xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 3bb0b03897abb634231366ce4e6651b56f16aa26)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 /* Return true if this GIC config has interrupt groups, which is
65  * true if we're a GICv2, or a GICv1 with the security extensions.
66  */
67 static inline bool gic_has_groups(GICState *s)
68 {
69     return s->revision == 2 || s->security_extn;
70 }
71 
72 /* TODO: Many places that call this routine could be optimized.  */
73 /* Update interrupt status after enabled or pending bits have been changed.  */
74 void gic_update(GICState *s)
75 {
76     int best_irq;
77     int best_prio;
78     int irq;
79     int irq_level, fiq_level;
80     int cpu;
81     int cm;
82 
83     for (cpu = 0; cpu < s->num_cpu; cpu++) {
84         cm = 1 << cpu;
85         s->current_pending[cpu] = 1023;
86         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
87             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
88             qemu_irq_lower(s->parent_irq[cpu]);
89             qemu_irq_lower(s->parent_fiq[cpu]);
90             continue;
91         }
92         best_prio = 0x100;
93         best_irq = 1023;
94         for (irq = 0; irq < s->num_irq; irq++) {
95             if (GIC_DIST_TEST_ENABLED(irq, cm) &&
96                 gic_test_pending(s, irq, cm) &&
97                 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
98                 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
99                 if (GIC_DIST_GET_PRIORITY(irq, cpu) < best_prio) {
100                     best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
101                     best_irq = irq;
102                 }
103             }
104         }
105 
106         if (best_irq != 1023) {
107             trace_gic_update_bestirq(cpu, best_irq, best_prio,
108                 s->priority_mask[cpu], s->running_priority[cpu]);
109         }
110 
111         irq_level = fiq_level = 0;
112 
113         if (best_prio < s->priority_mask[cpu]) {
114             s->current_pending[cpu] = best_irq;
115             if (best_prio < s->running_priority[cpu]) {
116                 int group = GIC_DIST_TEST_GROUP(best_irq, cm);
117 
118                 if (extract32(s->ctlr, group, 1) &&
119                     extract32(s->cpu_ctlr[cpu], group, 1)) {
120                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
121                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
122                                 best_irq, cpu);
123                         fiq_level = 1;
124                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
125                     } else {
126                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
127                                 best_irq, cpu);
128                         irq_level = 1;
129                         trace_gic_update_set_irq(cpu, "irq", irq_level);
130                     }
131                 }
132             }
133         }
134 
135         qemu_set_irq(s->parent_irq[cpu], irq_level);
136         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
137     }
138 }
139 
140 void gic_set_pending_private(GICState *s, int cpu, int irq)
141 {
142     int cm = 1 << cpu;
143 
144     if (gic_test_pending(s, irq, cm)) {
145         return;
146     }
147 
148     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
149     GIC_DIST_SET_PENDING(irq, cm);
150     gic_update(s);
151 }
152 
153 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
154                                  int cm, int target)
155 {
156     if (level) {
157         GIC_DIST_SET_LEVEL(irq, cm);
158         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
159             DPRINTF("Set %d pending mask %x\n", irq, target);
160             GIC_DIST_SET_PENDING(irq, target);
161         }
162     } else {
163         GIC_DIST_CLEAR_LEVEL(irq, cm);
164     }
165 }
166 
167 static void gic_set_irq_generic(GICState *s, int irq, int level,
168                                 int cm, int target)
169 {
170     if (level) {
171         GIC_DIST_SET_LEVEL(irq, cm);
172         DPRINTF("Set %d pending mask %x\n", irq, target);
173         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
174             GIC_DIST_SET_PENDING(irq, target);
175         }
176     } else {
177         GIC_DIST_CLEAR_LEVEL(irq, cm);
178     }
179 }
180 
181 /* Process a change in an external IRQ input.  */
182 static void gic_set_irq(void *opaque, int irq, int level)
183 {
184     /* Meaning of the 'irq' parameter:
185      *  [0..N-1] : external interrupts
186      *  [N..N+31] : PPI (internal) interrupts for CPU 0
187      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
188      *  ...
189      */
190     GICState *s = (GICState *)opaque;
191     int cm, target;
192     if (irq < (s->num_irq - GIC_INTERNAL)) {
193         /* The first external input line is internal interrupt 32.  */
194         cm = ALL_CPU_MASK;
195         irq += GIC_INTERNAL;
196         target = GIC_DIST_TARGET(irq);
197     } else {
198         int cpu;
199         irq -= (s->num_irq - GIC_INTERNAL);
200         cpu = irq / GIC_INTERNAL;
201         irq %= GIC_INTERNAL;
202         cm = 1 << cpu;
203         target = cm;
204     }
205 
206     assert(irq >= GIC_NR_SGIS);
207 
208     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
209         return;
210     }
211 
212     if (s->revision == REV_11MPCORE) {
213         gic_set_irq_11mpcore(s, irq, level, cm, target);
214     } else {
215         gic_set_irq_generic(s, irq, level, cm, target);
216     }
217     trace_gic_set_irq(irq, level, cm, target);
218 
219     gic_update(s);
220 }
221 
222 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
223                                             MemTxAttrs attrs)
224 {
225     uint16_t pending_irq = s->current_pending[cpu];
226 
227     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
228         int group = GIC_DIST_TEST_GROUP(pending_irq, (1 << cpu));
229         /* On a GIC without the security extensions, reading this register
230          * behaves in the same way as a secure access to a GIC with them.
231          */
232         bool secure = !s->security_extn || attrs.secure;
233 
234         if (group == 0 && !secure) {
235             /* Group0 interrupts hidden from Non-secure access */
236             return 1023;
237         }
238         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
239             /* Group1 interrupts only seen by Secure access if
240              * AckCtl bit set.
