1 /* 2 * QEMU AHCI Emulation 3 * 4 * Copyright (c) 2010 qiaochong@loongson.cn 5 * Copyright (c) 2010 Roland Elek <elek.roland@gmail.com> 6 * Copyright (c) 2010 Sebastian Herbszt <herbszt@gmx.de> 7 * Copyright (c) 2010 Alexander Graf <agraf@suse.de> 8 * 9 * This library is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Lesser General Public 11 * License as published by the Free Software Foundation; either 12 * version 2.1 of the License, or (at your option) any later version. 13 * 14 * This library is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Lesser General Public License for more details. 18 * 19 * You should have received a copy of the GNU Lesser General Public 20 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 21 * 22 */ 23 24 #include "qemu/osdep.h" 25 #include "hw/pci/msi.h" 26 #include "hw/pci/pci.h" 27 #include "hw/qdev-properties.h" 28 #include "migration/vmstate.h" 29 30 #include "qemu/error-report.h" 31 #include "qemu/log.h" 32 #include "qemu/main-loop.h" 33 #include "qemu/module.h" 34 #include "sysemu/block-backend.h" 35 #include "sysemu/dma.h" 36 #include "hw/ide/internal.h" 37 #include "hw/ide/pci.h" 38 #include "ahci_internal.h" 39 40 #include "trace.h" 41 42 static void check_cmd(AHCIState *s, int port); 43 static int handle_cmd(AHCIState *s, int port, uint8_t slot); 44 static void ahci_reset_port(AHCIState *s, int port); 45 static bool ahci_write_fis_d2h(AHCIDevice *ad); 46 static void ahci_init_d2h(AHCIDevice *ad); 47 static int ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit); 48 static bool ahci_map_clb_address(AHCIDevice *ad); 49 static bool ahci_map_fis_address(AHCIDevice *ad); 50 static void ahci_unmap_clb_address(AHCIDevice *ad); 51 static void ahci_unmap_fis_address(AHCIDevice *ad); 52 53 static const char *AHCIHostReg_lookup[AHCI_HOST_REG__COUNT] = { 54 [AHCI_HOST_REG_CAP] = "CAP", 55 [AHCI_HOST_REG_CTL] = "GHC", 56 [AHCI_HOST_REG_IRQ_STAT] = "IS", 57 [AHCI_HOST_REG_PORTS_IMPL] = "PI", 58 [AHCI_HOST_REG_VERSION] = "VS", 59 [AHCI_HOST_REG_CCC_CTL] = "CCC_CTL", 60 [AHCI_HOST_REG_CCC_PORTS] = "CCC_PORTS", 61 [AHCI_HOST_REG_EM_LOC] = "EM_LOC", 62 [AHCI_HOST_REG_EM_CTL] = "EM_CTL", 63 [AHCI_HOST_REG_CAP2] = "CAP2", 64 [AHCI_HOST_REG_BOHC] = "BOHC", 65 }; 66 67 static const char *AHCIPortReg_lookup[AHCI_PORT_REG__COUNT] = { 68 [AHCI_PORT_REG_LST_ADDR] = "PxCLB", 69 [AHCI_PORT_REG_LST_ADDR_HI] = "PxCLBU", 70 [AHCI_PORT_REG_FIS_ADDR] = "PxFB", 71 [AHCI_PORT_REG_FIS_ADDR_HI] = "PxFBU", 72 [AHCI_PORT_REG_IRQ_STAT] = "PxIS", 73 [AHCI_PORT_REG_IRQ_MASK] = "PXIE", 74 [AHCI_PORT_REG_CMD] = "PxCMD", 75 [7] = "Reserved", 76 [AHCI_PORT_REG_TFDATA] = "PxTFD", 77 [AHCI_PORT_REG_SIG] = "PxSIG", 78 [AHCI_PORT_REG_SCR_STAT] = "PxSSTS", 79 [AHCI_PORT_REG_SCR_CTL] = "PxSCTL", 80 [AHCI_PORT_REG_SCR_ERR] = "PxSERR", 81 [AHCI_PORT_REG_SCR_ACT] = "PxSACT", 82 [AHCI_PORT_REG_CMD_ISSUE] = "PxCI", 83 [AHCI_PORT_REG_SCR_NOTIF] = "PxSNTF", 84 [AHCI_PORT_REG_FIS_CTL] = "PxFBS", 85 [AHCI_PORT_REG_DEV_SLEEP] = "PxDEVSLP", 86 [18 ... 27] = "Reserved", 87 [AHCI_PORT_REG_VENDOR_1 ... 88 AHCI_PORT_REG_VENDOR_4] = "PxVS", 89 }; 90 91 static const char *AHCIPortIRQ_lookup[AHCI_PORT_IRQ__COUNT] = { 92 [AHCI_PORT_IRQ_BIT_DHRS] = "DHRS", 93 [AHCI_PORT_IRQ_BIT_PSS] = "PSS", 94 [AHCI_PORT_IRQ_BIT_DSS] = "DSS", 95 [AHCI_PORT_IRQ_BIT_SDBS] = "SDBS", 96 [AHCI_PORT_IRQ_BIT_UFS] = "UFS", 97 [AHCI_PORT_IRQ_BIT_DPS] = "DPS", 98 [AHCI_PORT_IRQ_BIT_PCS] = "PCS", 99 [AHCI_PORT_IRQ_BIT_DMPS] = "DMPS", 100 [8 ... 21] = "RESERVED", 101 [AHCI_PORT_IRQ_BIT_PRCS] = "PRCS", 102 [AHCI_PORT_IRQ_BIT_IPMS] = "IPMS", 103 [AHCI_PORT_IRQ_BIT_OFS] = "OFS", 104 [25] = "RESERVED", 105 [AHCI_PORT_IRQ_BIT_INFS] = "INFS", 106 [AHCI_PORT_IRQ_BIT_IFS] = "IFS", 107 [AHCI_PORT_IRQ_BIT_HBDS] = "HBDS", 108 [AHCI_PORT_IRQ_BIT_HBFS] = "HBFS", 109 [AHCI_PORT_IRQ_BIT_TFES] = "TFES", 110 [AHCI_PORT_IRQ_BIT_CPDS] = "CPDS" 111 }; 112 113 static uint32_t ahci_port_read(AHCIState *s, int port, int offset) 114 { 115 uint32_t val; 116 AHCIPortRegs *pr = &s->dev[port].port_regs; 117 enum AHCIPortReg regnum = offset / sizeof(uint32_t); 118 assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); 119 120 switch (regnum) { 121 case AHCI_PORT_REG_LST_ADDR: 122 val = pr->lst_addr; 123 break; 124 case AHCI_PORT_REG_LST_ADDR_HI: 125 val = pr->lst_addr_hi; 126 break; 127 case AHCI_PORT_REG_FIS_ADDR: 128 val = pr->fis_addr; 129 break; 130 case AHCI_PORT_REG_FIS_ADDR_HI: 131 val = pr->fis_addr_hi; 132 break; 133 case AHCI_PORT_REG_IRQ_STAT: 134 val = pr->irq_stat; 135 break; 136 case AHCI_PORT_REG_IRQ_MASK: 137 val = pr->irq_mask; 138 break; 139 case AHCI_PORT_REG_CMD: 140 val = pr->cmd; 141 break; 142 case AHCI_PORT_REG_TFDATA: 143 val = pr->tfdata; 144 break; 145 case AHCI_PORT_REG_SIG: 146 val = pr->sig; 147 break; 148 case AHCI_PORT_REG_SCR_STAT: 149 if (s->dev[port].port.ifs[0].blk) { 150 val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP | 151 SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE; 152 } else { 153 val = SATA_SCR_SSTATUS_DET_NODEV; 154 } 155 break; 156 case AHCI_PORT_REG_SCR_CTL: 157 val = pr->scr_ctl; 158 break; 159 case AHCI_PORT_REG_SCR_ERR: 160 val = pr->scr_err; 161 break; 162 case AHCI_PORT_REG_SCR_ACT: 163 val = pr->scr_act; 164 break; 165 case AHCI_PORT_REG_CMD_ISSUE: 166 val = pr->cmd_issue; 167 break; 168 default: 169 trace_ahci_port_read_default(s, port, AHCIPortReg_lookup[regnum], 170 offset); 171 val = 0; 172 } 173 174 trace_ahci_port_read(s, port, AHCIPortReg_lookup[regnum], offset, val); 175 return val; 176 } 177 178 static void ahci_irq_raise(AHCIState *s) 179 { 180 DeviceState *dev_state = s->container; 181 PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), 182 TYPE_PCI_DEVICE); 183 184 trace_ahci_irq_raise(s); 185 186 if (pci_dev && msi_enabled(pci_dev)) { 187 msi_notify(pci_dev, 0); 188 } else { 189 qemu_irq_raise(s->irq); 190 } 191 } 192 193 static void ahci_irq_lower(AHCIState *s) 194 { 195 DeviceState *dev_state = s->container; 196 PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), 197 TYPE_PCI_DEVICE); 198 199 trace_ahci_irq_lower(s); 200 201 if (!pci_dev || !msi_enabled(pci_dev)) { 202 qemu_irq_lower(s->irq); 203 } 204 } 205 206 static void ahci_check_irq(AHCIState *s) 207 { 208 int i; 209 uint32_t old_irq = s->control_regs.irqstatus; 210 211 s->control_regs.irqstatus = 0; 212 for (i = 0; i < s->ports; i++) { 213 AHCIPortRegs *pr = &s->dev[i].port_regs; 214 if (pr->irq_stat & pr->irq_mask) { 215 s->control_regs.irqstatus |= (1 << i); 216 } 217 } 218 trace_ahci_check_irq(s, old_irq, s->control_regs.irqstatus); 219 if (s->control_regs.irqstatus && 220 (s->control_regs.ghc & HOST_CTL_IRQ_EN)) { 221 ahci_irq_raise(s); 222 } else { 223 ahci_irq_lower(s); 224 } 225 } 226 227 static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d, 228 enum AHCIPortIRQ irqbit) 229 { 230 g_assert((unsigned)irqbit < 32); 231 uint32_t irq = 1U << irqbit; 232 uint32_t irqstat = d->port_regs.irq_stat | irq; 233 234 trace_ahci_trigger_irq(s, d->port_no, 235 AHCIPortIRQ_lookup[irqbit], irq, 236 d->port_regs.irq_stat, irqstat, 237 irqstat & d->port_regs.irq_mask); 238 239 d->port_regs.irq_stat = irqstat; 240 ahci_check_irq(s); 241 } 242 243 static void map_page(AddressSpace *as, uint8_t **ptr, uint64_t addr, 244 uint32_t wanted) 245 { 246 hwaddr len = wanted; 247 248 if (*ptr) { 249 dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); 250 } 251 252 *ptr = dma_memory_map(as, addr, &len, DMA_DIRECTION_FROM_DEVICE); 253 if (len < wanted && *ptr) { 254 dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); 255 *ptr = NULL; 256 } 257 } 258 259 /** 260 * Check the cmd register to see if we should start or stop 261 * the DMA or FIS RX engines. 