_set_irq(s->parent_irq[cpu], irq_level);
146         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
147     }
148 }
149 
150 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
151                                  int cm, int target)
152 {
153     if (level) {
154         GIC_DIST_SET_LEVEL(irq, cm);
155         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
156             DPRINTF("Set %d pending mask %x\n", irq, target);
157             GIC_DIST_SET_PENDING(irq, target);
158         }
159     } else {
160         GIC_DIST_CLEAR_LEVEL(irq, cm);
161     }
162 }
163 
164 static void gic_set_irq_generic(GICState *s, int irq, int level,
165                                 int cm, int target)
166 {
167     if (level) {
168         GIC_DIST_SET_LEVEL(irq, cm);
169         DPRINTF("Set %d pending mask %x\n", irq, target);
170         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
171             GIC_DIST_SET_PENDING(irq, target);
172         }
173     } else {
174         GIC_DIST_CLEAR_LEVEL(irq, cm);
175     }
176 }
177 
178 /* Process a change in an external IRQ input.  */
179 static void gic_set_irq(void *opaque, int irq, int level)
180 {
181     /* Meaning of the 'irq' parameter:
182      *  [0..N-1] : external interrupts
183      *  [N..N+31] : PPI (internal) interrupts for CPU 0
184      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
185      *  ...
186      */
187     GICState *s = (GICState *)opaque;
188     int cm, target;
189     if (irq < (s->num_irq - GIC_INTERNAL)) {
190         /* The first external input line is internal interrupt 32.  */
191         cm = ALL_CPU_MASK;
192         irq += GIC_INTERNAL;
193         target = GIC_DIST_TARGET(irq);
194     } else {
195         int cpu;
196         irq -= (s->num_irq - GIC_INTERNAL);
197         cpu = irq / GIC_INTERNAL;
198         irq %= GIC_INTERNAL;
199         cm = 1 << cpu;
200         target = cm;
201     }
202 
203     assert(irq >= GIC_NR_SGIS);
204 
205     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
206         return;
207     }
208 
209     if (s->revision == REV_11MPCORE) {
210         gic_set_irq_11mpcore(s, irq, level, cm, target);
211     } else {
212         gic_set_irq_generic(s, irq, level, cm, target);
213     }
214     trace_gic_set_irq(irq, level, cm, target);
215 
216     gic_update(s);
217 }
218 
219 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
220                                             MemTxAttrs attrs)
221 {
222     uint16_t pending_irq = s->current_pending[cpu];
223 
224     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
225         int group = GIC_DIST_TEST_GROUP(pending_irq, (1 << cpu));
226         /* On a GIC without the security extensions, reading this register
227          * behaves in the same way as a secure access to a GIC with them.
228          */
229         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
230 
231         if (group == 0 && !secure) {
232             /* Group0 interrupts hidden from Non-secure access */
233             return 1023;
234         }
235         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
236             /* Group1 interrupts only seen by Secure access if
237              * AckCtl bit set.
238              */
239             return 1022;
240         }
241     }
242     return pending_irq;
243 }
244 
245 static int gic_get_group_priority(GICState *s, int cpu, int irq)
246 {
247     /* Return the group priority of the specified interrupt
248      * (which is the top bits of its priority, with the number
249      * of bits masked determined by the applicable binary point register).
250      */
251     int bpr;
252     uint32_t mask;
253 
254     if (gic_has_groups(s) &&
255         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
256         GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
257         bpr = s->abpr[cpu] - 1;
258         assert(bpr >= 0);
259     } else {
260         bpr = s->bpr[cpu];
261     }
262 
263     /* a BPR of 0 means the group priority bits are [7:1];
264      * a BPR of 1 means they are [7:2], and so on down to
265      * a BPR of 7 meaning no group priority bits at all.
266      */
267     mask = ~0U << ((bpr & 7) + 1);
268 
269     return GIC_DIST_GET_PRIORITY(irq, cpu) & mask;
270 }
271 
272 static void gic_activate_irq(GICState *s, int cpu, int irq)
273 {
274     /* Set the appropriate Active Priority Register bit for this IRQ,
275      * and update the running priority.
276      */
277     int prio = gic_get_group_priority(s, cpu, irq);
278     int preemption_level = prio >> (GIC_MIN_BPR + 1);
279     int regno = preemption_level / 32;
280     int bitno = preemption_level % 32;
281 
282     if (gic_has_groups(s) && GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
283         s->nsapr[regno][cpu] |= (1 << bitno);
284     } else {
285         s->apr[regno][cpu] |= (1 << bitno);
286     }
287 
288     s->running_priority[cpu] = prio;
289     GIC_DIST_SET_ACTIVE(irq, 1 << cpu);
290 }
291 
292 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
293 {
294     /* Recalculate the current running priority for this CPU based
295      * on the set bits in the Active Priority Registers.
296      */
297     int i;
298     for (i = 0; i < GIC_NR_APRS; i++) {
299         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
300         if (!apr) {
301             continue;
302         }
303         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
304     }
305     return 0x100;
306 }
307 
308 static void gic_drop_prio(GICState *s, int cpu, int group)
309 {
310     /* Drop the priority of the currently active interrupt in the
311      * specified group.
312      *
313      * Note that we can guarantee (because of the requirement to nest
314      * GICC_IAR reads [which activate an interrupt and raise priority]
315      * with GICC_EOIR writes [which drop the priority for the interrupt])
316      * that the interrupt we're being called for is the highest priority
317      * active interrupt, meaning that it has the lowest set bit in the
318      * APR registers.