241              */
242             return 1022;
243         }
244     }
245     return pending_irq;
246 }
247 
248 static int gic_get_group_priority(GICState *s, int cpu, int irq)
249 {
250     /* Return the group priority of the specified interrupt
251      * (which is the top bits of its priority, with the number
252      * of bits masked determined by the applicable binary point register).
253      */
254     int bpr;
255     uint32_t mask;
256 
257     if (gic_has_groups(s) &&
258         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
259         GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
260         bpr = s->abpr[cpu] - 1;
261         assert(bpr >= 0);
262     } else {
263         bpr = s->bpr[cpu];
264     }
265 
266     /* a BPR of 0 means the group priority bits are [7:1];
267      * a BPR of 1 means they are [7:2], and so on down to
268      * a BPR of 7 meaning no group priority bits at all.
269      */
270     mask = ~0U << ((bpr & 7) + 1);
271 
272     return GIC_DIST_GET_PRIORITY(irq, cpu) & mask;
273 }
274 
275 static void gic_activate_irq(GICState *s, int cpu, int irq)
276 {
277     /* Set the appropriate Active Priority Register bit for this IRQ,
278      * and update the running priority.
279      */
280     int prio = gic_get_group_priority(s, cpu, irq);
281     int preemption_level = prio >> (GIC_MIN_BPR + 1);
282     int regno = preemption_level / 32;
283     int bitno = preemption_level % 32;
284 
285     if (gic_has_groups(s) && GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
286         s->nsapr[regno][cpu] |= (1 << bitno);
287     } else {
288         s->apr[regno][cpu] |= (1 << bitno);
289     }
290 
291     s->running_priority[cpu] = prio;
292     GIC_DIST_SET_ACTIVE(irq, 1 << cpu);
293 }
294 
295 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
296 {
297     /* Recalculate the current running priority for this CPU based
298      * on the set bits in the Active Priority Registers.
299      */
300     int i;
301     for (i = 0; i < GIC_NR_APRS; i++) {
302         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
303         if (!apr) {
304             continue;
305         }
306         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
307     }
308     return 0x100;
309 }
310 
311 static void gic_drop_prio(GICState *s, int cpu, int group)
312 {
313     /* Drop the priority of the currently active interrupt in the
314      * specified group.
315      *
316      * Note that we can guarantee (because of the requirement to nest
317      * GICC_IAR reads [which activate an interrupt and raise priority]
318      * with GICC_EOIR writes [which drop the priority for the interrupt])
319      * that the interrupt we're being called for is the highest priority
320      * active interrupt, meaning that it has the lowest set bit in the
321      * APR registers.
322      *
323      * If the guest does not honour the ordering constraints then the
324      * behaviour of the GIC is UNPREDICTABLE, which for us means that
325      * the values of the APR registers might become incorrect and the
326      * running priority will be wrong, so interrupts that should preempt
327      * might not do so, and interrupts that should not preempt might do so.
328      */
329     int i;
330 
331     for (i = 0; i < GIC_NR_APRS; i++) {
332         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
333         if (!*papr) {
334             continue;
335         }
336         /* Clear lowest set bit */
337         *papr &= *papr - 1;
338         break;
339     }
340 
341     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
342 }
343 
344 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
345 {
346     int ret, irq, src;
347     int cm = 1 << cpu;
348 
349     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
350      * for the case where this GIC supports grouping and the pending interrupt
351      * is in the wrong group.
352      */
353     irq = gic_get_current_pending_irq(s, cpu, attrs);
354     trace_gic_acknowledge_irq(cpu, irq);
355 
356     if (irq >= GIC_MAXIRQ) {
357         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
358         return irq;
359     }
360 
361     if (GIC_DIST_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
362         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
363         return 1023;
364     }
365 
366     if (s->revision == REV_11MPCORE) {
367         /* Clear pending flags for both level and edge triggered interrupts.
368          * Level triggered IRQs will be reasserted once they become inactive.
369          */
370         GIC_DIST_CLEAR_PENDING(irq, GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
371                                                              : cm);
372         ret = irq;
373     } else {
374         if (irq < GIC_NR_SGIS) {
375             /* Lookup the source CPU for the SGI and clear this in the
376              * sgi_pending map.  Return the src and clear the overall pending
377              * state on this CPU if the SGI is not pending from any CPUs.