262 * 263 * @ad: Device to dis/engage. 264 * 265 * @return 0 on success, -1 on error. 266 */ 267 static int ahci_cond_start_engines(AHCIDevice *ad) 268 { 269 AHCIPortRegs *pr = &ad->port_regs; 270 bool cmd_start = pr->cmd & PORT_CMD_START; 271 bool cmd_on = pr->cmd & PORT_CMD_LIST_ON; 272 bool fis_start = pr->cmd & PORT_CMD_FIS_RX; 273 bool fis_on = pr->cmd & PORT_CMD_FIS_ON; 274 275 if (cmd_start && !cmd_on) { 276 if (!ahci_map_clb_address(ad)) { 277 pr->cmd &= ~PORT_CMD_START; 278 error_report("AHCI: Failed to start DMA engine: " 279 "bad command list buffer address"); 280 return -1; 281 } 282 } else if (!cmd_start && cmd_on) { 283 ahci_unmap_clb_address(ad); 284 } 285 286 if (fis_start && !fis_on) { 287 if (!ahci_map_fis_address(ad)) { 288 pr->cmd &= ~PORT_CMD_FIS_RX; 289 error_report("AHCI: Failed to start FIS receive engine: " 290 "bad FIS receive buffer address"); 291 return -1; 292 } 293 } else if (!fis_start && fis_on) { 294 ahci_unmap_fis_address(ad); 295 } 296 297 return 0; 298 } 299 300 static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val) 301 { 302 AHCIPortRegs *pr = &s->dev[port].port_regs; 303 enum AHCIPortReg regnum = offset / sizeof(uint32_t); 304 assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); 305 trace_ahci_port_write(s, port, AHCIPortReg_lookup[regnum], offset, val); 306 307 switch (regnum) { 308 case AHCI_PORT_REG_LST_ADDR: 309 pr->lst_addr = val; 310 break; 311 case AHCI_PORT_REG_LST_ADDR_HI: 312 pr->lst_addr_hi = val; 313 break; 314 case AHCI_PORT_REG_FIS_ADDR: 315 pr->fis_addr = val; 316 break; 317 case AHCI_PORT_REG_FIS_ADDR_HI: 318 pr->fis_addr_hi = val; 319 break; 320 case AHCI_PORT_REG_IRQ_STAT: 321 pr->irq_stat &= ~val; 322 ahci_check_irq(s); 323 break; 324 case AHCI_PORT_REG_IRQ_MASK: 325 pr->irq_mask = val & 0xfdc000ff; 326 ahci_check_irq(s); 327 break; 328 case AHCI_PORT_REG_CMD: 329 /* Block any Read-only fields from being set; 330 * including LIST_ON and FIS_ON. 331 * The spec requires to set ICC bits to zero after the ICC change 332 * is done. We don't support ICC state changes, therefore always 333 * force the ICC bits to zero. 334 */ 335 pr->cmd = (pr->cmd & PORT_CMD_RO_MASK) | 336 (val & ~(PORT_CMD_RO_MASK | PORT_CMD_ICC_MASK)); 337 338 /* Check FIS RX and CLB engines */ 339 ahci_cond_start_engines(&s->dev[port]); 340 341 /* XXX usually the FIS would be pending on the bus here and 342 issuing deferred until the OS enables FIS receival. 343 Instead, we only submit it once - which works in most 344 cases, but is a hack. */ 345 if ((pr->cmd & PORT_CMD_FIS_ON) && 346 !s->dev[port].init_d2h_sent) { 347 ahci_init_d2h(&s->dev[port]); 348 } 349 350 check_cmd(s, port); 351 break; 352 case AHCI_PORT_REG_TFDATA: 353 case AHCI_PORT_REG_SIG: 354 case AHCI_PORT_REG_SCR_STAT: 355 /* Read Only */ 356 break; 357 case AHCI_PORT_REG_SCR_CTL: 358 if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) && 359 ((val & AHCI_SCR_SCTL_DET) == 0)) { 360 ahci_reset_port(s, port); 361 } 362 pr->scr_ctl = val; 363 break; 364 case AHCI_PORT_REG_SCR_ERR: 365 pr->scr_err &= ~val; 366 break; 367 case AHCI_PORT_REG_SCR_ACT: 368 /* RW1 */ 369 pr->scr_act |= val; 370 break; 371 case AHCI_PORT_REG_CMD_ISSUE: 372 pr->cmd_issue |= val; 373 check_cmd(s, port); 374 break; 375 default: 376 trace_ahci_port_write_unimpl(s, port, AHCIPortReg_lookup[regnum], 377 offset, val); 378 qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " 379 "AHCI port %d register %s, offset 0x%x: 0x%"PRIx32, 380 port, AHCIPortReg_lookup[regnum], offset, val); 381 break; 382 } 383 } 384 385 static uint64_t ahci_mem_read_32(void *opaque, hwaddr addr) 386 { 387 AHCIState *s = opaque; 388 uint32_t val = 0; 389 390 if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { 391 enum AHCIHostReg regnum = addr / 4; 392 assert(regnum < AHCI_HOST_REG__COUNT); 393 394 switch (regnum) { 395 case AHCI_HOST_REG_CAP: 396 val = s->control_regs.cap; 397 break; 398 case AHCI_HOST_REG_CTL: 399 val = s->control_regs.ghc; 400 break; 401 case AHCI_HOST_REG_IRQ_STAT: 402 val = s->control_regs.irqstatus; 403 break; 404 case AHCI_HOST_REG_PORTS_IMPL: 405 val = s->control_regs.impl; 406 break; 407 case AHCI_HOST_REG_VERSION: 408 val = s->control_regs.version; 409 break; 410 default: 411 trace_ahci_mem_read_32_host_default(s, AHCIHostReg_lookup[regnum], 412 addr); 413 } 414 trace_ahci_mem_read_32_host(s, AHCIHostReg_lookup[regnum], addr, val); 415 } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && 416 (addr < (AHCI_PORT_REGS_START_ADDR + 417 (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { 418 val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, 419 addr & AHCI_PORT_ADDR_OFFSET_MASK); 420 } else { 421 trace_ahci_mem_read_32_default(s, addr, val); 422 } 423 424 trace_ahci_mem_read_32(s, addr, val); 425 return val; 426 } 427 428 429 /** 430 * AHCI 1.3 section 3 ("HBA Memory Registers") 431 * Support unaligned 8/16/32 bit reads, and 64 bit aligned reads. 432 * Caller is responsible for masking unwanted higher order bytes. 