319      *
320      * If the guest does not honour the ordering constraints then the
321      * behaviour of the GIC is UNPREDICTABLE, which for us means that
322      * the values of the APR registers might become incorrect and the
323      * running priority will be wrong, so interrupts that should preempt
324      * might not do so, and interrupts that should not preempt might do so.
325      */
326     int i;
327 
328     for (i = 0; i < GIC_NR_APRS; i++) {
329         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
330         if (!*papr) {
331             continue;
332         }
333         /* Clear lowest set bit */
334         *papr &= *papr - 1;
335         break;
336     }
337 
338     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
339 }
340 
341 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
342 {
343     int ret, irq, src;
344     int cm = 1 << cpu;
345 
346     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
347      * for the case where this GIC supports grouping and the pending interrupt
348      * is in the wrong group.
349      */
350     irq = gic_get_current_pending_irq(s, cpu, attrs);
351     trace_gic_acknowledge_irq(cpu, irq);
352 
353     if (irq >= GIC_MAXIRQ) {
354         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
355         return irq;
356     }
357 
358     if (GIC_DIST_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
359         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
360         return 1023;
361     }
362 
363     if (s->revision == REV_11MPCORE) {
364         /* Clear pending flags for both level and edge triggered interrupts.
365          * Level triggered IRQs will be reasserted once they become inactive.
366          */
367         GIC_DIST_CLEAR_PENDING(irq, GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
368                                                              : cm);
369         ret = irq;
370     } else {
371         if (irq < GIC_NR_SGIS) {
372             /* Lookup the source CPU for the SGI and clear this in the
373              * sgi_pending map.  Return the src and clear the overall pending
374              * state on this CPU if the SGI is not pending from any CPUs.
375              */
376             assert(s->sgi_pending[irq][cpu] != 0);
377             src = ctz32(s->sgi_pending[irq][cpu]);
378             s->sgi_pending[irq][cpu] &= ~(1 << src);
379             if (s->sgi_pending[irq][cpu] == 0) {
380                 GIC_DIST_CLEAR_PENDING(irq,
381                                        GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
382                                                                 : cm);
383             }
384             ret = irq | ((src & 0x7) << 10);
385         } else {
386             /* Clear pending state for both level and edge triggered
387              * interrupts. (level triggered interrupts with an active line
388              * remain pending, see gic_test_pending)
389              */
390             GIC_DIST_CLEAR_PENDING(irq, GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
391                                                                  : cm);
392             ret = irq;
393         }
394     }
395 
396     gic_activate_irq(s, cpu, irq);
397     gic_update(s);
398     DPRINTF("ACK %d\n", irq);
399     return ret;
400 }
401 
402 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
403                       MemTxAttrs attrs)
404 {
405     if (s->security_extn && !attrs.secure) {
406         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
407             return; /* Ignore Non-secure access of Group0 IRQ */
408         }
409         val = 0x80 | (val >> 1); /* Non-secure view */
410     }
411 
412     if (irq < GIC_INTERNAL) {
413         s->priority1[irq][cpu] = val;
414     } else {
415         s->priority2[(irq) - GIC_INTERNAL] = val;
416     }
417 }
418 
419 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
420                                  MemTxAttrs attrs)
421 {
422     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
423 
424     if (s->security_extn && !attrs.secure) {
425         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
426             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
427         }
428         prio = (prio << 1) & 0xff; /* Non-secure view */
429     }
430     return prio;
431 }
432 
433 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
434                                   MemTxAttrs attrs)
435 {
436     if (gic_cpu_ns_access(s, cpu, attrs)) {
437         if (s->priority_mask[cpu] & 0x80) {
438             /* Priority Mask in upper half */
439             pmask = 0x80 | (pmask >> 1);
440         } else {
441             /* Non-secure write ignored if priority mask is in lower half */
442             return;
443         }
444     }
445     s->priority_mask[cpu] = pmask;
446 }
447 
448 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
449 {
450     uint32_t pmask = s->priority_mask[cpu];
451 
452     if (gic_cpu_ns_access(s, cpu, attrs)) {
453         if (pmask & 0x80) {
454             /* Priority Mask in upper half, return Non-secure view */
455             pmask = (pmask << 1) & 0xff;
456         } else {
457             /* Priority Mask in lower half, RAZ */
458             pmask = 0;
459         }
460     }
461     return pmask;
462 }
463 
464 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
465 {
466     uint32_t ret = s->cpu_ctlr[cpu];
467 
468     if (gic_cpu_ns_access(s, cpu, attrs)) {
469         /* Construct the NS banked view of GICC_CTLR from the correct
470          * bits of the S banked view. We don't need to move the bypass
471          * control bits because we don't implement that (IMPDEF) part
472          * of the GIC architecture.