378              */
379             assert(s->sgi_pending[irq][cpu] != 0);
380             src = ctz32(s->sgi_pending[irq][cpu]);
381             s->sgi_pending[irq][cpu] &= ~(1 << src);
382             if (s->sgi_pending[irq][cpu] == 0) {
383                 GIC_DIST_CLEAR_PENDING(irq,
384                                        GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
385                                                                 : cm);
386             }
387             ret = irq | ((src & 0x7) << 10);
388         } else {
389             /* Clear pending state for both level and edge triggered
390              * interrupts. (level triggered interrupts with an active line
391              * remain pending, see gic_test_pending)
392              */
393             GIC_DIST_CLEAR_PENDING(irq, GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
394                                                                  : cm);
395             ret = irq;
396         }
397     }
398 
399     gic_activate_irq(s, cpu, irq);
400     gic_update(s);
401     DPRINTF("ACK %d\n", irq);
402     return ret;
403 }
404 
405 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
406                       MemTxAttrs attrs)
407 {
408     if (s->security_extn && !attrs.secure) {
409         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
410             return; /* Ignore Non-secure access of Group0 IRQ */
411         }
412         val = 0x80 | (val >> 1); /* Non-secure view */
413     }
414 
415     if (irq < GIC_INTERNAL) {
416         s->priority1[irq][cpu] = val;
417     } else {
418         s->priority2[(irq) - GIC_INTERNAL] = val;
419     }
420 }
421 
422 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
423                                  MemTxAttrs attrs)
424 {
425     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
426 
427     if (s->security_extn && !attrs.secure) {
428         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
429             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
430         }
431         prio = (prio << 1) & 0xff; /* Non-secure view */
432     }
433     return prio;
434 }
435 
436 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
437                                   MemTxAttrs attrs)
438 {
439     if (s->security_extn && !attrs.secure) {
440         if (s->priority_mask[cpu] & 0x80) {
441             /* Priority Mask in upper half */
442             pmask = 0x80 | (pmask >> 1);
443         } else {
444             /* Non-secure write ignored if priority mask is in lower half */
445             return;
446         }
447     }
448     s->priority_mask[cpu] = pmask;
449 }
450 
451 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
452 {
453     uint32_t pmask = s->priority_mask[cpu];
454 
455     if (s->security_extn && !attrs.secure) {
456         if (pmask & 0x80) {
457             /* Priority Mask in upper half, return Non-secure view */
458             pmask = (pmask << 1) & 0xff;
459         } else {
460             /* Priority Mask in lower half, RAZ */
461             pmask = 0;
462         }
463     }
464     return pmask;
465 }
466 
467 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
468 {
469     uint32_t ret = s->cpu_ctlr[cpu];
470 
471     if (s->security_extn && !attrs.secure) {
472         /* Construct the NS banked view of GICC_CTLR from the correct
473          * bits of the S banked view. We don't need to move the bypass
474          * control bits because we don't implement that (IMPDEF) part
475          * of the GIC architecture.
476          */
477         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
478     }
479     return ret;
480 }
481 
482 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
483                                 MemTxAttrs attrs)
484 {
485     uint32_t mask;
486 
487     if (s->security_extn && !attrs.secure) {
488         /* The NS view can only write certain bits in the register;
489          * the rest are unchanged
490          */
491         mask = GICC_CTLR_EN_GRP1;
492         if (s->revision == 2) {
493             mask |= GICC_CTLR_EOIMODE_NS;
494         }
495         s->cpu_ctlr[cpu] &= ~mask;
496         s->cpu_ctlr[cpu] |= (value << 1) & mask;
497     } else {
498         if (s->revision == 2) {
499             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
500         } else {
501             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
502         }
503         s->cpu_ctlr[cpu] = value & mask;
504     }
505     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
506             "Group1 Interrupts %sabled\n", cpu,
507             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
508             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
509 }
510 
511 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
512 {
513     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
514         /* Idle priority */
515         return 0xff;
516     }
517 
518     if (s->security_extn && !attrs.secure) {
519         if (s->running_priority[cpu] & 0x80) {
520             /* Running priority in upper half of range: return the Non-secure
521              * view of the priority.
522              */
523             return s->running_priority[cpu] << 1;
524         } else {
525             /* Running priority in lower half of range: RAZ */
526             return 0;
527         }
528     } else {
529         return s->running_priority[cpu];
530     }
531 }
532 
533 /* Return true if we should split priority drop and interrupt deactivation,
534  * ie whether the relevant EOIMode bit is set.
535  */
536 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
537 {
538     if (s->revision != 2) {
539         /* Before GICv2 prio-drop and deactivate are not separable */
540         return false;
541     }
542     if (s->security_extn && !attrs.secure) {
543         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
544     }
545     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
546 }
547 
548 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
549 {
550     int cm = 1 << cpu;
551     int group;
552 
553     if (irq >= s->num_irq) {
554         /*
555          * This handles two cases:
556          * 1. If software writes the ID of a spurious interrupt [ie 1023]
557          * to the GICC_DIR, the GIC ignores that write.
558          * 2. If software writes the number of a non-existent interrupt
559          * this must be a subcase of "value written is not an active interrupt"
560          * and so this is UNPREDICTABLE. We choose to ignore it.
561          */
562         return;
563     }
564 
565     group = gic_has_groups(s) && GIC_DIST_TEST_GROUP(irq, cm);
566 
567     if (!gic_eoi_split(s, cpu, attrs)) {
568         /* This is UNPREDICTABLE; we choose to ignore it */
569         qemu_log_mask(LOG_GUEST_ERROR,
570                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
571         return;
572     }
573 
574     if (s->security_extn && !attrs.secure && !group) {
575         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
576         return;
577     }
578 
579     GIC_DIST_CLEAR_ACTIVE(irq, cm);
580 }
581 
582 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
583 {
584     int cm = 1 << cpu;
585     int group;
586 
587     DPRINTF("EOI %d\n", irq);
588     if (irq >= s->num_irq) {
589         /* This handles two cases:
590          * 1. If software writes the ID of a spurious interrupt [ie 1023]
591          * to the GICC_EOIR, the GIC ignores that write.
592          * 2. If software writes the number of a non-existent interrupt
593          * this must be a subcase of "value written does not match the last
594          * valid interrupt value read from the Interrupt Acknowledge
595          * register" and so this is UNPREDICTABLE. We choose to ignore it.
596          */
597         return;
598     }
599     if (s->running_priority[cpu] == 0x100) {
600         return; /* No active IRQ.  */
601     }
602 
603     if (s->revision == REV_11MPCORE) {
604         /* Mark level triggered interrupts as pending if they are still
605            raised.  */
606         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
607             && GIC_DIST_TEST_LEVEL(irq, cm)
608             && (GIC_DIST_TARGET(irq) & cm) != 0) {
609             DPRINTF("Set %d pending mask %x\n", irq, cm);
610             GIC_DIST_SET_PENDING(irq, cm);
611         }
612     }
613 
614     group = gic_has_groups(s) && GIC_DIST_TEST_GROUP(irq, cm);
615 
616     if (s->security_extn && !attrs.secure && !group) {
617         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
618         return;
619     }
620 
621     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
622      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
623      * i.e. go ahead and complete the irq anyway.