433 */ 434 static uint64_t ahci_mem_read(void *opaque, hwaddr addr, unsigned size) 435 { 436 hwaddr aligned = addr & ~0x3; 437 int ofst = addr - aligned; 438 uint64_t lo = ahci_mem_read_32(opaque, aligned); 439 uint64_t hi; 440 uint64_t val; 441 442 /* if < 8 byte read does not cross 4 byte boundary */ 443 if (ofst + size <= 4) { 444 val = lo >> (ofst * 8); 445 } else { 446 g_assert(size > 1); 447 448 /* If the 64bit read is unaligned, we will produce undefined 449 * results. AHCI does not support unaligned 64bit reads. */ 450 hi = ahci_mem_read_32(opaque, aligned + 4); 451 val = (hi << 32 | lo) >> (ofst * 8); 452 } 453 454 trace_ahci_mem_read(opaque, size, addr, val); 455 return val; 456 } 457 458 459 static void ahci_mem_write(void *opaque, hwaddr addr, 460 uint64_t val, unsigned size) 461 { 462 AHCIState *s = opaque; 463 464 trace_ahci_mem_write(s, size, addr, val); 465 466 /* Only aligned reads are allowed on AHCI */ 467 if (addr & 3) { 468 qemu_log_mask(LOG_GUEST_ERROR, 469 "ahci: Mis-aligned write to addr 0x%03" HWADDR_PRIX "\n", 470 addr); 471 return; 472 } 473 474 if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { 475 enum AHCIHostReg regnum = addr / 4; 476 assert(regnum < AHCI_HOST_REG__COUNT); 477 478 switch (regnum) { 479 case AHCI_HOST_REG_CAP: /* R/WO, RO */ 480 /* FIXME handle R/WO */ 481 break; 482 case AHCI_HOST_REG_CTL: /* R/W */ 483 if (val & HOST_CTL_RESET) { 484 ahci_reset(s); 485 } else { 486 s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN; 487 ahci_check_irq(s); 488 } 489 break; 490 case AHCI_HOST_REG_IRQ_STAT: /* R/WC, RO */ 491 s->control_regs.irqstatus &= ~val; 492 ahci_check_irq(s); 493 break; 494 case AHCI_HOST_REG_PORTS_IMPL: /* R/WO, RO */ 495 /* FIXME handle R/WO */ 496 break; 497 case AHCI_HOST_REG_VERSION: /* RO */ 498 /* FIXME report write? */ 499 break; 500 default: 501 qemu_log_mask(LOG_UNIMP, 502 "Attempted write to unimplemented register: " 503 "AHCI host register %s, " 504 "offset 0x%"PRIx64": 0x%"PRIx64, 505 AHCIHostReg_lookup[regnum], addr, val); 506 trace_ahci_mem_write_host_unimpl(s, size, 507 AHCIHostReg_lookup[regnum], addr); 508 } 509 trace_ahci_mem_write_host(s, size, AHCIHostReg_lookup[regnum], 510 addr, val); 511 } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && 512 (addr < (AHCI_PORT_REGS_START_ADDR + 513 (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { 514 ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, 515 addr & AHCI_PORT_ADDR_OFFSET_MASK, val); 516 } else { 517 qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " 518 "AHCI global register at offset 0x%"PRIx64": 0x%"PRIx64, 519 addr, val); 520 trace_ahci_mem_write_unimpl(s, size, addr, val); 521 } 522 } 523 524 static const MemoryRegionOps ahci_mem_ops = { 525 .read = ahci_mem_read, 526 .write = ahci_mem_write, 527 .endianness = DEVICE_LITTLE_ENDIAN, 528 }; 529 530 static uint64_t ahci_idp_read(void *opaque, hwaddr addr, 531 unsigned size) 532 { 533 AHCIState *s = opaque; 534 535 if (addr == s->idp_offset) { 536 /* index register */ 537 return s->idp_index; 538 } else if (addr == s->idp_offset + 4) { 539 /* data register - do memory read at location selected by index */ 540 return ahci_mem_read(opaque, s->idp_index, size); 541 } else { 542 return 0; 543 } 544 } 545 546 static void ahci_idp_write(void *opaque, hwaddr addr, 547 uint64_t val, unsigned size) 548 { 549 AHCIState *s = opaque; 550 551 if (addr == s->idp_offset) { 552 /* index register - mask off reserved bits */ 553 s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3); 554 } else if (addr == s->idp_offset + 4) { 555 /* data register - do memory write at location selected by index */ 556 ahci_mem_write(opaque, s->idp_index, val, size); 557 } 558 } 559 560 static const MemoryRegionOps ahci_idp_ops = { 561 .read = ahci_idp_read, 562 .write = ahci_idp_write, 563 .endianness = DEVICE_LITTLE_ENDIAN, 564 }; 565 566 567 static void ahci_reg_init(AHCIState *s) 568 { 569 int i; 570 571 s->control_regs.cap = (s->ports - 1) | 572 (AHCI_NUM_COMMAND_SLOTS << 8) | 573 (AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) | 574 HOST_CAP_NCQ | HOST_CAP_AHCI | HOST_CAP_64; 575 576 s->control_regs.impl = (1 << s->ports) - 1; 577 578 s->control_regs.version = AHCI_VERSION_1_0; 579 580 for (i = 0; i < s->ports; i++) { 581 s->dev[i].port_state = STATE_RUN; 582 } 583 } 584 585 static void check_cmd(AHCIState *s, int port) 586 { 587 AHCIPortRegs *pr = &s->dev[port].port_regs; 588 uint8_t slot; 589 590 if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) { 591 for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) { 592 if ((pr->cmd_issue & (1U << slot)) && 593 !handle_cmd(s, port, slot)) { 594 pr->cmd_issue &= ~(1U << slot); 595 } 596 } 597 } 598 } 599 600 static void ahci_check_cmd_bh(void *opaque) 601 { 602 AHCIDevice *ad = opaque; 603 604 qemu_bh_delete(ad->check_bh); 605 ad->check_bh = NULL; 606 607 check_cmd(ad->hba, ad->port_no); 608 } 609 610 static void ahci_init_d2h(AHCIDevice *ad) 611 { 612 IDEState *ide_state = &ad->port.ifs[0]; 613 AHCIPortRegs *pr = &ad->port_regs; 614 615 if (ad->init_d2h_sent) { 616 return; 617 } 618 619 if (ahci_write_fis_d2h(ad)) { 620 ad->init_d2h_sent = true; 621 /* We're emulating receiving the first Reg H2D Fis from the device; 622 * Update the SIG register, but otherwise proceed as normal. */ 623 pr->sig = ((uint32_t)ide_state->hcyl << 24) | 624 (ide_state->lcyl << 16) | 625 (ide_state->sector << 8) | 626 (ide_state->nsector & 0xFF); 627 } 628 } 629 630 static void ahci_set_signature(AHCIDevice *ad, uint32_t sig) 631 { 632 IDEState *s = &ad->port.ifs[0]; 633 s->hcyl = sig >> 24 & 0xFF; 634 s->lcyl = sig >> 16 & 0xFF; 635 s->sector = sig >> 8 & 0xFF; 636 s->nsector = sig & 0xFF; 637 638 trace_ahci_set_signature(ad->hba, ad->port_no, s->nsector, s->sector, 639 s->lcyl, s->hcyl, sig); 640 } 641 642 static void ahci_reset_port(AHCIState *s, int port) 643 { 644 AHCIDevice *d = &s->dev[port]; 645 AHCIPortRegs *pr = &d->port_regs; 646 IDEState *ide_state = &d->port.ifs[0]; 647 int i; 648 649 trace_ahci_reset_port(s, port); 650 651 ide_bus_reset(&d->port); 652 ide_state->ncq_queues = AHCI_MAX_CMDS; 653 654 pr->scr_stat = 0; 655 pr->scr_err = 0; 656 pr->scr_act = 0; 657 pr->tfdata = 0x7F; 658 pr->sig = 0xFFFFFFFF; 659 d->busy_slot = -1; 660 d->init_d2h_sent = false; 661 662 ide_state = &s->dev[port].port.ifs[0]; 663 if (!ide_state->blk) { 664 return; 665 } 666 667 /* reset ncq queue */ 668 for (i = 0; i < AHCI_MAX_CMDS; i++) { 669 NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i]; 670 ncq_tfs->halt = false; 671 if (!ncq_tfs->used) { 672 continue; 673 } 674 675 if (ncq_tfs->aiocb) { 676 blk_aio_cancel(ncq_tfs->aiocb); 677 ncq_tfs->aiocb = NULL; 678 } 679 680 /* Maybe we just finished the request thanks to blk_aio_cancel() */ 681 if (!ncq_tfs->used) { 682 continue; 683 } 684 685 qemu_sglist_destroy(&ncq_tfs->sglist); 686 ncq_tfs->used = 0; 687 } 688 689 s->dev[port].port_state = STATE_RUN; 690 if (ide_state->drive_kind == IDE_CD) { 691 ahci_set_signature(d, SATA_SIGNATURE_CDROM);\ 692 ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT; 693 } else { 694 ahci_set_signature(d, SATA_SIGNATURE_DISK); 695 ide_state->status = SEEK_STAT | WRERR_STAT; 696 } 697 698 ide_state->error = 1; 699 ahci_init_d2h(d); 700 } 701 702 /* Buffer pretty output based on a raw FIS structure. */ 703 static char *ahci_pretty_buffer_fis(const uint8_t *fis, int cmd_len) 704 { 705 int i; 706 GString *s = g_string_new("FIS:"); 707 708 for (i = 0; i < cmd_len; i++) { 709 if ((i & 0xf) == 0) { 710 g_string_append_printf(s, "\n0x%02x: ", i); 711 } 712 g_string_append_printf(s, "%02x ", fis[i]); 713 } 714 g_string_append_c(s, '\n'); 715 716 return g_string_free(s, FALSE); 717 } 718 719 static bool ahci_map_fis_address(AHCIDevice *ad) 720 { 721 AHCIPortRegs *pr = &ad->port_regs; 722 map_page(ad->hba->as, &ad->res_fis, 