xref: /openbmc/qemu/hw/intc/arm_gic.c (revision 083fab02)
1 /*
2  * ARM Generic/Distributed Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* This file contains implementation code for the RealView EB interrupt
11  * controller, MPCore distributed interrupt controller and ARMv7-M
12  * Nested Vectored Interrupt Controller.
13  * It is compiled in two ways:
14  *  (1) as a standalone file to produce a sysbus device which is a GIC
15  *  that can be used on the realview board and as one of the builtin
16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17  *  (2) by being directly #included into armv7m_nvic.c to produce the
18  *  armv7m_nvic device.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
29 
30 /* #define DEBUG_GIC */
31 
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
37 
38 #define DPRINTF(fmt, ...) do {                                          \
39         if (DEBUG_GIC_GATE) {                                           \
40             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
41         }                                                               \
42     } while (0)
43 
44 static const uint8_t gic_id_11mpcore[] = {
45     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46 };
47 
48 static const uint8_t gic_id_gicv1[] = {
49     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 };
51 
52 static const uint8_t gic_id_gicv2[] = {
53     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 };
55 
56 static inline int gic_get_current_cpu(GICState *s)
57 {
58     if (s->num_cpu > 1) {
59         return current_cpu->cpu_index;
60     }
61     return 0;
62 }
63 
64 /* Return true if this GIC config has interrupt groups, which is
65  * true if we're a GICv2, or a GICv1 with the security extensions.
66  */
67 static inline bool gic_has_groups(GICState *s)
68 {
69     return s->revision == 2 || s->security_extn;
70 }
71 
72 /* TODO: Many places that call this routine could be optimized.  */
73 /* Update interrupt status after enabled or pending bits have been changed.  */
74 void gic_update(GICState *s)
75 {
76     int best_irq;
77     int best_prio;
78     int irq;
79     int irq_level, fiq_level;
80     int cpu;
81     int cm;
82 
83     for (cpu = 0; cpu < s->num_cpu; cpu++) {
84         cm = 1 << cpu;
85         s->current_pending[cpu] = 1023;
86         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
87             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
88             qemu_irq_lower(s->parent_irq[cpu]);
89             qemu_irq_lower(s->parent_fiq[cpu]);
90             continue;
91         }
92         best_prio = 0x100;
93         best_irq = 1023;
94         for (irq = 0; irq < s->num_irq; irq++) {
95             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
97                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
98                     best_prio = GIC_GET_PRIORITY(irq, cpu);
99                     best_irq = irq;
100                 }
101             }
102         }
103 
104         if (best_irq != 1023) {
105             trace_gic_update_bestirq(cpu, best_irq, best_prio,
106                 s->priority_mask[cpu], s->running_priority[cpu]);
107         }
108 
109         irq_level = fiq_level = 0;
110 
111         if (best_prio < s->priority_mask[cpu]) {
112             s->current_pending[cpu] = best_irq;
113             if (best_prio < s->running_priority[cpu]) {
114                 int group = GIC_TEST_GROUP(best_irq, cm);
115 
116                 if (extract32(s->ctlr, group, 1) &&
117                     extract32(s->cpu_ctlr[cpu], group, 1)) {
118                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
119                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
120                                 best_irq, cpu);
121                         fiq_level = 1;
122                         trace_gic_update_set_irq(cpu, "fiq", fiq_level);
123                     } else {
124                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
125                                 best_irq, cpu);
126                         irq_level = 1;
127                         trace_gic_update_set_irq(cpu, "irq", irq_level);
128                     }
129                 }
130             }
131         }
132 
133         qemu_set_irq(s->parent_irq[cpu], irq_level);
134         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
135     }
136 }
137 
138 void gic_set_pending_private(GICState *s, int cpu, int irq)
139 {
140     int cm = 1 << cpu;
141 
142     if (gic_test_pending(s, irq, cm)) {
143         return;
144     }
145 
146     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
147     GIC_SET_PENDING(irq, cm);
148     gic_update(s);
149 }
150 
151 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
152                                  int cm, int target)
153 {
154     if (level) {
155         GIC_SET_LEVEL(irq, cm);
156         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
157             DPRINTF("Set %d pending mask %x\n", irq, target);
158             GIC_SET_PENDING(irq, target);
159         }
160     } else {
161         GIC_CLEAR_LEVEL(irq, cm);
162     }
163 }
164 
165 static void gic_set_irq_generic(GICState *s, int irq, int level,
166                                 int cm, int target)
167 {
168     if (level) {
169         GIC_SET_LEVEL(irq, cm);
170         DPRINTF("Set %d pending mask %x\n", irq, target);
171         if (GIC_TEST_EDGE_TRIGGER(irq)) {
172             GIC_SET_PENDING(irq, target);
173         }
174     } else {
175         GIC_CLEAR_LEVEL(irq, cm);
176     }
177 }
178 
179 /* Process a change in an external IRQ input.  */
180 static void gic_set_irq(void *opaque, int irq, int level)
181 {
182     /* Meaning of the 'irq' parameter:
183      *  [0..N-1] : external interrupts
184      *  [N..N+31] : PPI (internal) interrupts for CPU 0
185      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
186      *  ...