473          */
474         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
475     }
476     return ret;
477 }
478 
479 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
480                                 MemTxAttrs attrs)
481 {
482     uint32_t mask;
483 
484     if (gic_cpu_ns_access(s, cpu, attrs)) {
485         /* The NS view can only write certain bits in the register;
486          * the rest are unchanged
487          */
488         mask = GICC_CTLR_EN_GRP1;
489         if (s->revision == 2) {
490             mask |= GICC_CTLR_EOIMODE_NS;
491         }
492         s->cpu_ctlr[cpu] &= ~mask;
493         s->cpu_ctlr[cpu] |= (value << 1) & mask;
494     } else {
495         if (s->revision == 2) {
496             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
497         } else {
498             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
499         }
500         s->cpu_ctlr[cpu] = value & mask;
501     }
502     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
503             "Group1 Interrupts %sabled\n", cpu,
504             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
505             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
506 }
507 
508 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
509 {
510     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
511         /* Idle priority */
512         return 0xff;
513     }
514 
515     if (gic_cpu_ns_access(s, cpu, attrs)) {
516         if (s->running_priority[cpu] & 0x80) {
517             /* Running priority in upper half of range: return the Non-secure
518              * view of the priority.
519              */
520             return s->running_priority[cpu] << 1;
521         } else {
522             /* Running priority in lower half of range: RAZ */
523             return 0;
524         }
525     } else {
526         return s->running_priority[cpu];
527     }
528 }
529 
530 /* Return true if we should split priority drop and interrupt deactivation,
531  * ie whether the relevant EOIMode bit is set.
532  */
533 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
534 {
535     if (s->revision != 2) {
536         /* Before GICv2 prio-drop and deactivate are not separable */
537         return false;
538     }
539     if (gic_cpu_ns_access(s, cpu, attrs)) {
540         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
541     }
542     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
543 }
544 
545 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
546 {
547     int cm = 1 << cpu;
548     int group;
549 
550     if (irq >= s->num_irq) {
551         /*
552          * This handles two cases:
553          * 1. If software writes the ID of a spurious interrupt [ie 1023]
554          * to the GICC_DIR, the GIC ignores that write.
555          * 2. If software writes the number of a non-existent interrupt
556          * this must be a subcase of "value written is not an active interrupt"
557          * and so this is UNPREDICTABLE. We choose to ignore it.
558          */
559         return;
560     }
561 
562     group = gic_has_groups(s) && GIC_DIST_TEST_GROUP(irq, cm);
563 
564     if (!gic_eoi_split(s, cpu, attrs)) {
565         /* This is UNPREDICTABLE; we choose to ignore it */
566         qemu_log_mask(LOG_GUEST_ERROR,
567                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
568         return;
569     }
570 
571     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
572         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
573         return;
574     }
575 
576     GIC_DIST_CLEAR_ACTIVE(irq, cm);
577 }
578 
579 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
580 {
581     int cm = 1 << cpu;
582     int group;
583 
584     DPRINTF("EOI %d\n", irq);
585     if (irq >= s->num_irq) {
586         /* This handles two cases:
587          * 1. If software writes the ID of a spurious interrupt [ie 1023]
588          * to the GICC_EOIR, the GIC ignores that write.
589          * 2. If software writes the number of a non-existent interrupt
590          * this must be a subcase of "value written does not match the last
591          * valid interrupt value read from the Interrupt Acknowledge
592          * register" and so this is UNPREDICTABLE. We choose to ignore it.
593          */
594         return;
595     }
596     if (s->running_priority[cpu] == 0x100) {
597         return; /* No active IRQ.  */
598     }
599 
600     if (s->revision == REV_11MPCORE) {
601         /* Mark level triggered interrupts as pending if they are still
602            raised.  */
603         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
604             && GIC_DIST_TEST_LEVEL(irq, cm)
605             && (GIC_DIST_TARGET(irq) & cm) != 0) {
606             DPRINTF("Set %d pending mask %x\n", irq, cm);
607             GIC_DIST_SET_PENDING(irq, cm);
608         }
609     }
610 
611     group = gic_has_groups(s) && GIC_DIST_TEST_GROUP(irq, cm);
612 
613     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
614         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
615         return;
616     }
617 
618     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
619      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
620      * i.e. go ahead and complete the irq anyway.
621      */
622 
623     gic_drop_prio(s, cpu, group);
624 
625     /* In GICv2 the guest can choose to split priority-drop and deactivate */
626     if (!gic_eoi_split(s, cpu, attrs)) {
627         GIC_DIST_CLEAR_ACTIVE(irq, cm);
628     }
629     gic_update(s);
630 }
631 
632 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
633 {
634     GICState *s = (GICState *)opaque;
635     uint32_t res;
636     int irq;
637     int i;
638     int cpu;
639     int cm;
640     int mask;
641 
642     cpu = gic_get_current_cpu(s);
643     cm = 1 << cpu;
644     if (offset < 0x100) {
645         if (offset == 0) {      /* GICD_CTLR */
646             if (s->security_extn && !attrs.secure) {
647                 /* The NS bank of this register is just an alias of the
648                  * EnableGrp1 bit in the S bank version.
649                  */
650                 return extract32(s->ctlr, 1, 1);
651             } else {
652                 return s->ctlr;
653             }
654         }
655         if (offset == 4)
656             /* Interrupt Controller Type Register */
657             return ((s->num_irq / 32) - 1)
658                     | ((s->num_cpu - 1) << 5)
659                     | (s->security_extn << 10);
660         if (offset < 0x08)
661             return 0;
662         if (offset >= 0x80) {
663             /* Interrupt Group Registers: these RAZ/WI if this is an NS
664              * access to a GIC with the security extensions, or if the GIC
665              * doesn't have groups at all.