723 ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); 724 if (ad->res_fis != NULL) { 725 pr->cmd |= PORT_CMD_FIS_ON; 726 return true; 727 } 728 729 pr->cmd &= ~PORT_CMD_FIS_ON; 730 return false; 731 } 732 733 static void ahci_unmap_fis_address(AHCIDevice *ad) 734 { 735 if (ad->res_fis == NULL) { 736 trace_ahci_unmap_fis_address_null(ad->hba, ad->port_no); 737 return; 738 } 739 ad->port_regs.cmd &= ~PORT_CMD_FIS_ON; 740 dma_memory_unmap(ad->hba->as, ad->res_fis, 256, 741 DMA_DIRECTION_FROM_DEVICE, 256); 742 ad->res_fis = NULL; 743 } 744 745 static bool ahci_map_clb_address(AHCIDevice *ad) 746 { 747 AHCIPortRegs *pr = &ad->port_regs; 748 ad->cur_cmd = NULL; 749 map_page(ad->hba->as, &ad->lst, 750 ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); 751 if (ad->lst != NULL) { 752 pr->cmd |= PORT_CMD_LIST_ON; 753 return true; 754 } 755 756 pr->cmd &= ~PORT_CMD_LIST_ON; 757 return false; 758 } 759 760 static void ahci_unmap_clb_address(AHCIDevice *ad) 761 { 762 if (ad->lst == NULL) { 763 trace_ahci_unmap_clb_address_null(ad->hba, ad->port_no); 764 return; 765 } 766 ad->port_regs.cmd &= ~PORT_CMD_LIST_ON; 767 dma_memory_unmap(ad->hba->as, ad->lst, 1024, 768 DMA_DIRECTION_FROM_DEVICE, 1024); 769 ad->lst = NULL; 770 } 771 772 static void ahci_write_fis_sdb(AHCIState *s, NCQTransferState *ncq_tfs) 773 { 774 AHCIDevice *ad = ncq_tfs->drive; 775 AHCIPortRegs *pr = &ad->port_regs; 776 IDEState *ide_state; 777 SDBFIS *sdb_fis; 778 779 if (!ad->res_fis || 780 !(pr->cmd & PORT_CMD_FIS_RX)) { 781 return; 782 } 783 784 sdb_fis = (SDBFIS *)&ad->res_fis[RES_FIS_SDBFIS]; 785 ide_state = &ad->port.ifs[0]; 786 787 sdb_fis->type = SATA_FIS_TYPE_SDB; 788 /* Interrupt pending & Notification bit */ 789 sdb_fis->flags = 0x40; /* Interrupt bit, always 1 for NCQ */ 790 sdb_fis->status = ide_state->status & 0x77; 791 sdb_fis->error = ide_state->error; 792 /* update SAct field in SDB_FIS */ 793 sdb_fis->payload = cpu_to_le32(ad->finished); 794 795 /* Update shadow registers (except BSY 0x80 and DRQ 0x08) */ 796 pr->tfdata = (ad->port.ifs[0].error << 8) | 797 (ad->port.ifs[0].status & 0x77) | 798 (pr->tfdata & 0x88); 799 pr->scr_act &= ~ad->finished; 800 ad->finished = 0; 801 802 /* Trigger IRQ if interrupt bit is set (which currently, it always is) */ 803 if (sdb_fis->flags & 0x40) { 804 ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_SDBS); 805 } 806 } 807 808 static void ahci_write_fis_pio(AHCIDevice *ad, uint16_t len, bool pio_fis_i) 809 { 810 AHCIPortRegs *pr = &ad->port_regs; 811 uint8_t *pio_fis; 812 IDEState *s = &ad->port.ifs[0]; 813 814 if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { 815 return; 816 } 817 818 pio_fis = &ad->res_fis[RES_FIS_PSFIS]; 819 820 pio_fis[0] = SATA_FIS_TYPE_PIO_SETUP; 821 pio_fis[1] = (pio_fis_i ? (1 << 6) : 0); 822 pio_fis[2] = s->status; 823 pio_fis[3] = s->error; 824 825 pio_fis[4] = s->sector; 826 pio_fis[5] = s->lcyl; 827 pio_fis[6] = s->hcyl; 828 pio_fis[7] = s->select; 829 pio_fis[8] = s->hob_sector; 830 pio_fis[9] = s->hob_lcyl; 831 pio_fis[10] = s->hob_hcyl; 832 pio_fis[11] = 0; 833 pio_fis[12] = s->nsector & 0xFF; 834 pio_fis[13] = (s->nsector >> 8) & 0xFF; 835 pio_fis[14] = 0; 836 pio_fis[15] = s->status; 837 pio_fis[16] = len & 255; 838 pio_fis[17] = len >> 8; 839 pio_fis[18] = 0; 840 pio_fis[19] = 0; 841 842 /* Update shadow registers: */ 843 pr->tfdata = (ad->port.ifs[0].error << 8) | 844 ad->port.ifs[0].status; 845 846 if (pio_fis[2] & ERR_STAT) { 847 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); 848 } 849 } 850 851 static bool ahci_write_fis_d2h(AHCIDevice *ad) 852 { 853 AHCIPortRegs *pr = &ad->port_regs; 854 uint8_t *d2h_fis; 855 int i; 856 IDEState *s = &ad->port.ifs[0]; 857 858 if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { 859 return false; 860 } 861 862 d2h_fis = &ad->res_fis[RES_FIS_RFIS]; 863 864 d2h_fis[0] = SATA_FIS_TYPE_REGISTER_D2H; 865 d2h_fis[1] = (1 << 6); /* interrupt bit */ 866 d2h_fis[2] = s->status; 867 d2h_fis[3] = s->error; 868 869 d2h_fis[4] = s->sector; 870 d2h_fis[5] = s->lcyl; 871 d2h_fis[6] = s->hcyl; 872 d2h_fis[7] = s->select; 873 d2h_fis[8] = s->hob_sector; 874 d2h_fis[9] = s->hob_lcyl; 875 d2h_fis[10] = s->hob_hcyl; 876 d2h_fis[11] = 0; 877 d2h_fis[12] = s->nsector & 0xFF; 878 d2h_fis[13] = (s->nsector >> 8) & 0xFF; 879 for (i = 14; i < 20; i++) { 880 d2h_fis[i] = 0; 881 } 882 883 /* Update shadow registers: */ 884 pr->tfdata = (ad->port.ifs[0].error << 8) | 885 ad->port.ifs[0].status; 886 887 if (d2h_fis[2] & ERR_STAT) { 888 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); 889 } 890 891 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_DHRS); 892 return true; 893 } 894 895 static int prdt_tbl_entry_size(const AHCI_SG *tbl) 896 { 897 /* flags_size is zero-based */ 898 return (le32_to_cpu(tbl->flags_size) & AHCI_PRDT_SIZE_MASK) + 1; 899 } 900 901 /** 902 * Fetch entries in a guest-provided PRDT and convert it into a QEMU SGlist. 903 * @ad: The AHCIDevice for whom we are building the SGList. 904 * @sglist: The SGList target to add PRD entries to. 905 * @cmd: The AHCI Command Header that describes where the PRDT is. 906 * @limit: The remaining size of the S/ATA transaction, in bytes. 907 * @offset: The number of bytes already transferred, in bytes. 908 * 909 * The AHCI PRDT can describe up to 256GiB. S/ATA only support transactions of 910 * up to 32MiB as of ATA8-ACS3 rev 1b, assuming a 512 byte sector size. We stop 911 * building the sglist from the PRDT as soon as we hit @limit bytes, 912 * which is <= INT32_MAX/2GiB. 913 */ 914 static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist, 915 AHCICmdHdr *cmd, int64_t limit, uint64_t offset) 916 { 917 uint16_t opts = le16_to_cpu(cmd->opts); 918 uint16_t prdtl = le16_to_cpu(cmd->prdtl); 919 uint64_t cfis_addr = le64_to_cpu(cmd->tbl_addr); 920 uint64_t prdt_addr = cfis_addr + 0x80; 921 dma_addr_t prdt_len = (prdtl * sizeof(AHCI_SG)); 922 dma_addr_t real_prdt_len = prdt_len; 923 uint8_t *prdt; 924 int i; 925 int r = 0; 926 uint64_t sum = 0; 927 int off_idx = -1; 928 int64_t off_pos = -1; 929 int tbl_entry_size; 930 IDEBus *bus = &ad->port; 931 BusState *qbus = BUS(bus); 932 933 trace_ahci_populate_sglist(ad->hba, ad->port_no); 934 935 if (!prdtl) { 936 trace_ahci_populate_sglist_no_prdtl(ad->hba, ad->port_no, opts); 937 return -1; 938 } 939 940 /* map PRDT */ 941 if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len, 942 DMA_DIRECTION_TO_DEVICE))){ 943 trace_ahci_populate_sglist_no_map(ad->hba, ad->port_no); 944 return -1; 945 } 946 947 if (prdt_len < real_prdt_len) { 948 trace_ahci_populate_sglist_short_map(ad->hba, ad->port_no); 949 r = -1; 950 goto out; 951 } 952 953 /* Get entries in the PRDT, init a qemu sglist accordingly */ 954 if (prdtl > 0) { 955 AHCI_SG *tbl = (AHCI_SG *)prdt; 956 sum = 0; 957 for (i = 0; i < prdtl; i++) { 958 