187      */
188     GICState *s = (GICState *)opaque;
189     int cm, target;
190     if (irq < (s->num_irq - GIC_INTERNAL)) {
191         /* The first external input line is internal interrupt 32.  */
192         cm = ALL_CPU_MASK;
193         irq += GIC_INTERNAL;
194         target = GIC_TARGET(irq);
195     } else {
196         int cpu;
197         irq -= (s->num_irq - GIC_INTERNAL);
198         cpu = irq / GIC_INTERNAL;
199         irq %= GIC_INTERNAL;
200         cm = 1 << cpu;
201         target = cm;
202     }
203 
204     assert(irq >= GIC_NR_SGIS);
205 
206     if (level == GIC_TEST_LEVEL(irq, cm)) {
207         return;
208     }
209 
210     if (s->revision == REV_11MPCORE) {
211         gic_set_irq_11mpcore(s, irq, level, cm, target);
212     } else {
213         gic_set_irq_generic(s, irq, level, cm, target);
214     }
215     trace_gic_set_irq(irq, level, cm, target);
216 
217     gic_update(s);
218 }
219 
220 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
221                                             MemTxAttrs attrs)
222 {
223     uint16_t pending_irq = s->current_pending[cpu];
224 
225     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
226         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
227         /* On a GIC without the security extensions, reading this register
228          * behaves in the same way as a secure access to a GIC with them.
229          */
230         bool secure = !s->security_extn || attrs.secure;
231 
232         if (group == 0 && !secure) {
233             /* Group0 interrupts hidden from Non-secure access */
234             return 1023;
235         }
236         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
237             /* Group1 interrupts only seen by Secure access if
238              * AckCtl bit set.
239              */
240             return 1022;
241         }
242     }
243     return pending_irq;
244 }
245 
246 static int gic_get_group_priority(GICState *s, int cpu, int irq)
247 {
248     /* Return the group priority of the specified interrupt
249      * (which is the top bits of its priority, with the number
250      * of bits masked determined by the applicable binary point register).
251      */
252     int bpr;
253     uint32_t mask;
254 
255     if (gic_has_groups(s) &&
256         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
257         GIC_TEST_GROUP(irq, (1 << cpu))) {
258         bpr = s->abpr[cpu];
259     } else {
260         bpr = s->bpr[cpu];
261     }
262 
263     /* a BPR of 0 means the group priority bits are [7:1];
264      * a BPR of 1 means they are [7:2], and so on down to
265      * a BPR of 7 meaning no group priority bits at all.
266      */
267     mask = ~0U << ((bpr & 7) + 1);
268 
269     return GIC_GET_PRIORITY(irq, cpu) & mask;
270 }
271 
272 static void gic_activate_irq(GICState *s, int cpu, int irq)
273 {
274     /* Set the appropriate Active Priority Register bit for this IRQ,
275      * and update the running priority.
276      */
277     int prio = gic_get_group_priority(s, cpu, irq);
278     int preemption_level = prio >> (GIC_MIN_BPR + 1);
279     int regno = preemption_level / 32;
280     int bitno = preemption_level % 32;
281 
282     if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
283         s->nsapr[regno][cpu] |= (1 << bitno);
284     } else {
285         s->apr[regno][cpu] |= (1 << bitno);
286     }
287 
288     s->running_priority[cpu] = prio;
289     GIC_SET_ACTIVE(irq, 1 << cpu);
290 }
291 
292 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
293 {
294     /* Recalculate the current running priority for this CPU based
295      * on the set bits in the Active Priority Registers.
296      */
297     int i;
298     for (i = 0; i < GIC_NR_APRS; i++) {
299         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
300         if (!apr) {
301             continue;
302         }
303         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
304     }
305     return 0x100;
306 }
307 
308 static void gic_drop_prio(GICState *s, int cpu, int group)
309 {
310     /* Drop the priority of the currently active interrupt in the
311      * specified group.
312      *
313      * Note that we can guarantee (because of the requirement to nest
314      * GICC_IAR reads [which activate an interrupt and raise priority]
315      * with GICC_EOIR writes [which drop the priority for the interrupt])
316      * that the interrupt we're being called for is the highest priority
317      * active interrupt, meaning that it has the lowest set bit in the
318      * APR registers.
319      *
320      * If the guest does not honour the ordering constraints then the
321      * behaviour of the GIC is UNPREDICTABLE, which for us means that
322      * the values of the APR registers might become incorrect and the
323      * running priority will be wrong, so interrupts that should preempt
324      * might not do so, and interrupts that should not preempt might do so.
325      */
326     int i;
327 
328     for (i = 0; i < GIC_NR_APRS; i++) {
329         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
330         if (!*papr) {
331             continue;
332         }
333         /* Clear lowest set bit */
334         *papr &= *papr - 1;
335         break;
336     }
337 
338     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
339 }
340 
341 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
342 {
343     int ret, irq, src;
344     int cm = 1 << cpu;
345 
346     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
347      * for the case where this GIC supports grouping and the pending interrupt
348      * is in the wrong group.
349      */
350     irq = gic_get_current_pending_irq(s, cpu, attrs);
351     trace_gic_acknowledge_irq(cpu, irq);
352 
353     if (irq >= GIC_MAXIRQ) {
354         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
355         return irq;
356     }
357 
358     if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
359         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
360         return 1023;
361     }
362 
363     if (s->revision == REV_11MPCORE) {
364         /* Clear pending flags for both level and edge triggered interrupts.
365          * Level triggered IRQs will be reasserted once they become inactive.
366          */
367         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
368         ret = irq;
369     } else {
370         if (irq < GIC_NR_SGIS) {
371             /* Lookup the source CPU for the SGI and clear this in the
372              * sgi_pending map.  Return the src and clear the overall pending
373              * state on this CPU if the SGI is not pending from any CPUs.