666              */
667             res = 0;
668             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
669                 /* Every byte offset holds 8 group status bits */
670                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
671                 if (irq >= s->num_irq) {
672                     goto bad_reg;
673                 }
674                 for (i = 0; i < 8; i++) {
675                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
676                         res |= (1 << i);
677                     }
678                 }
679             }
680             return res;
681         }
682         goto bad_reg;
683     } else if (offset < 0x200) {
684         /* Interrupt Set/Clear Enable.  */
685         if (offset < 0x180)
686             irq = (offset - 0x100) * 8;
687         else
688             irq = (offset - 0x180) * 8;
689         irq += GIC_BASE_IRQ;
690         if (irq >= s->num_irq)
691             goto bad_reg;
692         res = 0;
693         for (i = 0; i < 8; i++) {
694             if (s->security_extn && !attrs.secure &&
695                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
696                 continue; /* Ignore Non-secure access of Group0 IRQ */
697             }
698 
699             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
700                 res |= (1 << i);
701             }
702         }
703     } else if (offset < 0x300) {
704         /* Interrupt Set/Clear Pending.  */
705         if (offset < 0x280)
706             irq = (offset - 0x200) * 8;
707         else
708             irq = (offset - 0x280) * 8;
709         irq += GIC_BASE_IRQ;
710         if (irq >= s->num_irq)
711             goto bad_reg;
712         res = 0;
713         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
714         for (i = 0; i < 8; i++) {
715             if (s->security_extn && !attrs.secure &&
716                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
717                 continue; /* Ignore Non-secure access of Group0 IRQ */
718             }
719 
720             if (gic_test_pending(s, irq + i, mask)) {
721                 res |= (1 << i);
722             }
723         }
724     } else if (offset < 0x400) {
725         /* Interrupt Set/Clear Active.  */
726         if (offset < 0x380) {
727             irq = (offset - 0x300) * 8;
728         } else if (s->revision == 2) {
729             irq = (offset - 0x380) * 8;
730         } else {
731             goto bad_reg;
732         }
733 
734         irq += GIC_BASE_IRQ;
735         if (irq >= s->num_irq)
736             goto bad_reg;
737         res = 0;
738         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
739         for (i = 0; i < 8; i++) {
740             if (s->security_extn && !attrs.secure &&
741                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
742                 continue; /* Ignore Non-secure access of Group0 IRQ */
743             }
744 
745             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
746                 res |= (1 << i);
747             }
748         }
749     } else if (offset < 0x800) {
750         /* Interrupt Priority.  */
751         irq = (offset - 0x400) + GIC_BASE_IRQ;
752         if (irq >= s->num_irq)
753             goto bad_reg;
754         res = gic_dist_get_priority(s, cpu, irq, attrs);
755     } else if (offset < 0xc00) {
756         /* Interrupt CPU Target.  */
757         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
758             /* For uniprocessor GICs these RAZ/WI */
759             res = 0;
760         } else {
761             irq = (offset - 0x800) + GIC_BASE_IRQ;
762             if (irq >= s->num_irq) {
763                 goto bad_reg;
764             }
765             if (irq < 29 && s->revision == REV_11MPCORE) {
766                 res = 0;
767             } else if (irq < GIC_INTERNAL) {
768                 res = cm;
769             } else {
770                 res = GIC_DIST_TARGET(irq);
771             }
772         }
773     } else if (offset < 0xf00) {
774         /* Interrupt Configuration.  */
775         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
776         if (irq >= s->num_irq)
777             goto bad_reg;
778         res = 0;
779         for (i = 0; i < 4; i++) {
780             if (s->security_extn && !attrs.secure &&
781                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
782                 continue; /* Ignore Non-secure access of Group0 IRQ */
783             }
784 
785             if (GIC_DIST_TEST_MODEL(irq + i)) {
786                 res |= (1 << (i * 2));
787             }
788             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
789                 res |= (2 << (i * 2));
790             }
791         }
792     } else if (offset < 0xf10) {
793         goto bad_reg;
794     } else if (offset < 0xf30) {
795         if (s->revision == REV_11MPCORE) {
796             goto bad_reg;
797         }
798 
799         if (offset < 0xf20) {
800             /* GICD_CPENDSGIRn */
801             irq = (offset - 0xf10);
802         } else {
803             irq = (offset - 0xf20);
804             /* GICD_SPENDSGIRn */
805         }
806 
807         if (s->security_extn && !attrs.secure &&
808             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
809             res = 0; /* Ignore Non-secure access of Group0 IRQ */
810         } else {
811             res = s->sgi_pending[irq][cpu];
812         }
813     } else if (offset < 0xfd0) {
814         goto bad_reg;
815     } else if (offset < 0x1000) {
816         if (offset & 3) {
817             res = 0;
818         } else {
819             switch (s->revision) {
820             case REV_11MPCORE:
821                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
822                 break;
823             case 1:
824                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
825                 break;
826             case 2:
827                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
828                 break;
829             default:
830                 res = 0;
831             }
832         }
833     } else {
834         g_assert_not_reached();
835     }
836     return res;
837 bad_reg:
838     qemu_log_mask(LOG_GUEST_ERROR,
839                   "gic_dist_readb: Bad offset %x\n", (int)offset);
840     return 0;
841 }
842 
843 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
844                                  unsigned size, MemTxAttrs attrs)
845 {
846     switch (size) {
847     case 1:
848         *data = gic_dist_readb(opaque, offset, attrs);
849         return MEMTX_OK;
850     case 2:
851         *data = gic_dist_readb(opaque, offset, attrs);
852         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
853         return MEMTX_OK;
854     case 4:
855         *data = gic_dist_readb(opaque, offset, attrs);
856         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
857         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
858         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
859         return MEMTX_OK;
860     default:
861         return MEMTX_ERROR;
862     }
863 }
864 
865 static void gic_dist_writeb(void *opaque, hwaddr offset,
866                             uint32_t value, MemTxAttrs attrs)
867 {
868     GICState *s = (GICState *)opaque;
869     int irq;
870     int i;
871     int cpu;
872 
873     cpu = gic_get_current_cpu(s);
874     if (offset < 0x100) {
875         if (offset == 0) {
876             if (s->security_extn && !attrs.secure) {
877                 /* NS version is just an alias of the S version's bit 1 */
878                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
879             } else if (gic_has_groups(s)) {
880                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
881             } else {
882                 s->ctlr = value & GICD_CTLR_EN_GRP0;
883             }
884             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
885                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
886                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
887         } else if (offset < 4) {
888             /* ignored.  */
889         } else if (offset >= 0x80) {
890             /* Interrupt Group Registers: RAZ/WI for NS access to secure
891              * GIC, or for GICs without groups.