624      */
625 
626     gic_drop_prio(s, cpu, group);
627 
628     /* In GICv2 the guest can choose to split priority-drop and deactivate */
629     if (!gic_eoi_split(s, cpu, attrs)) {
630         GIC_DIST_CLEAR_ACTIVE(irq, cm);
631     }
632     gic_update(s);
633 }
634 
635 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
636 {
637     GICState *s = (GICState *)opaque;
638     uint32_t res;
639     int irq;
640     int i;
641     int cpu;
642     int cm;
643     int mask;
644 
645     cpu = gic_get_current_cpu(s);
646     cm = 1 << cpu;
647     if (offset < 0x100) {
648         if (offset == 0) {      /* GICD_CTLR */
649             if (s->security_extn && !attrs.secure) {
650                 /* The NS bank of this register is just an alias of the
651                  * EnableGrp1 bit in the S bank version.
652                  */
653                 return extract32(s->ctlr, 1, 1);
654             } else {
655                 return s->ctlr;
656             }
657         }
658         if (offset == 4)
659             /* Interrupt Controller Type Register */
660             return ((s->num_irq / 32) - 1)
661                     | ((s->num_cpu - 1) << 5)
662                     | (s->security_extn << 10);
663         if (offset < 0x08)
664             return 0;
665         if (offset >= 0x80) {
666             /* Interrupt Group Registers: these RAZ/WI if this is an NS
667              * access to a GIC with the security extensions, or if the GIC
668              * doesn't have groups at all.
669              */
670             res = 0;
671             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
672                 /* Every byte offset holds 8 group status bits */
673                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
674                 if (irq >= s->num_irq) {
675                     goto bad_reg;
676                 }
677                 for (i = 0; i < 8; i++) {
678                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
679                         res |= (1 << i);
680                     }
681                 }
682             }
683             return res;
684         }
685         goto bad_reg;
686     } else if (offset < 0x200) {
687         /* Interrupt Set/Clear Enable.  */
688         if (offset < 0x180)
689             irq = (offset - 0x100) * 8;
690         else
691             irq = (offset - 0x180) * 8;
692         irq += GIC_BASE_IRQ;
693         if (irq >= s->num_irq)
694             goto bad_reg;
695         res = 0;
696         for (i = 0; i < 8; i++) {
697             if (s->security_extn && !attrs.secure &&
698                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
699                 continue; /* Ignore Non-secure access of Group0 IRQ */
700             }
701 
702             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
703                 res |= (1 << i);
704             }
705         }
706     } else if (offset < 0x300) {
707         /* Interrupt Set/Clear Pending.  */
708         if (offset < 0x280)
709             irq = (offset - 0x200) * 8;
710         else
711             irq = (offset - 0x280) * 8;
712         irq += GIC_BASE_IRQ;
713         if (irq >= s->num_irq)
714             goto bad_reg;
715         res = 0;
716         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
717         for (i = 0; i < 8; i++) {
718             if (s->security_extn && !attrs.secure &&
719                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
720                 continue; /* Ignore Non-secure access of Group0 IRQ */
721             }
722 
723             if (gic_test_pending(s, irq + i, mask)) {
724                 res |= (1 << i);
725             }
726         }
727     } else if (offset < 0x400) {
728         /* Interrupt Set/Clear Active.  */
729         if (offset < 0x380) {
730             irq = (offset - 0x300) * 8;
731         } else if (s->revision == 2) {
732             irq = (offset - 0x380) * 8;
733         } else {
734             goto bad_reg;
735         }
736 
737         irq += GIC_BASE_IRQ;
738         if (irq >= s->num_irq)
739             goto bad_reg;
740         res = 0;
741         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
742         for (i = 0; i < 8; i++) {
743             if (s->security_extn && !attrs.secure &&
744                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
745                 continue; /* Ignore Non-secure access of Group0 IRQ */
746             }
747 
748             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
749                 res |= (1 << i);
750             }
751         }
752     } else if (offset < 0x800) {
753         /* Interrupt Priority.  */
754         irq = (offset - 0x400) + GIC_BASE_IRQ;
755         if (irq >= s->num_irq)
756             goto bad_reg;
757         res = gic_dist_get_priority(s, cpu, irq, attrs);
758     } else if (offset < 0xc00) {
759         /* Interrupt CPU Target.  */
760         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
761             /* For uniprocessor GICs these RAZ/WI */
762             res = 0;
763         } else {
764             irq = (offset - 0x800) + GIC_BASE_IRQ;
765             if (irq >= s->num_irq) {
766                 goto bad_reg;
767             }
768             if (irq < 29 && s->revision == REV_11MPCORE) {
769                 res = 0;
770             } else if (irq < GIC_INTERNAL) {
771                 res = cm;
772             } else {
773                 res = GIC_DIST_TARGET(irq);
774             }
775         }
776     } else if (offset < 0xf00) {
777         /* Interrupt Configuration.  */
778         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
779         if (irq >= s->num_irq)
780             goto bad_reg;
781         res = 0;
782         for (i = 0; i < 4; i++) {
783             if (s->security_extn && !attrs.secure &&
784                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
785                 continue; /* Ignore Non-secure access of Group0 IRQ */
786             }
787 
788             if (GIC_DIST_TEST_MODEL(irq + i)) {
789                 res |= (1 << (i * 2));
790             }
791             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
792                 res |= (2 << (i * 2));
793             }
794         }
795     } else if (offset < 0xf10) {
796         goto bad_reg;
797     } else if (offset < 0xf30) {
798         if (s->revision == REV_11MPCORE) {
799             goto bad_reg;
800         }
801 
802         if (offset < 0xf20) {
803             /* GICD_CPENDSGIRn */
804             irq = (offset - 0xf10);
805         } else {
806             irq = (offset - 0xf20);
807             /* GICD_SPENDSGIRn */
808         }
809 
810         if (s->security_extn && !attrs.secure &&
811             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
812             res = 0; /* Ignore Non-secure access of Group0 IRQ */
813         } else {
814             res = s->sgi_pending[irq][cpu];
815         }
816     } else if (offset < 0xfd0) {
817         goto bad_reg;
818     } else if (offset < 0x1000) {
819         if (offset & 3) {
820             res = 0;
821         } else {
822             switch (s->revision) {
823             case REV_11MPCORE:
824                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
825                 break;
826             case 1:
827                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
828                 break;
829             case 2:
830                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
831                 break;
832             default:
833                 res = 0;
834             }
835         }
836     } else {
837         g_assert_not_reached();
838     }
839     return res;
840 bad_reg:
841     qemu_log_mask(LOG_GUEST_ERROR,
842                   "gic_dist_readb: Bad offset %x\n", (int)offset);
843     return 0;
844 }
845 
846 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
847                                  unsigned size, MemTxAttrs attrs)
848 {
849     switch (size) {
850     case 1:
851         *data = gic_dist_readb(opaque, offset, attrs);
852         return MEMTX_OK;
853     case 2:
854         *data = gic_dist_readb(opaque, offset, attrs);
855         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
856         return MEMTX_OK;
857     case 4:
858         *data = gic_dist_readb(opaque, offset, attrs);
859         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
860         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
861         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
862         return MEMTX_OK;
863     default:
864         return MEMTX_ERROR;
865     }
866 }
867 
868 static void gic_dist_writeb(void *opaque, hwaddr offset,
869                             uint32_t value, MemTxAttrs attrs)
870 {
871     GICState *s = (GICState *)opaque;
872     int irq;
873     int i;
874     int cpu;
875 
876     cpu = gic_get_current_cpu(s);
877     if (offset < 0x100) {
878         if (offset == 0) {
879             if (s->security_extn && !attrs.secure) {
880                 /* NS version is just an alias of the S version's bit 1 */
881                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
882             } else if (gic_has_groups(s)) {
883                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
884             } else {
885                 s->ctlr = value & GICD_CTLR_EN_GRP0;
886             }
887             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
888                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
889                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
890         } else if (offset < 4) {
891             /* ignored.  */
892         } else if (offset >= 0x80) {
893             /* Interrupt Group Registers: RAZ/WI for NS access to secure
894              * GIC, or for GICs without groups.
895              */
896             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
897                 /* Every byte offset holds 8 group status bits */
898                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
899                 if (irq >= s->num_irq) {
900                     goto bad_reg;
901                 }
902                 for (i = 0; i < 8; i++) {
903                     /* Group bits are banked for private interrupts */
904                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
905                     if (value & (1 << i)) {
906                         /* Group1 (Non-secure) */
907                         GIC_DIST_SET_GROUP(irq + i, cm);
908                     } else {
909                         /* Group0 (Secure) */
910                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
911                     }
912                 }
913             }
914         } else {
915             goto bad_reg;
916         }
917     } else if (offset < 0x180) {
918         /* Interrupt Set Enable.  */
919         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
920         if (irq >= s->num_irq)
921             goto bad_reg;
922         if (irq < GIC_NR_SGIS) {
923             value = 0xff;
924         }
925 
926         for (i = 0; i < 8; i++) {
927             if (value & (1 << i)) {
928                 int mask =
929                     (irq < GIC_INTERNAL) ? (1 << cpu)
930                                          : GIC_DIST_TARGET(irq + i);
931                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
932 
933                 if (s->security_extn && !attrs.secure &&
934                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
935                     continue; /* Ignore Non-secure access of Group0 IRQ */
936                 }
937 
938                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
939                     DPRINTF("Enabled IRQ %d\n", irq + i);
940                     trace_gic_enable_irq(irq + i);
941                 }
942                 GIC_DIST_SET_ENABLED(irq + i, cm);
943                 /* If a raised level triggered IRQ enabled then mark
944                    is as pending.  */
945                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
946                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
947                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
948                     GIC_DIST_SET_PENDING(irq + i, mask);
949                 }
950             }
951         }
952     } else if (offset < 0x200) {
953         /* Interrupt Clear Enable.  */
954         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
955         if (irq >= s->num_irq)
956             goto bad_reg;
957         if (irq < GIC_NR_SGIS) {
958             value = 0;
959         }
960 
961         for (i = 0; i < 8; i++) {
962             if (value & (1 << i)) {
963                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
964 
965                 if (s->security_extn && !attrs.secure &&
966                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
967                     continue; /* Ignore Non-secure access of Group0 IRQ */
968                 }
969 
970                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
971                     DPRINTF("Disabled IRQ %d\n", irq + i);
972                     trace_gic_disable_irq(irq + i);
973                 }
974                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
975             }
976         }
977     } else if (offset < 0x280) {
978         /* Interrupt Set Pending.  */
979         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
980         if (irq >= s->num_irq)
981             goto bad_reg;
982         if (irq < GIC_NR_SGIS) {
983             value = 0;
984         }
985 
986         for (i = 0; i < 8; i++) {
987             if (value & (1 << i)) {
988                 if (s->security_extn && !attrs.secure &&
989                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
990                     continue; /* Ignore Non-secure access of Group0 IRQ */
991                 }
992 
993                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
994             }
995         }
996     } else if (offset < 0x300) {
997         /* Interrupt Clear Pending.  */
998         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
999         if (irq >= s->num_irq)
1000             goto bad_reg;
1001         if (irq < GIC_NR_SGIS) {
1002             value = 0;
1003         }
1004 
1005         for (i = 0; i < 8; i++) {
1006             if (s->security_extn && !attrs.secure &&
1007                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1008                 continue; /* Ignore Non-secure access of Group0 IRQ */
1009             }
1010 
1011             /* ??? This currently clears the pending bit for all CPUs, even
1012                for per-CPU interrupts.  It's unclear whether this is the
1013                corect behavior.  */
1014             if (value & (1 << i)) {