tbl_entry_size = prdt_tbl_entry_size(&tbl[i]); 959 if (offset < (sum + tbl_entry_size)) { 960 off_idx = i; 961 off_pos = offset - sum; 962 break; 963 } 964 sum += tbl_entry_size; 965 } 966 if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) { 967 trace_ahci_populate_sglist_bad_offset(ad->hba, ad->port_no, 968 off_idx, off_pos); 969 r = -1; 970 goto out; 971 } 972 973 qemu_sglist_init(sglist, qbus->parent, (prdtl - off_idx), 974 ad->hba->as); 975 qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr) + off_pos, 976 MIN(prdt_tbl_entry_size(&tbl[off_idx]) - off_pos, 977 limit)); 978 979 for (i = off_idx + 1; i < prdtl && sglist->size < limit; i++) { 980 qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr), 981 MIN(prdt_tbl_entry_size(&tbl[i]), 982 limit - sglist->size)); 983 } 984 } 985 986 out: 987 dma_memory_unmap(ad->hba->as, prdt, prdt_len, 988 DMA_DIRECTION_TO_DEVICE, prdt_len); 989 return r; 990 } 991 992 static void ncq_err(NCQTransferState *ncq_tfs) 993 { 994 IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; 995 996 ide_state->error = ABRT_ERR; 997 ide_state->status = READY_STAT | ERR_STAT; 998 ncq_tfs->drive->port_regs.scr_err |= (1 << ncq_tfs->tag); 999 qemu_sglist_destroy(&ncq_tfs->sglist); 1000 ncq_tfs->used = 0; 1001 } 1002 1003 static void ncq_finish(NCQTransferState *ncq_tfs) 1004 { 1005 /* If we didn't error out, set our finished bit. Errored commands 1006 * do not get a bit set for the SDB FIS ACT register, nor do they 1007 * clear the outstanding bit in scr_act (PxSACT). */ 1008 if (!(ncq_tfs->drive->port_regs.scr_err & (1 << ncq_tfs->tag))) { 1009 ncq_tfs->drive->finished |= (1 << ncq_tfs->tag); 1010 } 1011 1012 ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs); 1013 1014 trace_ncq_finish(ncq_tfs->drive->hba, ncq_tfs->drive->port_no, 1015 ncq_tfs->tag); 1016 1017 block_acct_done(blk_get_stats(ncq_tfs->drive->port.ifs[0].blk), 1018 &ncq_tfs->acct); 1019 qemu_sglist_destroy(&ncq_tfs->sglist); 1020 ncq_tfs->used = 0; 1021 } 1022 1023 static void ncq_cb(void *opaque, int ret) 1024 { 1025 NCQTransferState *ncq_tfs = (NCQTransferState *)opaque; 1026 IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; 1027 1028 ncq_tfs->aiocb = NULL; 1029 1030 if (ret < 0) { 1031 bool is_read = ncq_tfs->cmd == READ_FPDMA_QUEUED; 1032 BlockErrorAction action = blk_get_error_action(ide_state->blk, 1033 is_read, -ret); 1034 if (action == BLOCK_ERROR_ACTION_STOP) { 1035 ncq_tfs->halt = true; 1036 ide_state->bus->error_status = IDE_RETRY_HBA; 1037 } else if (action == BLOCK_ERROR_ACTION_REPORT) { 1038 ncq_err(ncq_tfs); 1039 } 1040 blk_error_action(ide_state->blk, action, is_read, -ret); 1041 } else { 1042 ide_state->status = READY_STAT | SEEK_STAT; 1043 } 1044 1045 if (!ncq_tfs->halt) { 1046 ncq_finish(ncq_tfs); 1047 } 1048 } 1049 1050 static int is_ncq(uint8_t ata_cmd) 1051 { 1052 /* Based on SATA 3.2 section 13.6.3.2 */ 1053 switch (ata_cmd) { 1054 case READ_FPDMA_QUEUED: 1055 case WRITE_FPDMA_QUEUED: 1056 case NCQ_NON_DATA: 1057 case RECEIVE_FPDMA_QUEUED: 1058 case SEND_FPDMA_QUEUED: 1059 return 1; 1060 default: 1061 return 0; 1062 } 1063 } 1064 1065 static void execute_ncq_command(NCQTransferState *ncq_tfs) 1066 { 1067 AHCIDevice *ad = ncq_tfs->drive; 1068 IDEState *ide_state = &ad->port.ifs[0]; 1069 int port = ad->port_no; 1070 1071 g_assert(is_ncq(ncq_tfs->cmd)); 1072 ncq_tfs->halt = false; 1073 1074 switch (ncq_tfs->cmd) { 1075 case READ_FPDMA_QUEUED: 1076 trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag, 1077 ncq_tfs->sector_count, ncq_tfs->lba); 1078 dma_acct_start(ide_state->blk, &ncq_tfs->acct, 1079 &ncq_tfs->sglist, BLOCK_ACCT_READ); 1080 ncq_tfs->aiocb = dma_blk_read(ide_state->blk, &ncq_tfs->sglist, 1081 ncq_tfs->lba << BDRV_SECTOR_BITS, 1082 BDRV_SECTOR_SIZE, 1083 ncq_cb, ncq_tfs); 1084 break; 1085 case WRITE_FPDMA_QUEUED: 1086 trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag, 1087 ncq_tfs->sector_count, ncq_tfs->lba); 1088 dma_acct_start(ide_state->blk, &ncq_tfs->acct, 1089 &ncq_tfs->sglist, BLOCK_ACCT_WRITE); 1090 ncq_tfs->aiocb = dma_blk_write(ide_state->blk, &ncq_tfs->sglist, 1091 ncq_tfs->lba << BDRV_SECTOR_BITS, 1092 BDRV_SECTOR_SIZE, 1093 ncq_cb, ncq_tfs); 1094 break; 1095 default: 1096 trace_execute_ncq_command_unsup(ad->hba, port, 1097 ncq_tfs->tag, ncq_tfs->cmd); 1098 ncq_err(ncq_tfs); 1099 } 1100 } 1101 1102 1103 static void process_ncq_command(AHCIState *s, int port, const uint8_t *cmd_fis, 1104 uint8_t slot) 1105 { 1106 AHCIDevice *ad = &s->dev[port]; 1107 const NCQFrame *ncq_fis = (NCQFrame *)cmd_fis; 1108 uint8_t tag = ncq_fis->tag >> 3; 1109 NCQTransferState *ncq_tfs = &ad->ncq_tfs[tag]; 1110 size_t size; 1111 1112 g_assert(is_ncq(ncq_fis->command)); 1113 if (ncq_tfs->used) { 1114 /* error - already in use */ 1115 qemu_log_mask(LOG_GUEST_ERROR, "%s: tag %d already used\n", 1116 __func__, tag); 1117 return; 1118 } 1119 1120 ncq_tfs->used = 1; 1121 ncq_tfs->drive = ad; 1122 ncq_tfs->slot = slot; 1123 ncq_tfs->cmdh = &((AHCICmdHdr *)ad->lst)[slot]; 1124 ncq_tfs->cmd = ncq_fis->command; 1125 ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) | 1126 ((uint64_t)ncq_fis->lba4 << 32) | 1127 ((uint64_t)ncq_fis->lba3 << 24) | 1128 ((uint64_t)ncq_fis->lba2 << 16) | 1129 ((uint64_t)ncq_fis->lba1 << 8) | 1130 (uint64_t)ncq_fis->lba0; 1131 ncq_tfs->tag = tag; 1132 1133 /* Sanity-check the NCQ packet */ 1134 if (tag != slot) { 1135 trace_process_ncq_command_mismatch(s, port, tag, slot); 1136 } 1137 1138 if (ncq_fis->aux0 || ncq_fis->aux1 || ncq_fis->aux2 || ncq_fis->aux3) { 1139 trace_process_ncq_command_aux(s, port, tag); 1140 } 1141 if (ncq_fis->prio || ncq_fis->icc) { 1142 trace_process_ncq_command_prioicc(s, port, tag); 1143 } 1144 if (ncq_fis->fua & NCQ_FIS_FUA_MASK) { 1145 trace_process_ncq_command_fua(s, port, tag); 1146 } 1147 if (ncq_fis->tag & NCQ_FIS_RARC_MASK) { 1148 trace_process_ncq_command_rarc(s, port, tag); 1149 } 1150 1151 ncq_tfs->sector_count = ((ncq_fis->sector_count_high << 8) | 1152 ncq_fis->sector_count_low); 1153 if (!ncq_tfs->sector_count) { 1154 ncq_tfs->sector_count = 0x10000; 1155 } 1156 size = ncq_tfs->sector_count * BDRV_SECTOR_SIZE; 1157 ahci_populate_sglist(ad, &ncq_tfs->sglist, ncq_tfs->cmdh, size, 0); 1158 1159 if (ncq_tfs->sglist.size < size) { 1160 error_report("ahci: PRDT length for NCQ command (0x%zx) " 1161 "is smaller than the requested size (0x%zx)", 1162 ncq_tfs->sglist.size, size); 1163 ncq_err(ncq_tfs); 1164 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_OFS); 1165 return; 1166 } else if (ncq_tfs->sglist.size != size) { 1167 trace_process_ncq_command_large(s, port, tag, 1168 ncq_tfs->sglist.size, size); 1169 } 1170 1171 trace_process_ncq_command(s, port, tag, 1172 ncq_fis->command, 1173 ncq_tfs->lba, 1174 ncq_tfs->lba + ncq_tfs->sector_count - 1); 1175 execute_ncq_command(ncq_tfs); 1176 } 1177 1178 static AHCICmdHdr *get_cmd_header(AHCIState *s, uint8_t port, uint8_t slot) 1179 { 1180 if (port >= s->ports || slot >= AHCI_MAX_CMDS) { 1181 return NULL; 1182 } 1183 1184 return s->dev[port].lst ? &((AHCICmdHdr *)s->dev[port].lst)[slot] : NULL; 1185 } 1186 1187 static void handle_reg_h2d_fis(AHCIState *s, int port, 1188 uint8_t slot, const uint8_t *cmd_fis) 1189 { 1190 IDEState *ide_state = &s->dev[port].port.ifs[0]; 1191 AHCICmdHdr *cmd = get_cmd_header(s, port, slot); 1192 uint16_t opts = le16_to_cpu(cmd->opts); 1193 1194 if (cmd_fis[1] & 0x0F) { 1195 trace_handle_reg_h2d_fis_pmp(s, port, cmd_fis[1], 1196 cmd_fis[2], cmd_fis[3]); 1197 return; 1198 } 1199 1200 if (cmd_fis[1] & 0x70) { 1201 trace_handle_reg_h2d_fis_res(s, port, cmd_fis[1], 1202 cmd_fis[2], cmd_fis[3]); 1203 return; 1204 } 1205 1206 if (!