892              */
893             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
894                 /* Every byte offset holds 8 group status bits */
895                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
896                 if (irq >= s->num_irq) {
897                     goto bad_reg;
898                 }
899                 for (i = 0; i < 8; i++) {
900                     /* Group bits are banked for private interrupts */
901                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
902                     if (value & (1 << i)) {
903                         /* Group1 (Non-secure) */
904                         GIC_DIST_SET_GROUP(irq + i, cm);
905                     } else {
906                         /* Group0 (Secure) */
907                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
908                     }
909                 }
910             }
911         } else {
912             goto bad_reg;
913         }
914     } else if (offset < 0x180) {
915         /* Interrupt Set Enable.  */
916         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
917         if (irq >= s->num_irq)
918             goto bad_reg;
919         if (irq < GIC_NR_SGIS) {
920             value = 0xff;
921         }
922 
923         for (i = 0; i < 8; i++) {
924             if (value & (1 << i)) {
925                 int mask =
926                     (irq < GIC_INTERNAL) ? (1 << cpu)
927                                          : GIC_DIST_TARGET(irq + i);
928                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
929 
930                 if (s->security_extn && !attrs.secure &&
931                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
932                     continue; /* Ignore Non-secure access of Group0 IRQ */
933                 }
934 
935                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
936                     DPRINTF("Enabled IRQ %d\n", irq + i);
937                     trace_gic_enable_irq(irq + i);
938                 }
939                 GIC_DIST_SET_ENABLED(irq + i, cm);
940                 /* If a raised level triggered IRQ enabled then mark
941                    is as pending.  */
942                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
943                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
944                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
945                     GIC_DIST_SET_PENDING(irq + i, mask);
946                 }
947             }
948         }
949     } else if (offset < 0x200) {
950         /* Interrupt Clear Enable.  */
951         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
952         if (irq >= s->num_irq)
953             goto bad_reg;
954         if (irq < GIC_NR_SGIS) {
955             value = 0;
956         }
957 
958         for (i = 0; i < 8; i++) {
959             if (value & (1 << i)) {
960                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
961 
962                 if (s->security_extn && !attrs.secure &&
963                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
964                     continue; /* Ignore Non-secure access of Group0 IRQ */
965                 }
966 
967                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
968                     DPRINTF("Disabled IRQ %d\n", irq + i);
969                     trace_gic_disable_irq(irq + i);
970                 }
971                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
972             }
973         }
974     } else if (offset < 0x280) {
975         /* Interrupt Set Pending.  */
976         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
977         if (irq >= s->num_irq)
978             goto bad_reg;
979         if (irq < GIC_NR_SGIS) {
980             value = 0;
981         }
982 
983         for (i = 0; i < 8; i++) {
984             if (value & (1 << i)) {
985                 if (s->security_extn && !attrs.secure &&
986                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
987                     continue; /* Ignore Non-secure access of Group0 IRQ */
988                 }
989 
990                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
991             }
992         }
993     } else if (offset < 0x300) {
994         /* Interrupt Clear Pending.  */
995         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
996         if (irq >= s->num_irq)
997             goto bad_reg;
998         if (irq < GIC_NR_SGIS) {
999             value = 0;
1000         }
1001 
1002         for (i = 0; i < 8; i++) {
1003             if (s->security_extn && !attrs.secure &&
1004                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1005                 continue; /* Ignore Non-secure access of Group0 IRQ */
1006             }
1007 
1008             /* ??? This currently clears the pending bit for all CPUs, even
1009                for per-CPU interrupts.  It's unclear whether this is the
1010                corect behavior.  */
1011             if (value & (1 << i)) {
1012                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1013             }
1014         }
1015     } else if (offset < 0x380) {
1016         /* Interrupt Set Active.  */
1017         if (s->revision != 2) {
1018             goto bad_reg;
1019         }
1020 
1021         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
1022         if (irq >= s->num_irq) {
1023             goto bad_reg;
1024         }
1025 
1026         /* This register is banked per-cpu for PPIs */
1027         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1028 
1029         for (i = 0; i < 8; i++) {
1030             if (s->security_extn && !attrs.secure &&
1031                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1032                 continue; /* Ignore Non-secure access of Group0 IRQ */
1033             }
1034 
1035             if (value & (1 << i)) {
1036                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1037             }
1038         }
1039     } else if (offset < 0x400) {
1040         /* Interrupt Clear Active.  */
1041         if (s->revision != 2) {
1042             goto bad_reg;
1043         }
1044 
1045         irq = (offset - 0x380) * 8 + GIC_BASE_IRQ;
1046         if (irq >= s->num_irq) {
1047             goto bad_reg;
1048         }
1049 
1050         /* This register is banked per-cpu for PPIs */
1051         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1052 
1053         for (i = 0; i < 8; i++) {
1054             if (s->security_extn && !attrs.secure &&
1055                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1056                 continue; /* Ignore Non-secure access of Group0 IRQ */
1057             }
1058 
1059             if (value & (1 << i)) {
1060                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1061             }
1062         }
1063     } else if (offset < 0x800) {
1064         /* Interrupt Priority.  */
1065         irq = (offset - 0x400) + GIC_BASE_IRQ;
1066         if (irq >= s->num_irq)
1067             goto bad_reg;
1068         gic_dist_set_priority(s, cpu, irq, value, attrs);
1069     } else if (offset < 0xc00) {
1070         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1071          * annoying exception of the 11MPCore's GIC.