374              */
375             assert(s->sgi_pending[irq][cpu] != 0);
376             src = ctz32(s->sgi_pending[irq][cpu]);
377             s->sgi_pending[irq][cpu] &= ~(1 << src);
378             if (s->sgi_pending[irq][cpu] == 0) {
379                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
380             }
381             ret = irq | ((src & 0x7) << 10);
382         } else {
383             /* Clear pending state for both level and edge triggered
384              * interrupts. (level triggered interrupts with an active line
385              * remain pending, see gic_test_pending)
386              */
387             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
388             ret = irq;
389         }
390     }
391 
392     gic_activate_irq(s, cpu, irq);
393     gic_update(s);
394     DPRINTF("ACK %d\n", irq);
395     return ret;
396 }
397 
398 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
399                       MemTxAttrs attrs)
400 {
401     if (s->security_extn && !attrs.secure) {
402         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
403             return; /* Ignore Non-secure access of Group0 IRQ */
404         }
405         val = 0x80 | (val >> 1); /* Non-secure view */
406     }
407 
408     if (irq < GIC_INTERNAL) {
409         s->priority1[irq][cpu] = val;
410     } else {
411         s->priority2[(irq) - GIC_INTERNAL] = val;
412     }
413 }
414 
415 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
416                                  MemTxAttrs attrs)
417 {
418     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
419 
420     if (s->security_extn && !attrs.secure) {
421         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
422             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
423         }
424         prio = (prio << 1) & 0xff; /* Non-secure view */
425     }
426     return prio;
427 }
428 
429 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
430                                   MemTxAttrs attrs)
431 {
432     if (s->security_extn && !attrs.secure) {
433         if (s->priority_mask[cpu] & 0x80) {
434             /* Priority Mask in upper half */
435             pmask = 0x80 | (pmask >> 1);
436         } else {
437             /* Non-secure write ignored if priority mask is in lower half */
438             return;
439         }
440     }
441     s->priority_mask[cpu] = pmask;
442 }
443 
444 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
445 {
446     uint32_t pmask = s->priority_mask[cpu];
447 
448     if (s->security_extn && !attrs.secure) {
449         if (pmask & 0x80) {
450             /* Priority Mask in upper half, return Non-secure view */
451             pmask = (pmask << 1) & 0xff;
452         } else {
453             /* Priority Mask in lower half, RAZ */
454             pmask = 0;
455         }
456     }
457     return pmask;
458 }
459 
460 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
461 {
462     uint32_t ret = s->cpu_ctlr[cpu];
463 
464     if (s->security_extn && !attrs.secure) {
465         /* Construct the NS banked view of GICC_CTLR from the correct
466          * bits of the S banked view. We don't need to move the bypass
467          * control bits because we don't implement that (IMPDEF) part
468          * of the GIC architecture.
469          */
470         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
471     }
472     return ret;
473 }
474 
475 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
476                                 MemTxAttrs attrs)
477 {
478     uint32_t mask;
479 
480     if (s->security_extn && !attrs.secure) {
481         /* The NS view can only write certain bits in the register;
482          * the rest are unchanged
483          */
484         mask = GICC_CTLR_EN_GRP1;
485         if (s->revision == 2) {
486             mask |= GICC_CTLR_EOIMODE_NS;
487         }
488         s->cpu_ctlr[cpu] &= ~mask;
489         s->cpu_ctlr[cpu] |= (value << 1) & mask;
490     } else {
491         if (s->revision == 2) {
492             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
493         } else {
494             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
495         }
496         s->cpu_ctlr[cpu] = value & mask;
497     }
498     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
499             "Group1 Interrupts %sabled\n", cpu,
500             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
501             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
502 }
503 
504 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
505 {
506     if (s->security_extn && !attrs.secure) {
507         if (s->running_priority[cpu] & 0x80) {
508             /* Running priority in upper half of range: return the Non-secure
509              * view of the priority.
510              */
511             return s->running_priority[cpu] << 1;
512         } else {
513             /* Running priority in lower half of range: RAZ */
514             return 0;
515         }
516     } else {
517         return s->running_priority[cpu];
518     }
519 }
520 
521 /* Return true if we should split priority drop and interrupt deactivation,
522  * ie whether the relevant EOIMode bit is set.
523  */
524 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
525 {
526     if (s->revision != 2) {
527         /* Before GICv2 prio-drop and deactivate are not separable */
528         return false;
529     }
530     if (s->security_extn && !attrs.secure) {
531         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
532     }
533     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
534 }
535 
536 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
537 {
538     int cm = 1 << cpu;
539     int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
540 
541     if (!gic_eoi_split(s, cpu, attrs)) {
542         /* This is UNPREDICTABLE; we choose to ignore it */
543         qemu_log_mask(LOG_GUEST_ERROR,
544                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
545         return;
546     }
547 
548     if (s->security_extn && !attrs.secure && !group) {
549         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
550         return;
551     }
552 
553     GIC_CLEAR_ACTIVE(irq, cm);
554 }
555 
556 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
557 {
558     int cm = 1 << cpu;
559     int group;
560 
561     DPRINTF("EOI %d\n", irq);
562     if (irq >= s->num_irq) {
563         /* This handles two cases:
564          * 1. If software writes the ID of a spurious interrupt [ie 1023]
565          * to the GICC_EOIR, the GIC ignores that write.
566          * 2. If software writes the number of a non-existent interrupt
567          * this must be a subcase of "value written does not match the last
568          * valid interrupt value read from the Interrupt Acknowledge
569          * register" and so this is UNPREDICTABLE. We choose to ignore it.