1015                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1016             }
1017         }
1018     } else if (offset < 0x380) {
1019         /* Interrupt Set Active.  */
1020         if (s->revision != 2) {
1021             goto bad_reg;
1022         }
1023 
1024         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
1025         if (irq >= s->num_irq) {
1026             goto bad_reg;
1027         }
1028 
1029         /* This register is banked per-cpu for PPIs */
1030         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1031 
1032         for (i = 0; i < 8; i++) {
1033             if (s->security_extn && !attrs.secure &&
1034                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1035                 continue; /* Ignore Non-secure access of Group0 IRQ */
1036             }
1037 
1038             if (value & (1 << i)) {
1039                 GIC_DIST_SET_ACTIVE(irq + i, cm);
1040             }
1041         }
1042     } else if (offset < 0x400) {
1043         /* Interrupt Clear Active.  */
1044         if (s->revision != 2) {
1045             goto bad_reg;
1046         }
1047 
1048         irq = (offset - 0x380) * 8 + GIC_BASE_IRQ;
1049         if (irq >= s->num_irq) {
1050             goto bad_reg;
1051         }
1052 
1053         /* This register is banked per-cpu for PPIs */
1054         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1055 
1056         for (i = 0; i < 8; i++) {
1057             if (s->security_extn && !attrs.secure &&
1058                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1059                 continue; /* Ignore Non-secure access of Group0 IRQ */
1060             }
1061 
1062             if (value & (1 << i)) {
1063                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1064             }
1065         }
1066     } else if (offset < 0x800) {
1067         /* Interrupt Priority.  */
1068         irq = (offset - 0x400) + GIC_BASE_IRQ;
1069         if (irq >= s->num_irq)
1070             goto bad_reg;
1071         gic_dist_set_priority(s, cpu, irq, value, attrs);
1072     } else if (offset < 0xc00) {
1073         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1074          * annoying exception of the 11MPCore's GIC.
1075          */
1076         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1077             irq = (offset - 0x800) + GIC_BASE_IRQ;
1078             if (irq >= s->num_irq) {
1079                 goto bad_reg;
1080             }
1081             if (irq < 29 && s->revision == REV_11MPCORE) {
1082                 value = 0;
1083             } else if (irq < GIC_INTERNAL) {
1084                 value = ALL_CPU_MASK;
1085             }
1086             s->irq_target[irq] = value & ALL_CPU_MASK;
1087         }
1088     } else if (offset < 0xf00) {
1089         /* Interrupt Configuration.  */
1090         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1091         if (irq >= s->num_irq)
1092             goto bad_reg;
1093         if (irq < GIC_NR_SGIS)
1094             value |= 0xaa;
1095         for (i = 0; i < 4; i++) {
1096             if (s->security_extn && !attrs.secure &&
1097                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1098                 continue; /* Ignore Non-secure access of Group0 IRQ */
1099             }
1100 
1101             if (s->revision == REV_11MPCORE) {
1102                 if (value & (1 << (i * 2))) {
1103                     GIC_DIST_SET_MODEL(irq + i);
1104                 } else {
1105                     GIC_DIST_CLEAR_MODEL(irq + i);
1106                 }
1107             }
1108             if (value & (2 << (i * 2))) {
1109                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1110             } else {
1111                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1112             }
1113         }
1114     } else if (offset < 0xf10) {
1115         /* 0xf00 is only handled for 32-bit writes.  */
1116         goto bad_reg;
1117     } else if (offset < 0xf20) {
1118         /* GICD_CPENDSGIRn */
1119         if (s->revision == REV_11MPCORE) {
1120             goto bad_reg;
1121         }
1122         irq = (offset - 0xf10);
1123 
1124         if (!s->security_extn || attrs.secure ||
1125             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1126             s->sgi_pending[irq][cpu] &= ~value;
1127             if (s->sgi_pending[irq][cpu] == 0) {
1128                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1129             }
1130         }
1131     } else if (offset < 0xf30) {
1132         /* GICD_SPENDSGIRn */
1133         if (s->revision == REV_11MPCORE) {
1134             goto bad_reg;
1135         }
1136         irq = (offset - 0xf20);
1137 
1138         if (!s->security_extn || attrs.secure ||
1139             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1140             GIC_DIST_SET_PENDING(irq, 1 << cpu);
1141             s->sgi_pending[irq][cpu] |= value;
1142         }
1143     } else {
1144         goto bad_reg;
1145     }
1146     gic_update(s);
1147     return;
1148 bad_reg:
1149     qemu_log_mask(LOG_GUEST_ERROR,
1150                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1151 }
1152 
1153 static void gic_dist_writew(void *opaque, hwaddr offset,
1154                             uint32_t value, MemTxAttrs attrs)
1155 {
1156     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1157     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1158 }
1159 
1160 static void gic_dist_writel(void *opaque, hwaddr offset,
1161                             uint32_t value, MemTxAttrs attrs)
1162 {
1163     GICState *s = (GICState *)opaque;
1164     if (offset == 0xf00) {
1165         int cpu;
1166         int irq;
1167         int mask;
1168         int target_cpu;
1169 
1170         cpu = gic_get_current_cpu(s);
1171         irq = value & 0x3ff;
1172         switch ((value >> 24) & 3) {
1173         case 0:
1174             mask = (value >> 16) & ALL_CPU_MASK;
1175             break;
1176         case 1:
1177             mask = ALL_CPU_MASK ^ (1 << cpu);
1178             break;
1179         case 2:
1180             mask = 1 << cpu;
1181             break;
1182         default:
1183             DPRINTF("Bad Soft Int target filter\n");
1184             mask = ALL_CPU_MASK;
1185             break;
1186         }
1187         GIC_DIST_SET_PENDING(irq, mask);
1188         target_cpu = ctz32(mask);
1189         while (target_cpu < GIC_NCPU) {
1190             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1191             mask &= ~(1 << target_cpu);
1192             target_cpu = ctz32(mask);
1193         }
1194         gic_update(s);
1195         return;
1196     }
1197     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1198     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1199 }
1200 
1201 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1202                                   unsigned size, MemTxAttrs attrs)
1203 {
1204     switch (size) {
1205     case 1:
1206         gic_dist_writeb(opaque, offset, data, attrs);
1207         return MEMTX_OK;
1208     case 2:
1209         gic_dist_writew(opaque, offset, data, attrs);
1210         return MEMTX_OK;
1211     case 4:
1212         gic_dist_writel(opaque, offset, data, attrs);
1213         return MEMTX_OK;
1214     default:
1215         return MEMTX_ERROR;
1216     }
1217 }
1218 
1219 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1220 {
1221     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1222      * second half of GICC_NSAPR.