1072          */
1073         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1074             irq = (offset - 0x800) + GIC_BASE_IRQ;
1075             if (irq >= s->num_irq) {
1076                 goto bad_reg;
1077             }
1078             if (irq < 29 && s->revision == REV_11MPCORE) {
1079                 value = 0;
1080             } else if (irq < GIC_INTERNAL) {
1081                 value = ALL_CPU_MASK;
1082             }
1083             s->irq_target[irq] = value & ALL_CPU_MASK;
1084         }
1085     } else if (offset < 0xf00) {
1086         /* Interrupt Configuration.  */
1087         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1088         if (irq >= s->num_irq)
1089             goto bad_reg;
1090         if (irq < GIC_NR_SGIS)
1091             value |= 0xaa;
1092         for (i = 0; i < 4; i++) {
1093             if (s->security_extn && !attrs.secure &&
1094                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1095                 continue; /* Ignore Non-secure access of Group0 IRQ */
1096             }
1097 
1098             if (s->revision == REV_11MPCORE) {
1099                 if (value & (1 << (i * 2))) {
1100                     GIC_DIST_SET_MODEL(irq + i);
1101                 } else {
1102                     GIC_DIST_CLEAR_MODEL(irq + i);
1103                 }
1104             }
1105             if (value & (2 << (i * 2))) {
1106                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1107             } else {
1108                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1109             }
1110         }
1111     } else if (offset < 0xf10) {
1112         /* 0xf00 is only handled for 32-bit writes.  */
1113         goto bad_reg;
1114     } else if (offset < 0xf20) {
1115         /* GICD_CPENDSGIRn */
1116         if (s->revision == REV_11MPCORE) {
1117             goto bad_reg;
1118         }
1119         irq = (offset - 0xf10);
1120 
1121         if (!s->security_extn || attrs.secure ||
1122             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1123             s->sgi_pending[irq][cpu] &= ~value;
1124             if (s->sgi_pending[irq][cpu] == 0) {
1125                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1126             }
1127         }
1128     } else if (offset < 0xf30) {
1129         /* GICD_SPENDSGIRn */
1130         if (s->revision == REV_11MPCORE) {
1131             goto bad_reg;
1132         }
1133         irq = (offset - 0xf20);
1134 
1135         if (!s->security_extn || attrs.secure ||
1136             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1137             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1138             s->sgi_pending[irq][cpu] |= value;
1139         }
1140     } else {
1141         goto bad_reg;
1142     }
1143     gic_update(s);
1144     return;
1145 bad_reg:
1146     qemu_log_mask(LOG_GUEST_ERROR,
1147                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1148 }
1149 
1150 static void gic_dist_writew(void *opaque, hwaddr offset,
1151                             uint32_t value, MemTxAttrs attrs)
1152 {
1153     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1154     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1155 }
1156 
1157 static void gic_dist_writel(void *opaque, hwaddr offset,
1158                             uint32_t value, MemTxAttrs attrs)
1159 {
1160     GICState *s = (GICState *)opaque;
1161     if (offset == 0xf00) {
1162         int cpu;
1163         int irq;
1164         int mask;
1165         int target_cpu;
1166 
1167         cpu = gic_get_current_cpu(s);
1168         irq = value & 0x3ff;
1169         switch ((value >> 24) & 3) {
1170         case 0:
1171             mask = (value >> 16) & ALL_CPU_MASK;
1172             break;
1173         case 1:
1174             mask = ALL_CPU_MASK ^ (1 << cpu);
1175             break;
1176         case 2:
1177             mask = 1 << cpu;
1178             break;
1179         default:
1180             DPRINTF("Bad Soft Int target filter\n");
1181             mask = ALL_CPU_MASK;
1182             break;
1183         }
1184         GIC_DIST_SET_PENDING(irq, mask);
1185         target_cpu = ctz32(mask);
1186         while (target_cpu < GIC_NCPU) {
1187             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1188             mask &= ~(1 << target_cpu);
1189             target_cpu = ctz32(mask);
1190         }
1191         gic_update(s);
1192         return;
1193     }
1194     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1195     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1196 }
1197 
1198 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1199                                   unsigned size, MemTxAttrs attrs)
1200 {
1201     switch (size) {
1202     case 1:
1203         gic_dist_writeb(opaque, offset, data, attrs);
1204         return MEMTX_OK;
1205     case 2:
1206         gic_dist_writew(opaque, offset, data, attrs);
1207         return MEMTX_OK;
1208     case 4:
1209         gic_dist_writel(opaque, offset, data, attrs);
1210         return MEMTX_OK;
1211     default:
1212         return MEMTX_ERROR;
1213     }
1214 }
1215 
1216 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1217 {
1218     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1219      * second half of GICC_NSAPR.