570          */
571         return;
572     }
573     if (s->running_priority[cpu] == 0x100) {
574         return; /* No active IRQ.  */
575     }
576 
577     if (s->revision == REV_11MPCORE) {
578         /* Mark level triggered interrupts as pending if they are still
579            raised.  */
580         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
581             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
582             DPRINTF("Set %d pending mask %x\n", irq, cm);
583             GIC_SET_PENDING(irq, cm);
584         }
585     }
586 
587     group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
588 
589     if (s->security_extn && !attrs.secure && !group) {
590         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
591         return;
592     }
593 
594     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
595      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
596      * i.e. go ahead and complete the irq anyway.
597      */
598 
599     gic_drop_prio(s, cpu, group);
600 
601     /* In GICv2 the guest can choose to split priority-drop and deactivate */
602     if (!gic_eoi_split(s, cpu, attrs)) {
603         GIC_CLEAR_ACTIVE(irq, cm);
604     }
605     gic_update(s);
606 }
607 
608 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
609 {
610     GICState *s = (GICState *)opaque;
611     uint32_t res;
612     int irq;
613     int i;
614     int cpu;
615     int cm;
616     int mask;
617 
618     cpu = gic_get_current_cpu(s);
619     cm = 1 << cpu;
620     if (offset < 0x100) {
621         if (offset == 0) {      /* GICD_CTLR */
622             if (s->security_extn && !attrs.secure) {
623                 /* The NS bank of this register is just an alias of the
624                  * EnableGrp1 bit in the S bank version.
625                  */
626                 return extract32(s->ctlr, 1, 1);
627             } else {
628                 return s->ctlr;
629             }
630         }
631         if (offset == 4)
632             /* Interrupt Controller Type Register */
633             return ((s->num_irq / 32) - 1)
634                     | ((s->num_cpu - 1) << 5)
635                     | (s->security_extn << 10);
636         if (offset < 0x08)
637             return 0;
638         if (offset >= 0x80) {
639             /* Interrupt Group Registers: these RAZ/WI if this is an NS
640              * access to a GIC with the security extensions, or if the GIC
641              * doesn't have groups at all.
642              */
643             res = 0;
644             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
645                 /* Every byte offset holds 8 group status bits */
646                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
647                 if (irq >= s->num_irq) {
648                     goto bad_reg;
649                 }
650                 for (i = 0; i < 8; i++) {
651                     if (GIC_TEST_GROUP(irq + i, cm)) {
652                         res |= (1 << i);
653                     }
654                 }
655             }
656             return res;
657         }
658         goto bad_reg;
659     } else if (offset < 0x200) {
660         /* Interrupt Set/Clear Enable.  */
661         if (offset < 0x180)
662             irq = (offset - 0x100) * 8;
663         else
664             irq = (offset - 0x180) * 8;
665         irq += GIC_BASE_IRQ;
666         if (irq >= s->num_irq)
667             goto bad_reg;
668         res = 0;
669         for (i = 0; i < 8; i++) {
670             if (s->security_extn && !attrs.secure &&
671                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
672                 continue; /* Ignore Non-secure access of Group0 IRQ */
673             }
674 
675             if (GIC_TEST_ENABLED(irq + i, cm)) {
676                 res |= (1 << i);
677             }
678         }
679     } else if (offset < 0x300) {
680         /* Interrupt Set/Clear Pending.  */
681         if (offset < 0x280)
682             irq = (offset - 0x200) * 8;
683         else
684             irq = (offset - 0x280) * 8;
685         irq += GIC_BASE_IRQ;
686         if (irq >= s->num_irq)
687             goto bad_reg;
688         res = 0;
689         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
690         for (i = 0; i < 8; i++) {
691             if (s->security_extn && !attrs.secure &&
692                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
693                 continue; /* Ignore Non-secure access of Group0 IRQ */
694             }
695 
696             if (gic_test_pending(s, irq + i, mask)) {
697                 res |= (1 << i);
698             }
699         }
700     } else if (offset < 0x400) {
701         /* Interrupt Active.  */
702         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
703         if (irq >= s->num_irq)
704             goto bad_reg;
705         res = 0;
706         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
707         for (i = 0; i < 8; i++) {
708             if (s->security_extn && !attrs.secure &&
709                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
710                 continue; /* Ignore Non-secure access of Group0 IRQ */
711             }
712 
713             if (GIC_TEST_ACTIVE(irq + i, mask)) {
714                 res |= (1 << i);
715             }
716         }
717     } else if (offset < 0x800) {
718         /* Interrupt Priority.  */
719         irq = (offset - 0x400) + GIC_BASE_IRQ;
720         if (irq >= s->num_irq)
721             goto bad_reg;
722         res = gic_get_priority(s, cpu, irq, attrs);
723     } else if (offset < 0xc00) {
724         /* Interrupt CPU Target.  */
725         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
726             /* For uniprocessor GICs these RAZ/WI */
727             res = 0;
728         } else {
729             irq = (offset - 0x800) + GIC_BASE_IRQ;
730             if (irq >= s->num_irq) {
731                 goto bad_reg;
732             }
733             if (irq >= 29 && irq <= 31) {
734                 res = cm;
735             } else {
736                 res = GIC_TARGET(irq);
737             }
738         }
739     } else if (offset < 0xf00) {
740         /* Interrupt Configuration.  */
741         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
742         if (irq >= s->num_irq)
743             goto bad_reg;
744         res = 0;
745         for (i = 0; i < 4; i++) {
746             if (s->security_extn && !attrs.secure &&
747                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
748                 continue; /* Ignore Non-secure access of Group0 IRQ */
749             }
750 
751             if (GIC_TEST_MODEL(irq + i))
752                 res |= (1 << (i * 2));
753             if (GIC_TEST_EDGE_TRIGGER(irq + i))
754                 res |= (2 << (i * 2));
755         }
756     } else if (offset < 0xf10) {
757         goto bad_reg;
758     } else if (offset < 0xf30) {
759         if (s->revision == REV_11MPCORE) {
760             goto bad_reg;
761         }
762 
763         if (offset < 0xf20) {
764             /* GICD_CPENDSGIRn */
765             irq = (offset - 0xf10);
766         } else {
767             irq = (offset - 0xf20);
768             /* GICD_SPENDSGIRn */
769         }
770 
771         if (s->security_extn && !attrs.secure &&
772             !GIC_TEST_GROUP(irq, 1 << cpu)) {
773             res = 0; /* Ignore Non-secure access of Group0 IRQ */
774         } else {
775             res = s->sgi_pending[irq][cpu];
776         }
777     } else if (offset < 0xfd0) {
778         goto bad_reg;
779     } else if (offset < 0x1000) {
780         if (offset & 3) {
781             res = 0;
782         } else {
783             switch (s->revision) {
784             case REV_11MPCORE:
785                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
786                 break;
787             case 1:
788                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
789                 break;