1223      */
1224     switch (GIC_MIN_BPR) {
1225     case 0:
1226         if (regno < 2) {
1227             return s->nsapr[regno + 2][cpu];
1228         }
1229         break;
1230     case 1:
1231         if (regno == 0) {
1232             return s->nsapr[regno + 1][cpu];
1233         }
1234         break;
1235     case 2:
1236         if (regno == 0) {
1237             return extract32(s->nsapr[0][cpu], 16, 16);
1238         }
1239         break;
1240     case 3:
1241         if (regno == 0) {
1242             return extract32(s->nsapr[0][cpu], 8, 8);
1243         }
1244         break;
1245     default:
1246         g_assert_not_reached();
1247     }
1248     return 0;
1249 }
1250 
1251 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1252                                          uint32_t value)
1253 {
1254     /* Write the Nonsecure view of GICC_APR<regno>. */
1255     switch (GIC_MIN_BPR) {
1256     case 0:
1257         if (regno < 2) {
1258             s->nsapr[regno + 2][cpu] = value;
1259         }
1260         break;
1261     case 1:
1262         if (regno == 0) {
1263             s->nsapr[regno + 1][cpu] = value;
1264         }
1265         break;
1266     case 2:
1267         if (regno == 0) {
1268             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1269         }
1270         break;
1271     case 3:
1272         if (regno == 0) {
1273             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1274         }
1275         break;
1276     default:
1277         g_assert_not_reached();
1278     }
1279 }
1280 
1281 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1282                                 uint64_t *data, MemTxAttrs attrs)
1283 {
1284     switch (offset) {
1285     case 0x00: /* Control */
1286         *data = gic_get_cpu_control(s, cpu, attrs);
1287         break;
1288     case 0x04: /* Priority mask */
1289         *data = gic_get_priority_mask(s, cpu, attrs);
1290         break;
1291     case 0x08: /* Binary Point */
1292         if (s->security_extn && !attrs.secure) {
1293             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1294                 /* NS view of BPR when CBPR is 1 */
1295                 *data = MIN(s->bpr[cpu] + 1, 7);
1296             } else {
1297                 /* BPR is banked. Non-secure copy stored in ABPR. */
1298                 *data = s->abpr[cpu];
1299             }
1300         } else {
1301             *data = s->bpr[cpu];
1302         }
1303         break;
1304     case 0x0c: /* Acknowledge */
1305         *data = gic_acknowledge_irq(s, cpu, attrs);
1306         break;
1307     case 0x14: /* Running Priority */
1308         *data = gic_get_running_priority(s, cpu, attrs);
1309         break;
1310     case 0x18: /* Highest Pending Interrupt */
1311         *data = gic_get_current_pending_irq(s, cpu, attrs);
1312         break;
1313     case 0x1c: /* Aliased Binary Point */
1314         /* GIC v2, no security: ABPR
1315          * GIC v1, no security: not implemented (RAZ/WI)
1316          * With security extensions, secure access: ABPR (alias of NS BPR)
1317          * With security extensions, nonsecure access: RAZ/WI
1318          */
1319         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1320             *data = 0;
1321         } else {
1322             *data = s->abpr[cpu];
1323         }
1324         break;
1325     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1326     {
1327         int regno = (offset - 0xd0) / 4;
1328 
1329         if (regno >= GIC_NR_APRS || s->revision != 2) {
1330             *data = 0;
1331         } else if (s->security_extn && !attrs.secure) {
1332             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1333             *data = gic_apr_ns_view(s, regno, cpu);
1334         } else {
1335             *data = s->apr[regno][cpu];
1336         }
1337         break;
1338     }
1339     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1340     {
1341         int regno = (offset - 0xe0) / 4;
1342 
1343         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1344             (s->security_extn && !attrs.secure)) {
1345             *data = 0;
1346         } else {
1347             *data = s->nsapr[regno][cpu];
1348         }
1349         break;
1350     }
1351     default:
1352         qemu_log_mask(LOG_GUEST_ERROR,
1353                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1354         *data = 0;
1355         break;
1356     }
1357     return MEMTX_OK;
1358 }
1359 
1360 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1361                                  uint32_t value, MemTxAttrs attrs)
1362 {
1363     switch (offset) {
1364     case 0x00: /* Control */
1365         gic_set_cpu_control(s, cpu, value, attrs);
1366         break;
1367     case 0x04: /* Priority mask */
1368         gic_set_priority_mask(s, cpu, value, attrs);
1369         break;
1370     case 0x08: /* Binary Point */
1371         if (s->security_extn && !attrs.secure) {
1372             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1373                 /* WI when CBPR is 1 */
1374                 return MEMTX_OK;
1375             } else {
1376                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1377             }
1378         } else {
1379             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1380         }
1381         break;
1382     case 0x10: /* End Of Interrupt */
1383         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1384         return MEMTX_OK;
1385     case 0x1c: /* Aliased Binary Point */
1386         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1387             /* unimplemented, or NS access: RAZ/WI */
1388             return MEMTX_OK;
1389         } else {
1390             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1391         }
1392         break;
1393     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1394     {