(cmd_fis[1] & SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER)) { 1207 switch (s->dev[port].port_state) { 1208 case STATE_RUN: 1209 if (cmd_fis[15] & ATA_SRST) { 1210 s->dev[port].port_state = STATE_RESET; 1211 } 1212 break; 1213 case STATE_RESET: 1214 if (!(cmd_fis[15] & ATA_SRST)) { 1215 ahci_reset_port(s, port); 1216 } 1217 break; 1218 } 1219 return; 1220 } 1221 1222 /* Check for NCQ command */ 1223 if (is_ncq(cmd_fis[2])) { 1224 process_ncq_command(s, port, cmd_fis, slot); 1225 return; 1226 } 1227 1228 /* Decompose the FIS: 1229 * AHCI does not interpret FIS packets, it only forwards them. 1230 * SATA 1.0 describes how to decode LBA28 and CHS FIS packets. 1231 * Later specifications, e.g, SATA 3.2, describe LBA48 FIS packets. 1232 * 1233 * ATA4 describes sector number for LBA28/CHS commands. 1234 * ATA6 describes sector number for LBA48 commands. 1235 * ATA8 deprecates CHS fully, describing only LBA28/48. 1236 * 1237 * We dutifully convert the FIS into IDE registers, and allow the 1238 * core layer to interpret them as needed. */ 1239 ide_state->feature = cmd_fis[3]; 1240 ide_state->sector = cmd_fis[4]; /* LBA 7:0 */ 1241 ide_state->lcyl = cmd_fis[5]; /* LBA 15:8 */ 1242 ide_state->hcyl = cmd_fis[6]; /* LBA 23:16 */ 1243 ide_state->select = cmd_fis[7]; /* LBA 27:24 (LBA28) */ 1244 ide_state->hob_sector = cmd_fis[8]; /* LBA 31:24 */ 1245 ide_state->hob_lcyl = cmd_fis[9]; /* LBA 39:32 */ 1246 ide_state->hob_hcyl = cmd_fis[10]; /* LBA 47:40 */ 1247 ide_state->hob_feature = cmd_fis[11]; 1248 ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]); 1249 /* 14, 16, 17, 18, 19: Reserved (SATA 1.0) */ 1250 /* 15: Only valid when UPDATE_COMMAND not set. */ 1251 1252 /* Copy the ACMD field (ATAPI packet, if any) from the AHCI command 1253 * table to ide_state->io_buffer */ 1254 if (opts & AHCI_CMD_ATAPI) { 1255 memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10); 1256 if (trace_event_get_state_backends(TRACE_HANDLE_REG_H2D_FIS_DUMP)) { 1257 char *pretty_fis = ahci_pretty_buffer_fis(ide_state->io_buffer, 0x10); 1258 trace_handle_reg_h2d_fis_dump(s, port, pretty_fis); 1259 g_free(pretty_fis); 1260 } 1261 } 1262 1263 ide_state->error = 0; 1264 s->dev[port].done_first_drq = false; 1265 /* Reset transferred byte counter */ 1266 cmd->status = 0; 1267 1268 /* We're ready to process the command in FIS byte 2. */ 1269 ide_exec_cmd(&s->dev[port].port, cmd_fis[2]); 1270 } 1271 1272 static int handle_cmd(AHCIState *s, int port, uint8_t slot) 1273 { 1274 IDEState *ide_state; 1275 uint64_t tbl_addr; 1276 AHCICmdHdr *cmd; 1277 uint8_t *cmd_fis; 1278 dma_addr_t cmd_len; 1279 1280 if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { 1281 /* Engine currently busy, try again later */ 1282 trace_handle_cmd_busy(s, port); 1283 return -1; 1284 } 1285 1286 if (!s->dev[port].lst) { 1287 trace_handle_cmd_nolist(s, port); 1288 return -1; 1289 } 1290 cmd = get_cmd_header(s, port, slot); 1291 /* remember current slot handle for later */ 1292 s->dev[port].cur_cmd = cmd; 1293 1294 /* The device we are working for */ 1295 ide_state = &s->dev[port].port.ifs[0]; 1296 if (!ide_state->blk) { 1297 trace_handle_cmd_badport(s, port); 1298 return -1; 1299 } 1300 1301 tbl_addr = le64_to_cpu(cmd->tbl_addr); 1302 cmd_len = 0x80; 1303 cmd_fis = dma_memory_map(s->as, tbl_addr, &cmd_len, 1304 DMA_DIRECTION_TO_DEVICE); 1305 if (!cmd_fis) { 1306 trace_handle_cmd_badfis(s, port); 1307 return -1; 1308 } else if (cmd_len != 0x80) { 1309 ahci_trigger_irq(s, &s->dev[port], AHCI_PORT_IRQ_BIT_HBFS); 1310 trace_handle_cmd_badmap(s, port, cmd_len); 1311 goto out; 1312 } 1313 if (trace_event_get_state_backends(TRACE_HANDLE_CMD_FIS_DUMP)) { 1314 char *pretty_fis = ahci_pretty_buffer_fis(cmd_fis, 0x80); 1315 trace_handle_cmd_fis_dump(s, port, pretty_fis); 1316 g_free(pretty_fis); 1317 } 1318 switch (cmd_fis[0]) { 1319 case SATA_FIS_TYPE_REGISTER_H2D: 1320 handle_reg_h2d_fis(s, port, slot, cmd_fis); 1321 break; 1322 default: 1323 trace_handle_cmd_unhandled_fis(s, port, 1324 cmd_fis[0], cmd_fis[1], cmd_fis[2]); 1325 break; 1326 } 1327 1328 out: 1329 dma_memory_unmap(s->as, cmd_fis, cmd_len, DMA_DIRECTION_TO_DEVICE, 1330 cmd_len); 1331 1332 if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { 1333 /* async command, complete later */ 1334 s->dev[port].busy_slot = slot; 1335 return -1; 1336 } 1337 1338 /* done handling the command */ 1339 return 0; 1340 } 1341 1342 /* Transfer PIO data between RAM and device */ 1343 static void ahci_pio_transfer(const IDEDMA *dma) 1344 { 1345 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1346 IDEState *s = &ad->port.ifs[0]; 1347 uint32_t size = (uint32_t)(s->data_end - s->data_ptr); 1348 /* write == ram -> device */ 1349 uint16_t opts = le16_to_cpu(ad->cur_cmd->opts); 1350 int is_write = opts & AHCI_CMD_WRITE; 1351 int is_atapi = opts & AHCI_CMD_ATAPI; 1352 int has_sglist = 0; 1353 bool pio_fis_i; 1354 1355 /* The PIO Setup FIS is received prior to transfer, but the interrupt 1356 * is only triggered after data is received. 