790             case 2:
791                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
792                 break;
793             default:
794                 res = 0;
795             }
796         }
797     } else {
798         g_assert_not_reached();
799     }
800     return res;
801 bad_reg:
802     qemu_log_mask(LOG_GUEST_ERROR,
803                   "gic_dist_readb: Bad offset %x\n", (int)offset);
804     return 0;
805 }
806 
807 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
808                                  unsigned size, MemTxAttrs attrs)
809 {
810     switch (size) {
811     case 1:
812         *data = gic_dist_readb(opaque, offset, attrs);
813         return MEMTX_OK;
814     case 2:
815         *data = gic_dist_readb(opaque, offset, attrs);
816         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
817         return MEMTX_OK;
818     case 4:
819         *data = gic_dist_readb(opaque, offset, attrs);
820         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
821         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
822         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
823         return MEMTX_OK;
824     default:
825         return MEMTX_ERROR;
826     }
827 }
828 
829 static void gic_dist_writeb(void *opaque, hwaddr offset,
830                             uint32_t value, MemTxAttrs attrs)
831 {
832     GICState *s = (GICState *)opaque;
833     int irq;
834     int i;
835     int cpu;
836 
837     cpu = gic_get_current_cpu(s);
838     if (offset < 0x100) {
839         if (offset == 0) {
840             if (s->security_extn && !attrs.secure) {
841                 /* NS version is just an alias of the S version's bit 1 */
842                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
843             } else if (gic_has_groups(s)) {
844                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
845             } else {
846                 s->ctlr = value & GICD_CTLR_EN_GRP0;
847             }
848             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
849                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
850                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
851         } else if (offset < 4) {
852             /* ignored.  */
853         } else if (offset >= 0x80) {
854             /* Interrupt Group Registers: RAZ/WI for NS access to secure
855              * GIC, or for GICs without groups.
856              */
857             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
858                 /* Every byte offset holds 8 group status bits */
859                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
860                 if (irq >= s->num_irq) {
861                     goto bad_reg;
862                 }
863                 for (i = 0; i < 8; i++) {
864                     /* Group bits are banked for private interrupts */
865                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
866                     if (value & (1 << i)) {
867                         /* Group1 (Non-secure) */
868                         GIC_SET_GROUP(irq + i, cm);
869                     } else {
870                         /* Group0 (Secure) */
871                         GIC_CLEAR_GROUP(irq + i, cm);
872                     }
873                 }
874             }
875         } else {
876             goto bad_reg;
877         }
878     } else if (offset < 0x180) {
879         /* Interrupt Set Enable.  */
880         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
881         if (irq >= s->num_irq)
882             goto bad_reg;
883         if (irq < GIC_NR_SGIS) {
884             value = 0xff;
885         }
886 
887         for (i = 0; i < 8; i++) {
888             if (value & (1 << i)) {
889                 int mask =
890                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
891                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
892 
893                 if (s->security_extn && !attrs.secure &&
894                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
895                     continue; /* Ignore Non-secure access of Group0 IRQ */
896                 }
897 
898                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
899                     DPRINTF("Enabled IRQ %d\n", irq + i);
900                     trace_gic_enable_irq(irq + i);
901                 }
902                 GIC_SET_ENABLED(irq + i, cm);
903                 /* If a raised level triggered IRQ enabled then mark
904                    is as pending.  */
905                 if (GIC_TEST_LEVEL(irq + i, mask)
906                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
907                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
908                     GIC_SET_PENDING(irq + i, mask);
909                 }
910             }
911         }
912     } else if (offset < 0x200) {
913         /* Interrupt Clear Enable.  */
914         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
915         if (irq >= s->num_irq)
916             goto bad_reg;
917         if (irq < GIC_NR_SGIS) {
918             value = 0;
919         }
920 
921         for (i = 0; i < 8; i++) {
922             if (value & (1 << i)) {
923                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
924 
925                 if (s->security_extn && !attrs.secure &&
926                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
927                     continue; /* Ignore Non-secure access of Group0 IRQ */
928                 }
929 
930                 if (GIC_TEST_ENABLED(irq + i, cm)) {
931                     DPRINTF("Disabled IRQ %d\n", irq + i);
932                     trace_gic_disable_irq(irq + i);
933                 }
934                 GIC_CLEAR_ENABLED(irq + i, cm);
935             }
936         }
937     } else if (offset < 0x280) {
938         /* Interrupt Set Pending.  */
939         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
940         if (irq >= s->num_irq)
941             goto bad_reg;
942         if (irq < GIC_NR_SGIS) {
943             value = 0;
944         }
945 
946         for (i = 0; i < 8; i++) {
947             if (value & (1 << i)) {
948                 if (s->security_extn && !attrs.secure &&
949                     !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
950                     continue; /* Ignore Non-secure access of Group0 IRQ */
951                 }
952 
953                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
954             }
955         }
956     } else if (offset < 0x300) {
957         /* Interrupt Clear Pending.  */
958         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
959         if (irq >= s->num_irq)
960             goto bad_reg;
961         if (irq < GIC_NR_SGIS) {
962             value = 0;
963         }
964 
965         for (i = 0; i < 8; i++) {
966             if (s->security_extn && !attrs.secure &&
967                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
968                 continue; /* Ignore Non-secure access of Group0 IRQ */
969             }
970 
971             /* ??? This currently clears the pending bit for all CPUs, even
972                for per-CPU interrupts.  It's unclear whether this is the
973                corect behavior.  */
974             if (value & (1 << i)) {
975                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
976             }
977         }
978     } else if (offset < 0x400) {
979         /* Interrupt Active.  */
980         goto bad_reg;
981     } else if (offset < 0x800) {
982         /* Interrupt Priority.  */
983         irq = (offset - 0x400) + GIC_BASE_IRQ;
984         if (irq >= s->num_irq)
985             goto bad_reg;
986         gic_set_priority(s, cpu, irq, value, attrs);
987     } else if (offset < 0xc00) {
988         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
989          * annoying exception of the 11MPCore's GIC.