1395         int regno = (offset - 0xd0) / 4;
1396 
1397         if (regno >= GIC_NR_APRS || s->revision != 2) {
1398             return MEMTX_OK;
1399         }
1400         if (s->security_extn && !attrs.secure) {
1401             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1402             gic_apr_write_ns_view(s, regno, cpu, value);
1403         } else {
1404             s->apr[regno][cpu] = value;
1405         }
1406         break;
1407     }
1408     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1409     {
1410         int regno = (offset - 0xe0) / 4;
1411 
1412         if (regno >= GIC_NR_APRS || s->revision != 2) {
1413             return MEMTX_OK;
1414         }
1415         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1416             return MEMTX_OK;
1417         }
1418         s->nsapr[regno][cpu] = value;
1419         break;
1420     }
1421     case 0x1000:
1422         /* GICC_DIR */
1423         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1424         break;
1425     default:
1426         qemu_log_mask(LOG_GUEST_ERROR,
1427                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1428         return MEMTX_OK;
1429     }
1430     gic_update(s);
1431     return MEMTX_OK;
1432 }
1433 
1434 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1435 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1436                                     unsigned size, MemTxAttrs attrs)
1437 {
1438     GICState *s = (GICState *)opaque;
1439     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1440 }
1441 
1442 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1443                                      uint64_t value, unsigned size,
1444                                      MemTxAttrs attrs)
1445 {
1446     GICState *s = (GICState *)opaque;
1447     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1448 }
1449 
1450 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1451  * These just decode the opaque pointer into GICState* + cpu id.
1452  */
1453 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1454                                    unsigned size, MemTxAttrs attrs)
1455 {
1456     GICState **backref = (GICState **)opaque;
1457     GICState *s = *backref;
1458     int id = (backref - s->backref);
1459     return gic_cpu_read(s, id, addr, data, attrs);
1460 }
1461 
1462 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1463                                     uint64_t value, unsigned size,
1464                                     MemTxAttrs attrs)
1465 {
1466     GICState **backref = (GICState **)opaque;
1467     GICState *s = *backref;
1468     int id = (backref - s->backref);
1469     return gic_cpu_write(s, id, addr, value, attrs);
1470 }
1471 
1472 static const MemoryRegionOps gic_ops[2] = {
1473     {
1474         .read_with_attrs = gic_dist_read,
1475         .write_with_attrs = gic_dist_write,
1476         .endianness = DEVICE_NATIVE_ENDIAN,
1477     },
1478     {
1479         .read_with_attrs = gic_thiscpu_read,
1480         .write_with_attrs = gic_thiscpu_write,
1481         .endianness = DEVICE_NATIVE_ENDIAN,
1482     }
1483 };
1484 
1485 static const MemoryRegionOps gic_cpu_ops = {
1486     .read_with_attrs = gic_do_cpu_read,
1487     .write_with_attrs = gic_do_cpu_write,
1488     .endianness = DEVICE_NATIVE_ENDIAN,
1489 };
1490 
1491 /* This function is used by nvic model */
1492 void gic_init_irqs_and_distributor(GICState *s)
1493 {
1494     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1495 }
1496 
1497 static void arm_gic_realize(DeviceState *dev, Error **errp)
1498 {
1499     /* Device instance realize function for the GIC sysbus device */
1500     int i;
1501     GICState *s = ARM_GIC(dev);
1502     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1503     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1504     Error *local_err = NULL;
1505 
1506     agc->parent_realize(dev, &local_err);
1507     if (local_err) {
1508         error_propagate(errp, local_err);
1509         return;
1510     }
1511 
1512     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1513         error_setg(errp, "KVM with user space irqchip only works when the "
1514                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
1515         return;
1516     }
1517 
1518     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1519     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1520 
1521     /* Extra core-specific regions for the CPU interfaces. This is
1522      * necessary for "franken-GIC" implementations, for example on
1523      * Exynos 4.
1524      * NB that the memory region size of 0x100 applies for the 11MPCore
1525      * and also cores following the GIC v1 spec (ie A9).
1526      * GIC v2 defines a larger memory region (0x1000) so this will need
1527      * to be extended when we implement A15.
1528      */
1529     for (i = 0; i < s->num_cpu; i++) {
1530         s->backref[i] = s;
1531         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1532                               &s->backref[i], "gic_cpu", 0x100);
1533         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1534     }
1535 }
1536 
1537 static void arm_gic_class_init(ObjectClass *klass, void *data)
1538 {
1539     DeviceClass *dc = DEVICE_CLASS(klass);
1540     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1541 
1542     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1543 }
1544 
1545 static const TypeInfo arm_gic_info = {
1546     .name = TYPE_ARM_GIC,
1547     .parent = TYPE_ARM_GIC_COMMON,
1548     .instance_size = sizeof(GICState),
1549     .class_init = arm_gic_class_init,
1550     .class_size = sizeof(ARMGICClass),
1551 };
1552 
1553 static void arm_gic_register_types(void)
1554 {
1555     type_register_static(&arm_gic_info);
1556 }
1557 
1558 type_init(arm_gic_register_types)
1559