1357 * 1358 * The device only sets the 'I' bit in the PIO Setup FIS for device->host 1359 * requests (see "DPIOI1" in the SATA spec), or for host->device DRQs after 1360 * the first (see "DPIOO1"). The latter is consistent with the spec's 1361 * description of the PACKET protocol, where the command part of ATAPI requests 1362 * ("DPKT0") has the 'I' bit clear, while the data part of PIO ATAPI requests 1363 * ("DPKT4a" and "DPKT7") has the 'I' bit set for both directions for all DRQs. 1364 */ 1365 pio_fis_i = ad->done_first_drq || (!is_atapi && !is_write); 1366 ahci_write_fis_pio(ad, size, pio_fis_i); 1367 1368 if (is_atapi && !ad->done_first_drq) { 1369 /* already prepopulated iobuffer */ 1370 goto out; 1371 } 1372 1373 if (ahci_dma_prepare_buf(dma, size)) { 1374 has_sglist = 1; 1375 } 1376 1377 trace_ahci_pio_transfer(ad->hba, ad->port_no, is_write ? "writ" : "read", 1378 size, is_atapi ? "atapi" : "ata", 1379 has_sglist ? "" : "o"); 1380 1381 if (has_sglist && size) { 1382 if (is_write) { 1383 dma_buf_write(s->data_ptr, size, &s->sg); 1384 } else { 1385 dma_buf_read(s->data_ptr, size, &s->sg); 1386 } 1387 } 1388 1389 /* Update number of transferred bytes, destroy sglist */ 1390 dma_buf_commit(s, size); 1391 1392 out: 1393 /* declare that we processed everything */ 1394 s->data_ptr = s->data_end; 1395 1396 ad->done_first_drq = true; 1397 if (pio_fis_i) { 1398 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_PSS); 1399 } 1400 } 1401 1402 static void ahci_start_dma(const IDEDMA *dma, IDEState *s, 1403 BlockCompletionFunc *dma_cb) 1404 { 1405 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1406 trace_ahci_start_dma(ad->hba, ad->port_no); 1407 s->io_buffer_offset = 0; 1408 dma_cb(s, 0); 1409 } 1410 1411 static void ahci_restart_dma(const IDEDMA *dma) 1412 { 1413 /* Nothing to do, ahci_start_dma already resets s->io_buffer_offset. */ 1414 } 1415 1416 /** 1417 * IDE/PIO restarts are handled by the core layer, but NCQ commands 1418 * need an extra kick from the AHCI HBA. 1419 */ 1420 static void ahci_restart(const IDEDMA *dma) 1421 { 1422 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1423 int i; 1424 1425 for (i = 0; i < AHCI_MAX_CMDS; i++) { 1426 NCQTransferState *ncq_tfs = &ad->ncq_tfs[i]; 1427 if (ncq_tfs->halt) { 1428 execute_ncq_command(ncq_tfs); 1429 } 1430 } 1431 } 1432 1433 /** 1434 * Called in DMA and PIO R/W chains to read the PRDT. 1435 * Not shared with NCQ pathways. 1436 */ 1437 static int32_t ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit) 1438 { 1439 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1440 IDEState *s = &ad->port.ifs[0]; 1441 1442 if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, 1443 limit, s->io_buffer_offset) == -1) { 1444 trace_ahci_dma_prepare_buf_fail(ad->hba, ad->port_no); 1445 return -1; 1446 } 1447 s->io_buffer_size = s->sg.size; 1448 1449 trace_ahci_dma_prepare_buf(ad->hba, ad->port_no, limit, s->io_buffer_size); 1450 return s->io_buffer_size; 1451 } 1452 1453 /** 1454 * Updates the command header with a bytes-read value. 1455 * Called via dma_buf_commit, for both DMA and PIO paths. 1456 * sglist destruction is handled within dma_buf_commit. 1457 */ 1458 static void ahci_commit_buf(const IDEDMA *dma, uint32_t tx_bytes) 1459 { 1460 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1461 1462 tx_bytes += le32_to_cpu(ad->cur_cmd->status); 1463 ad->cur_cmd->status = cpu_to_le32(tx_bytes); 1464 } 1465 1466 static int ahci_dma_rw_buf(const IDEDMA *dma, bool is_write) 1467 { 1468 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1469 IDEState *s = &ad->port.ifs[0]; 1470 uint8_t *p = s->io_buffer + s->io_buffer_index; 1471 int l = s->io_buffer_size - s->io_buffer_index; 1472 1473 if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, l, s->io_buffer_offset)) { 1474 return 0; 1475 } 1476 1477 if (is_write) { 1478 dma_buf_read(p, l, &s->sg); 1479 } else { 1480 dma_buf_write(p, l, &s->sg); 1481 } 1482 1483 /* free sglist, update byte count */ 1484 dma_buf_commit(s, l); 1485 s->io_buffer_index += l; 1486 1487 trace_ahci_dma_rw_buf(ad->hba, ad->port_no, l); 1488 return 1; 1489 } 1490 1491 static void ahci_cmd_done(const IDEDMA *dma) 1492 { 1493 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1494 1495 trace_ahci_cmd_done(ad->hba, ad->port_no); 1496 1497 /* no longer busy */ 1498 if (ad->busy_slot != -1) { 1499 ad->port_regs.cmd_issue &= ~(1 << ad->busy_slot); 1500 ad->busy_slot = -1; 1501 } 1502 1503 /* update d2h status */ 1504 ahci_write_fis_d2h(ad); 1505 1506 if (ad->port_regs.cmd_issue && !ad->check_bh) { 1507 ad->check_bh = qemu_bh_new(ahci_check_cmd_bh, ad); 1508 qemu_bh_schedule(ad->check_bh); 1509 } 1510 } 1511 1512 static void ahci_irq_set(void *opaque, int n, int level) 1513 { 1514 qemu_log_mask(LOG_UNIMP, "ahci: IRQ#%d level:%d\n", n, level); 1515 } 1516 1517 static const IDEDMAOps ahci_dma_ops = { 1518 .start_dma = ahci_start_dma, 1519 .restart = ahci_restart, 1520 .restart_dma = ahci_restart_dma, 1521 .pio_transfer = ahci_pio_transfer, 1522 .prepare_buf = ahci_dma_prepare_buf, 1523 .commit_buf = ahci_commit_buf, 1524 .rw_buf = ahci_dma_rw_buf, 1525 .cmd_done = ahci_cmd_done, 1526 }; 1527 1528 void ahci_init(AHCIState *s, DeviceState *qdev) 1529 { 1530 s->container = qdev; 1531 /* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */ 1532 memory_region_init_io(&s->mem, OBJECT(qdev), &ahci_mem_ops, s, 1533 "ahci", AHCI_MEM_BAR_SIZE); 1534 memory_region_init_io(&s->idp, OBJECT(qdev), &ahci_idp_ops, s, 1535 "ahci-idp", 32); 1536 } 1537 1538 void ahci_realize(AHCIState *s, DeviceState *qdev, AddressSpace *as, int ports) 1539 { 1540 qemu_irq *irqs; 1541 int i; 1542 1543 s->as = as; 1544 s->ports = ports; 1545 s->dev = g_new0(AHCIDevice, ports); 1546 ahci_reg_init(s); 1547 irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports); 1548 for (i = 0; i < s->ports; i++) { 1549 AHCIDevice *ad = &s->dev[i]; 1550 1551 ide_bus_new(&ad->port, sizeof(ad->port), qdev, i, 1); 1552 ide_init2(&ad->port, irqs[i]); 1553 1554 ad->hba = s; 1555 ad->port_no = i; 1556 ad->port.dma = &ad->dma; 1557 ad->port.dma->ops = &ahci_dma_ops; 1558 ide_register_restart_cb(&ad->port); 1559 } 1560 g_free(irqs); 1561 } 1562 1563 void ahci_uninit(AHCIState *s) 1564 { 1565 int i, j; 1566 1567 for (i = 0; i < s->ports; i++) { 1568 AHCIDevice *ad = &s->dev[i]; 1569 1570 for (j = 0; j < 2; j++) { 1571 IDEState *s = &ad->port.ifs[j]; 1572 1573 ide_exit(s); 1574 } 1575 object_unparent(OBJECT(&ad->port)); 1576 } 1577 1578 g_free(s->dev); 1579 } 1580 1581 void ahci_reset(AHCIState *s) 1582 { 1583 AHCIPortRegs *pr; 1584 int i; 1585 1586 trace_ahci_reset(s); 1587 1588 s->control_regs.irqstatus = 0; 1589 /* AHCI Enable (AE) 1590 * The implementation of this bit is dependent upon the value of the 1591 * CAP.SAM bit. If CAP.SAM is '0', then GHC.AE shall be read-write and 1592 * shall have a reset value of '0'. If CAP.SAM is '1', then AE shall be 1593 * read-only and shall have a reset value of '1'. 1594 * 1595 * We set HOST_CAP_AHCI so we must enable AHCI at reset. 