1220      */
1221     switch (GIC_MIN_BPR) {
1222     case 0:
1223         if (regno < 2) {
1224             return s->nsapr[regno + 2][cpu];
1225         }
1226         break;
1227     case 1:
1228         if (regno == 0) {
1229             return s->nsapr[regno + 1][cpu];
1230         }
1231         break;
1232     case 2:
1233         if (regno == 0) {
1234             return extract32(s->nsapr[0][cpu], 16, 16);
1235         }
1236         break;
1237     case 3:
1238         if (regno == 0) {
1239             return extract32(s->nsapr[0][cpu], 8, 8);
1240         }
1241         break;
1242     default:
1243         g_assert_not_reached();
1244     }
1245     return 0;
1246 }
1247 
1248 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1249                                          uint32_t value)
1250 {
1251     /* Write the Nonsecure view of GICC_APR<regno>. */
1252     switch (GIC_MIN_BPR) {
1253     case 0:
1254         if (regno < 2) {
1255             s->nsapr[regno + 2][cpu] = value;
1256         }
1257         break;
1258     case 1:
1259         if (regno == 0) {
1260             s->nsapr[regno + 1][cpu] = value;
1261         }
1262         break;
1263     case 2:
1264         if (regno == 0) {
1265             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1266         }
1267         break;
1268     case 3:
1269         if (regno == 0) {
1270             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1271         }
1272         break;
1273     default:
1274         g_assert_not_reached();
1275     }
1276 }
1277 
1278 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1279                                 uint64_t *data, MemTxAttrs attrs)
1280 {
1281     switch (offset) {
1282     case 0x00: /* Control */
1283         *data = gic_get_cpu_control(s, cpu, attrs);
1284         break;
1285     case 0x04: /* Priority mask */
1286         *data = gic_get_priority_mask(s, cpu, attrs);
1287         break;
1288     case 0x08: /* Binary Point */
1289         if (gic_cpu_ns_access(s, cpu, attrs)) {
1290             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1291                 /* NS view of BPR when CBPR is 1 */
1292                 *data = MIN(s->bpr[cpu] + 1, 7);
1293             } else {
1294                 /* BPR is banked. Non-secure copy stored in ABPR. */
1295                 *data = s->abpr[cpu];
1296             }
1297         } else {
1298             *data = s->bpr[cpu];
1299         }
1300         break;
1301     case 0x0c: /* Acknowledge */
1302         *data = gic_acknowledge_irq(s, cpu, attrs);
1303         break;
1304     case 0x14: /* Running Priority */
1305         *data = gic_get_running_priority(s, cpu, attrs);
1306         break;
1307     case 0x18: /* Highest Pending Interrupt */
1308         *data = gic_get_current_pending_irq(s, cpu, attrs);
1309         break;
1310     case 0x1c: /* Aliased Binary Point */
1311         /* GIC v2, no security: ABPR
1312          * GIC v1, no security: not implemented (RAZ/WI)
1313          * With security extensions, secure access: ABPR (alias of NS BPR)
1314          * With security extensions, nonsecure access: RAZ/WI
1315          */
1316         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1317             *data = 0;
1318         } else {
1319             *data = s->abpr[cpu];
1320         }
1321         break;
1322     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1323     {
1324         int regno = (offset - 0xd0) / 4;
1325 
1326         if (regno >= GIC_NR_APRS || s->revision != 2) {
1327             *data = 0;
1328         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1329             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1330             *data = gic_apr_ns_view(s, regno, cpu);
1331         } else {
1332             *data = s->apr[regno][cpu];
1333         }
1334         break;
1335     }
1336     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1337     {
1338         int regno = (offset - 0xe0) / 4;
1339 
1340         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1341             gic_cpu_ns_access(s, cpu, attrs)) {
1342             *data = 0;
1343         } else {
1344             *data = s->nsapr[regno][cpu];
1345         }
1346         break;
1347     }
1348     default:
1349         qemu_log_mask(LOG_GUEST_ERROR,
1350                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1351         *data = 0;
1352         break;
1353     }
1354     return MEMTX_OK;
1355 }
1356 
1357 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1358                                  uint32_t value, MemTxAttrs attrs)
1359 {
1360     switch (offset) {
1361     case 0x00: /* Control */
1362         gic_set_cpu_control(s, cpu, value, attrs);
1363         break;
1364     case 0x04: /* Priority mask */
1365         gic_set_priority_mask(s, cpu, value, attrs);
1366         break;
1367     case 0x08: /* Binary Point */
1368         if (gic_cpu_ns_access(s, cpu, attrs)) {
1369             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1370                 /* WI when CBPR is 1 */
1371                 return MEMTX_OK;
1372             } else {
1373                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1374             }
1375         } else {
1376             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1377         }
1378         break;
1379     case 0x10: /* End Of Interrupt */
1380         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1381         return MEMTX_OK;
1382     case 0x1c: /* Aliased Binary Point */
1383         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1384             /* unimplemented, or NS access: RAZ/WI */
1385             return MEMTX_OK;
1386         } else {
1387             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1388         }