990          */
991         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
992             irq = (offset - 0x800) + GIC_BASE_IRQ;
993             if (irq >= s->num_irq) {
994                 goto bad_reg;
995             }
996             if (irq < 29) {
997                 value = 0;
998             } else if (irq < GIC_INTERNAL) {
999                 value = ALL_CPU_MASK;
1000             }
1001             s->irq_target[irq] = value & ALL_CPU_MASK;
1002         }
1003     } else if (offset < 0xf00) {
1004         /* Interrupt Configuration.  */
1005         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1006         if (irq >= s->num_irq)
1007             goto bad_reg;
1008         if (irq < GIC_NR_SGIS)
1009             value |= 0xaa;
1010         for (i = 0; i < 4; i++) {
1011             if (s->security_extn && !attrs.secure &&
1012                 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
1013                 continue; /* Ignore Non-secure access of Group0 IRQ */
1014             }
1015 
1016             if (s->revision == REV_11MPCORE) {
1017                 if (value & (1 << (i * 2))) {
1018                     GIC_SET_MODEL(irq + i);
1019                 } else {
1020                     GIC_CLEAR_MODEL(irq + i);
1021                 }
1022             }
1023             if (value & (2 << (i * 2))) {
1024                 GIC_SET_EDGE_TRIGGER(irq + i);
1025             } else {
1026                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
1027             }
1028         }
1029     } else if (offset < 0xf10) {
1030         /* 0xf00 is only handled for 32-bit writes.  */
1031         goto bad_reg;
1032     } else if (offset < 0xf20) {
1033         /* GICD_CPENDSGIRn */
1034         if (s->revision == REV_11MPCORE) {
1035             goto bad_reg;
1036         }
1037         irq = (offset - 0xf10);
1038 
1039         if (!s->security_extn || attrs.secure ||
1040             GIC_TEST_GROUP(irq, 1 << cpu)) {
1041             s->sgi_pending[irq][cpu] &= ~value;
1042             if (s->sgi_pending[irq][cpu] == 0) {
1043                 GIC_CLEAR_PENDING(irq, 1 << cpu);
1044             }
1045         }
1046     } else if (offset < 0xf30) {
1047         /* GICD_SPENDSGIRn */
1048         if (s->revision == REV_11MPCORE) {
1049             goto bad_reg;
1050         }
1051         irq = (offset - 0xf20);
1052 
1053         if (!s->security_extn || attrs.secure ||
1054             GIC_TEST_GROUP(irq, 1 << cpu)) {
1055             GIC_SET_PENDING(irq, 1 << cpu);
1056             s->sgi_pending[irq][cpu] |= value;
1057         }
1058     } else {
1059         goto bad_reg;
1060     }
1061     gic_update(s);
1062     return;
1063 bad_reg:
1064     qemu_log_mask(LOG_GUEST_ERROR,
1065                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
1066 }
1067 
1068 static void gic_dist_writew(void *opaque, hwaddr offset,
1069                             uint32_t value, MemTxAttrs attrs)
1070 {
1071     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1072     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1073 }
1074 
1075 static void gic_dist_writel(void *opaque, hwaddr offset,
1076                             uint32_t value, MemTxAttrs attrs)
1077 {
1078     GICState *s = (GICState *)opaque;
1079     if (offset == 0xf00) {
1080         int cpu;
1081         int irq;
1082         int mask;
1083         int target_cpu;
1084 
1085         cpu = gic_get_current_cpu(s);
1086         irq = value & 0x3ff;
1087         switch ((value >> 24) & 3) {
1088         case 0:
1089             mask = (value >> 16) & ALL_CPU_MASK;
1090             break;
1091         case 1:
1092             mask = ALL_CPU_MASK ^ (1 << cpu);
1093             break;
1094         case 2:
1095             mask = 1 << cpu;
1096             break;
1097         default:
1098             DPRINTF("Bad Soft Int target filter\n");
1099             mask = ALL_CPU_MASK;
1100             break;
1101         }
1102         GIC_SET_PENDING(irq, mask);
1103         target_cpu = ctz32(mask);
1104         while (target_cpu < GIC_NCPU) {
1105             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1106             mask &= ~(1 << target_cpu);
1107             target_cpu = ctz32(mask);
1108         }
1109         gic_update(s);
1110         return;
1111     }
1112     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1113     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1114 }
1115 
1116 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1117                                   unsigned size, MemTxAttrs attrs)
1118 {
1119     switch (size) {
1120     case 1:
1121         gic_dist_writeb(opaque, offset, data, attrs);
1122         return MEMTX_OK;
1123     case 2:
1124         gic_dist_writew(opaque, offset, data, attrs);
1125         return MEMTX_OK;
1126     case 4:
1127         gic_dist_writel(opaque, offset, data, attrs);
1128         return MEMTX_OK;
1129     default:
1130         return MEMTX_ERROR;
1131     }
1132 }
1133 
1134 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1135 {
1136     /* Return the Nonsecure view of GICC_APR<regno>. This is the
1137      * second half of GICC_NSAPR.