1596 */ 1597 s->control_regs.ghc = HOST_CTL_AHCI_EN; 1598 1599 for (i = 0; i < s->ports; i++) { 1600 pr = &s->dev[i].port_regs; 1601 pr->irq_stat = 0; 1602 pr->irq_mask = 0; 1603 pr->scr_ctl = 0; 1604 pr->cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON; 1605 ahci_reset_port(s, i); 1606 } 1607 } 1608 1609 static const VMStateDescription vmstate_ncq_tfs = { 1610 .name = "ncq state", 1611 .version_id = 1, 1612 .fields = (VMStateField[]) { 1613 VMSTATE_UINT32(sector_count, NCQTransferState), 1614 VMSTATE_UINT64(lba, NCQTransferState), 1615 VMSTATE_UINT8(tag, NCQTransferState), 1616 VMSTATE_UINT8(cmd, NCQTransferState), 1617 VMSTATE_UINT8(slot, NCQTransferState), 1618 VMSTATE_BOOL(used, NCQTransferState), 1619 VMSTATE_BOOL(halt, NCQTransferState), 1620 VMSTATE_END_OF_LIST() 1621 }, 1622 }; 1623 1624 static const VMStateDescription vmstate_ahci_device = { 1625 .name = "ahci port", 1626 .version_id = 1, 1627 .fields = (VMStateField[]) { 1628 VMSTATE_IDE_BUS(port, AHCIDevice), 1629 VMSTATE_IDE_DRIVE(port.ifs[0], AHCIDevice), 1630 VMSTATE_UINT32(port_state, AHCIDevice), 1631 VMSTATE_UINT32(finished, AHCIDevice), 1632 VMSTATE_UINT32(port_regs.lst_addr, AHCIDevice), 1633 VMSTATE_UINT32(port_regs.lst_addr_hi, AHCIDevice), 1634 VMSTATE_UINT32(port_regs.fis_addr, AHCIDevice), 1635 VMSTATE_UINT32(port_regs.fis_addr_hi, AHCIDevice), 1636 VMSTATE_UINT32(port_regs.irq_stat, AHCIDevice), 1637 VMSTATE_UINT32(port_regs.irq_mask, AHCIDevice), 1638 VMSTATE_UINT32(port_regs.cmd, AHCIDevice), 1639 VMSTATE_UINT32(port_regs.tfdata, AHCIDevice), 1640 VMSTATE_UINT32(port_regs.sig, AHCIDevice), 1641 VMSTATE_UINT32(port_regs.scr_stat, AHCIDevice), 1642 VMSTATE_UINT32(port_regs.scr_ctl, AHCIDevice), 1643 VMSTATE_UINT32(port_regs.scr_err, AHCIDevice), 1644 VMSTATE_UINT32(port_regs.scr_act, AHCIDevice), 1645 VMSTATE_UINT32(port_regs.cmd_issue, AHCIDevice), 1646 VMSTATE_BOOL(done_first_drq, AHCIDevice), 1647 VMSTATE_INT32(busy_slot, AHCIDevice), 1648 VMSTATE_BOOL(init_d2h_sent, AHCIDevice), 1649 VMSTATE_STRUCT_ARRAY(ncq_tfs, AHCIDevice, AHCI_MAX_CMDS, 1650 1, vmstate_ncq_tfs, NCQTransferState), 1651 VMSTATE_END_OF_LIST() 1652 }, 1653 }; 1654 1655 static int ahci_state_post_load(void *opaque, int version_id) 1656 { 1657 int i, j; 1658 struct AHCIDevice *ad; 1659 NCQTransferState *ncq_tfs; 1660 AHCIPortRegs *pr; 1661 AHCIState *s = opaque; 1662 1663 for (i = 0; i < s->ports; i++) { 1664 ad = &s->dev[i]; 1665 pr = &ad->port_regs; 1666 1667 if (!(pr->cmd & PORT_CMD_START) && (pr->cmd & PORT_CMD_LIST_ON)) { 1668 error_report("AHCI: DMA engine should be off, but status bit " 1669 "indicates it is still running."); 1670 return -1; 1671 } 1672 if (!(pr->cmd & PORT_CMD_FIS_RX) && (pr->cmd & PORT_CMD_FIS_ON)) { 1673 error_report("AHCI: FIS RX engine should be off, but status bit " 1674 "indicates it is still running."); 1675 return -1; 1676 } 1677 1678 /* After a migrate, the DMA/FIS engines are "off" and 1679 * need to be conditionally restarted */ 1680 pr->cmd &= ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON); 1681 if (ahci_cond_start_engines(ad) != 0) { 1682 return -1; 1683 } 1684 1685 for (j = 0; j < AHCI_MAX_CMDS; j++) { 1686 ncq_tfs = &ad->ncq_tfs[j]; 1687 ncq_tfs->drive = ad; 1688 1689 if (ncq_tfs->used != ncq_tfs->halt) { 1690 return -1; 1691 } 1692 if (!ncq_tfs->halt) { 1693 continue; 1694 } 1695 if (!is_ncq(ncq_tfs->cmd)) { 1696 return -1; 1697 } 1698 if (ncq_tfs->slot != ncq_tfs->tag) { 1699 return -1; 1700 } 1701 /* If ncq_tfs->halt is justly set, the engine should be engaged, 1702 * and the command list buffer should be mapped. */ 1703 ncq_tfs->cmdh = get_cmd_header(s, i, ncq_tfs->slot); 1704 if (!ncq_tfs->cmdh) { 1705 return -1; 1706 } 1707 ahci_populate_sglist(ncq_tfs->drive, &ncq_tfs->sglist, 1708 ncq_tfs->cmdh, 1709 ncq_tfs->sector_count * BDRV_SECTOR_SIZE, 1710 0); 1711 if (ncq_tfs->sector_count != ncq_tfs->sglist.size >> 9) { 1712 return -1; 1713 } 1714 } 1715 1716 1717 /* 1718 * If an error is present, ad->busy_slot will be valid and not -1. 1719 * In this case, an operation is waiting to resume and will re-check 1720 * for additional AHCI commands to execute upon completion. 1721 * 1722 * In the case where no error was present, busy_slot will be -1, 1723 * and we should check to see if there are additional commands waiting. 1724 */ 1725 if (ad->busy_slot == -1) { 1726 check_cmd(s, i); 1727 } else { 1728 /* We are in the middle of a command, and may need to access 1729 * the command header in guest memory again. */ 1730 if (ad->busy_slot < 0 || ad->busy_slot >= AHCI_MAX_CMDS) { 1731 return -1; 1732 } 1733 ad->cur_cmd = get_cmd_header(s, i, ad->busy_slot); 1734 } 1735 } 1736 1737 return 0; 1738 } 1739 1740 const VMStateDescription vmstate_ahci = { 1741 .name = "ahci", 1742 .version_id = 1, 1743 .post_load = ahci_state_post_load, 1744 .fields = (VMStateField[]) { 1745 VMSTATE_STRUCT_VARRAY_POINTER_INT32(dev, AHCIState, ports, 1746 vmstate_ahci_device, AHCIDevice), 1747 VMSTATE_UINT32(control_regs.cap, AHCIState), 1748 VMSTATE_UINT32(control_regs.ghc, AHCIState), 1749 VMSTATE_UINT32(control_regs.irqstatus, AHCIState), 1750 VMSTATE_UINT32(control_regs.impl, AHCIState), 1751 VMSTATE_UINT32(control_regs.version, AHCIState), 1752 VMSTATE_UINT32(idp_index, AHCIState), 1753 VMSTATE_INT32_EQUAL(ports, AHCIState, NULL), 1754 VMSTATE_END_OF_LIST() 1755 }, 1756 }; 1757 1758 static const VMStateDescription vmstate_sysbus_ahci = { 1759 .name = "sysbus-ahci", 1760 .fields = (VMStateField[]) { 1761 VMSTATE_AHCI(ahci, SysbusAHCIState), 1762 VMSTATE_END_OF_LIST() 1763 }, 1764 }; 1765 1766 static void sysbus_ahci_reset(DeviceState *dev) 1767 { 1768 SysbusAHCIState *s = SYSBUS_AHCI(dev); 1769 1770 ahci_reset(&s->ahci); 1771 } 1772 1773 static void sysbus_ahci_init(Object *obj) 1774 { 1775 SysbusAHCIState *s = SYSBUS_AHCI(obj); 1776 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1777 1778 ahci_init(&s->ahci, DEVICE(obj)); 1779 1780 sysbus_init_mmio(sbd, &s->ahci.mem); 1781 sysbus_init_irq(sbd, &s->ahci.irq); 1782 } 1783 1784 static void sysbus_ahci_realize(DeviceState *dev, Error **errp) 1785 { 1786 SysbusAHCIState *s = SYSBUS_AHCI(dev); 1787 1788 ahci_realize(&s->ahci, dev, &address_space_memory, s->num_ports); 1789 } 1790 1791 static Property sysbus_ahci_properties[] = { 1792 DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, num_ports, 1), 1793 DEFINE_PROP_END_OF_LIST(), 1794 }; 1795 1796 static void sysbus_ahci_class_init(ObjectClass *klass, void *data) 1797 { 1798 DeviceClass *dc = DEVICE_CLASS(klass); 1799 1800 dc->realize = sysbus_ahci_realize; 1801 dc->vmsd = &vmstate_sysbus_ahci; 1802 device_class_set_props(dc, sysbus_ahci_properties); 1803 dc->reset = sysbus_ahci_reset; 1804 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 1805 } 1806 1807 static const TypeInfo sysbus_ahci_info = { 1808 .name = TYPE_SYSBUS_AHCI, 1809 .parent = TYPE_SYS_BUS_DEVICE, 1810 .instance_size = sizeof(SysbusAHCIState), 1811 .instance_init = sysbus_ahci_init, 1812 .class_init = sysbus_ahci_class_init, 1813 }; 1814 1815 static void sysbus_ahci_register_types(void) 1816 { 1817 type_register_static(&sysbus_ahci_info); 1818 } 1819 1820 type_init(sysbus_ahci_register_types) 1821 1822 int32_t ahci_get_num_ports(PCIDevice *dev) 1823 { 1824 AHCIPCIState *d = ICH9_AHCI(dev); 1825 AHCIState *ahci = &d->ahci; 1826 1827 return ahci->ports; 1828 } 1829 1830 void ahci_ide_create_devs(PCIDevice *dev, DriveInfo **hd) 1831 { 1832 AHCIPCIState *d = ICH9_AHCI(dev); 1833 AHCIState *ahci = &d->ahci; 1834 int i; 1835 1836 for (i = 0; i < ahci->ports; i++) { 1837 if (hd[i] == NULL) { 1838 continue; 1839 } 1840 ide_create_drive(&ahci->dev[i].port, 0, hd[i]); 1841 } 1842 1843 } 1844