1389         break;
1390     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1391     {
1392         int regno = (offset - 0xd0) / 4;
1393 
1394         if (regno >= GIC_NR_APRS || s->revision != 2) {
1395             return MEMTX_OK;
1396         }
1397         if (gic_cpu_ns_access(s, cpu, attrs)) {
1398             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1399             gic_apr_write_ns_view(s, regno, cpu, value);
1400         } else {
1401             s->apr[regno][cpu] = value;
1402         }
1403         break;
1404     }
1405     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1406     {
1407         int regno = (offset - 0xe0) / 4;
1408 
1409         if (regno >= GIC_NR_APRS || s->revision != 2) {
1410             return MEMTX_OK;
1411         }
1412         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1413             return MEMTX_OK;
1414         }
1415         s->nsapr[regno][cpu] = value;
1416         break;
1417     }
1418     case 0x1000:
1419         /* GICC_DIR */
1420         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1421         break;
1422     default:
1423         qemu_log_mask(LOG_GUEST_ERROR,
1424                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1425         return MEMTX_OK;
1426     }
1427     gic_update(s);
1428     return MEMTX_OK;
1429 }
1430 
1431 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1432 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1433                                     unsigned size, MemTxAttrs attrs)
1434 {
1435     GICState *s = (GICState *)opaque;
1436     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1437 }
1438 
1439 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1440                                      uint64_t value, unsigned size,
1441                                      MemTxAttrs attrs)
1442 {
1443     GICState *s = (GICState *)opaque;
1444     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1445 }
1446 
1447 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1448  * These just decode the opaque pointer into GICState* + cpu id.
1449  */
1450 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1451                                    unsigned size, MemTxAttrs attrs)
1452 {
1453     GICState **backref = (GICState **)opaque;
1454     GICState *s = *backref;
1455     int id = (backref - s->backref);
1456     return gic_cpu_read(s, id, addr, data, attrs);
1457 }
1458 
1459 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1460                                     uint64_t value, unsigned size,
1461                                     MemTxAttrs attrs)
1462 {
1463     GICState **backref = (GICState **)opaque;
1464     GICState *s = *backref;
1465     int id = (backref - s->backref);
1466     return gic_cpu_write(s, id, addr, value, attrs);
1467 }
1468 
1469 static const MemoryRegionOps gic_ops[2] = {
1470     {
1471         .read_with_attrs = gic_dist_read,
1472         .write_with_attrs = gic_dist_write,
1473         .endianness = DEVICE_NATIVE_ENDIAN,
1474     },
1475     {
1476         .read_with_attrs = gic_thiscpu_read,
1477         .write_with_attrs = gic_thiscpu_write,
1478         .endianness = DEVICE_NATIVE_ENDIAN,
1479     }
1480 };
1481 
1482 static const MemoryRegionOps gic_cpu_ops = {
1483     .read_with_attrs = gic_do_cpu_read,
1484     .write_with_attrs = gic_do_cpu_write,
1485     .endianness = DEVICE_NATIVE_ENDIAN,
1486 };
1487 
1488 static void arm_gic_realize(DeviceState *dev, Error **errp)
1489 {
1490     /* Device instance realize function for the GIC sysbus device */
1491     int i;
1492     GICState *s = ARM_GIC(dev);
1493     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1494     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1495     Error *local_err = NULL;
1496 
1497     agc->parent_realize(dev, &local_err);
1498     if (local_err) {
1499         error_propagate(errp, local_err);
1500         return;
1501     }
1502 
1503     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1504         error_setg(errp, "KVM with user space irqchip only works when the "
1505                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
1506         return;
1507     }
1508 
1509     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1510     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, NULL);
1511 
1512     /* Extra core-specific regions for the CPU interfaces. This is
1513      * necessary for "franken-GIC" implementations, for example on
1514      * Exynos 4.
1515      * NB that the memory region size of 0x100 applies for the 11MPCore
1516      * and also cores following the GIC v1 spec (ie A9).
1517      * GIC v2 defines a larger memory region (0x1000) so this will need
1518      * to be extended when we implement A15.
1519      */
1520     for (i = 0; i < s->num_cpu; i++) {
1521         s->backref[i] = s;
1522         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1523                               &s->backref[i], "gic_cpu", 0x100);
1524         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1525     }
1526 }
1527 
1528 static void arm_gic_class_init(ObjectClass *klass, void *data)
1529 {
1530     DeviceClass *dc = DEVICE_CLASS(klass);
1531     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1532 
1533     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1534 }
1535 
1536 static const TypeInfo arm_gic_info = {
1537     .name = TYPE_ARM_GIC,
1538     .parent = TYPE_ARM_GIC_COMMON,
1539     .instance_size = sizeof(GICState),
1540     .class_init = arm_gic_class_init,
1541     .class_size = sizeof(ARMGICClass),
1542 };
1543 
1544 static void arm_gic_register_types(void)
1545 {
1546     type_register_static(&arm_gic_info);
1547 }
1548 
1549 type_init(arm_gic_register_types)
1550