1138      */
1139     switch (GIC_MIN_BPR) {
1140     case 0:
1141         if (regno < 2) {
1142             return s->nsapr[regno + 2][cpu];
1143         }
1144         break;
1145     case 1:
1146         if (regno == 0) {
1147             return s->nsapr[regno + 1][cpu];
1148         }
1149         break;
1150     case 2:
1151         if (regno == 0) {
1152             return extract32(s->nsapr[0][cpu], 16, 16);
1153         }
1154         break;
1155     case 3:
1156         if (regno == 0) {
1157             return extract32(s->nsapr[0][cpu], 8, 8);
1158         }
1159         break;
1160     default:
1161         g_assert_not_reached();
1162     }
1163     return 0;
1164 }
1165 
1166 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1167                                          uint32_t value)
1168 {
1169     /* Write the Nonsecure view of GICC_APR<regno>. */
1170     switch (GIC_MIN_BPR) {
1171     case 0:
1172         if (regno < 2) {
1173             s->nsapr[regno + 2][cpu] = value;
1174         }
1175         break;
1176     case 1:
1177         if (regno == 0) {
1178             s->nsapr[regno + 1][cpu] = value;
1179         }
1180         break;
1181     case 2:
1182         if (regno == 0) {
1183             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1184         }
1185         break;
1186     case 3:
1187         if (regno == 0) {
1188             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1189         }
1190         break;
1191     default:
1192         g_assert_not_reached();
1193     }
1194 }
1195 
1196 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1197                                 uint64_t *data, MemTxAttrs attrs)
1198 {
1199     switch (offset) {
1200     case 0x00: /* Control */
1201         *data = gic_get_cpu_control(s, cpu, attrs);
1202         break;
1203     case 0x04: /* Priority mask */
1204         *data = gic_get_priority_mask(s, cpu, attrs);
1205         break;
1206     case 0x08: /* Binary Point */
1207         if (s->security_extn && !attrs.secure) {
1208             /* BPR is banked. Non-secure copy stored in ABPR. */
1209             *data = s->abpr[cpu];
1210         } else {
1211             *data = s->bpr[cpu];
1212         }
1213         break;
1214     case 0x0c: /* Acknowledge */
1215         *data = gic_acknowledge_irq(s, cpu, attrs);
1216         break;
1217     case 0x14: /* Running Priority */
1218         *data = gic_get_running_priority(s, cpu, attrs);
1219         break;
1220     case 0x18: /* Highest Pending Interrupt */
1221         *data = gic_get_current_pending_irq(s, cpu, attrs);
1222         break;
1223     case 0x1c: /* Aliased Binary Point */
1224         /* GIC v2, no security: ABPR
1225          * GIC v1, no security: not implemented (RAZ/WI)
1226          * With security extensions, secure access: ABPR (alias of NS BPR)
1227          * With security extensions, nonsecure access: RAZ/WI
1228          */
1229         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1230             *data = 0;
1231         } else {
1232             *data = s->abpr[cpu];
1233         }
1234         break;
1235     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1236     {
1237         int regno = (offset - 0xd0) / 4;
1238 
1239         if (regno >= GIC_NR_APRS || s->revision != 2) {
1240             *data = 0;
1241         } else if (s->security_extn && !attrs.secure) {
1242             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1243             *data = gic_apr_ns_view(s, regno, cpu);
1244         } else {
1245             *data = s->apr[regno][cpu];
1246         }
1247         break;
1248     }
1249     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1250     {
1251         int regno = (offset - 0xe0) / 4;
1252 
1253         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1254             (s->security_extn && !attrs.secure)) {
1255             *data = 0;
1256         } else {
1257             *data = s->nsapr[regno][cpu];
1258         }
1259         break;
1260     }
1261     default:
1262         qemu_log_mask(LOG_GUEST_ERROR,
1263                       "gic_cpu_read: Bad offset %x\n", (int)offset);
1264         return MEMTX_ERROR;
1265     }
1266     return MEMTX_OK;
1267 }
1268 
1269 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1270                                  uint32_t value, MemTxAttrs attrs)
1271 {
1272     switch (offset) {
1273     case 0x00: /* Control */
1274         gic_set_cpu_control(s, cpu, value, attrs);
1275         break;
1276     case 0x04: /* Priority mask */
1277         gic_set_priority_mask(s, cpu, value, attrs);
1278         break;
1279     case 0x08: /* Binary Point */
1280         if (s->security_extn && !attrs.secure) {
1281             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1282         } else {
1283             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1284         }
1285         break;
1286     case 0x10: /* End Of Interrupt */
1287         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1288         return MEMTX_OK;
1289     case 0x1c: /* Aliased Binary Point */
1290         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1291             /* unimplemented, or NS access: RAZ/WI */
1292             return MEMTX_OK;
1293         } else {
1294             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1295         }
1296         break;
1297     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1298     {
1299         int regno = (offset - 0xd0) / 4;
1300 
1301         if (regno >= GIC_NR_APRS || s->revision != 2) {
1302             return MEMTX_OK;
1303         }
1304         if (s->security_extn && !attrs.secure) {
1305             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1306             gic_apr_write_ns_view(s, regno, cpu, value);
1307         } else {
1308             s->apr[regno][cpu] = value;
1309         }
1310         break;
1311     }
1312     case 0xe0: case 0xe4: case 0xe8: case 0xec:
1313     {
1314         int regno = (offset - 0xe0) / 4;
1315 
1316         if (regno >= GIC_NR_APRS || s->revision != 2) {
1317             return MEMTX_OK;
1318         }
1319         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1320             return MEMTX_OK;
1321         }
1322         s->nsapr[regno][cpu] = value;
1323         break;
1324     }
1325     case 0x1000:
1326         /* GICC_DIR */
1327         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1328         break;
1329     default:
1330         qemu_log_mask(LOG_GUEST_ERROR,
1331                       "gic_cpu_write: Bad offset %x\n", (int)offset);
1332         return MEMTX_ERROR;
1333     }
1334     gic_update(s);
1335     return MEMTX_OK;
1336 }
1337 
1338 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1339 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1340                                     unsigned size, MemTxAttrs attrs)
1341 {
1342     GICState *s = (GICState *)opaque;
1343     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1344 }
1345 
1346 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1347                                      uint64_t value, unsigned size,
1348                                      MemTxAttrs attrs)
1349 {
1350     GICState *s = (GICState *)opaque;
1351     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1352 }
1353 
1354 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1355  * These just decode the opaque pointer into GICState* + cpu id.
1356  */
1357 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1358                                    unsigned size, MemTxAttrs attrs)
1359 {
1360     GICState **backref = (GICState **)opaque;
1361     GICState *s = *backref;
1362     int id = (backref - s->backref);
1363     return gic_cpu_read(s, id, addr, data, attrs);
1364 }
1365 
1366 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1367                                     uint64_t value, unsigned size,
1368                                     MemTxAttrs attrs)
1369 {
1370     GICState **backref = (GICState **)opaque;
1371     GICState *s = *backref;
1372     int id = (backref - s->backref);
1373     return gic_cpu_write(s, id, addr, value, attrs);
1374 }
1375 
1376 static const MemoryRegionOps gic_ops[2] = {
1377     {
1378         .read_with_attrs = gic_dist_read,
1379         .write_with_attrs = gic_dist_write,
1380         .endianness = DEVICE_NATIVE_ENDIAN,
1381     },
1382     {
1383         .read_with_attrs = gic_thiscpu_read,
1384         .write_with_attrs = gic_thiscpu_write,
1385         .endianness = DEVICE_NATIVE_ENDIAN,
1386     }
1387 };
1388 
1389 static const MemoryRegionOps gic_cpu_ops = {
1390     .read_with_attrs = gic_do_cpu_read,
1391     .write_with_attrs = gic_do_cpu_write,
1392     .endianness = DEVICE_NATIVE_ENDIAN,
1393 };
1394 
1395 /* This function is used by nvic model */
1396 void gic_init_irqs_and_distributor(GICState *s)
1397 {
1398     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1399 }
1400 
1401 static void arm_gic_realize(DeviceState *dev, Error **errp)
1402 {
1403     /* Device instance realize function for the GIC sysbus device */
1404     int i;
1405     GICState *s = ARM_GIC(dev);
1406     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1407     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1408     Error *local_err = NULL;
1409 
1410     agc->parent_realize(dev, &local_err);
1411     if (local_err) {
1412         error_propagate(errp, local_err);
1413         return;
1414     }
1415 
1416     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1417         error_setg(errp, "KVM with user space irqchip only works when the "
1418                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
1419         return;
1420     }
1421 
1422     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1423     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1424 
1425     /* Extra core-specific regions for the CPU interfaces. This is
1426      * necessary for "franken-GIC" implementations, for example on
1427      * Exynos 4.
1428      * NB that the memory region size of 0x100 applies for the 11MPCore
1429      * and also cores following the GIC v1 spec (ie A9).
1430      * GIC v2 defines a larger memory region (0x1000) so this will need
1431      * to be extended when we implement A15.
1432      */
1433     for (i = 0; i < s->num_cpu; i++) {
1434         s->backref[i] = s;
1435         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1436                               &s->backref[i], "gic_cpu", 0x100);
1437         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1438     }
1439 }
1440 
1441 static void arm_gic_class_init(ObjectClass *klass, void *data)
1442 {
1443     DeviceClass *dc = DEVICE_CLASS(klass);
1444     ARMGICClass *agc = ARM_GIC_CLASS(klass);
1445 
1446     agc->parent_realize = dc->realize;
1447     dc->realize = arm_gic_realize;
1448 }
1449 
1450 static const TypeInfo arm_gic_info = {
1451     .name = TYPE_ARM_GIC,
1452     .parent = TYPE_ARM_GIC_COMMON,
1453     .instance_size = sizeof(GICState),
1454     .class_init = arm_gic_class_init,
1455     .class_size = sizeof(ARMGICClass),
1456 };
1457 
1458 static void arm_gic_register_types(void)
1459 {
1460     type_register_static(&arm_gic_info);
1461 }
1462 
1463 type_init(arm_gic_register_types)
1464