1 /* 2 * QEMU AHCI Emulation 3 * 4 * Copyright (c) 2010 qiaochong@loongson.cn 5 * Copyright (c) 2010 Roland Elek <elek.roland@gmail.com> 6 * Copyright (c) 2010 Sebastian Herbszt <herbszt@gmx.de> 7 * Copyright (c) 2010 Alexander Graf <agraf@suse.de> 8 * 9 * This library is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Lesser General Public 11 * License as published by the Free Software Foundation; either 12 * version 2 of the License, or (at your option) any later version. 13 * 14 * This library is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Lesser General Public License for more details. 18 * 19 * You should have received a copy of the GNU Lesser General Public 20 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 21 * 22 */ 23 24 #include "qemu/osdep.h" 25 #include "hw/pci/msi.h" 26 #include "hw/pci/pci.h" 27 #include "hw/qdev-properties.h" 28 #include "migration/vmstate.h" 29 30 #include "qemu/error-report.h" 31 #include "qemu/log.h" 32 #include "qemu/main-loop.h" 33 #include "qemu/module.h" 34 #include "sysemu/block-backend.h" 35 #include "sysemu/dma.h" 36 #include "hw/ide/internal.h" 37 #include "hw/ide/pci.h" 38 #include "ahci_internal.h" 39 40 #include "trace.h" 41 42 static void check_cmd(AHCIState *s, int port); 43 static int handle_cmd(AHCIState *s, int port, uint8_t slot); 44 static void ahci_reset_port(AHCIState *s, int port); 45 static bool ahci_write_fis_d2h(AHCIDevice *ad); 46 static void ahci_init_d2h(AHCIDevice *ad); 47 static int ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit); 48 static bool ahci_map_clb_address(AHCIDevice *ad); 49 static bool ahci_map_fis_address(AHCIDevice *ad); 50 static void ahci_unmap_clb_address(AHCIDevice *ad); 51 static void ahci_unmap_fis_address(AHCIDevice *ad); 52 53 static const char *AHCIHostReg_lookup[AHCI_HOST_REG__COUNT] = { 54 [AHCI_HOST_REG_CAP] = "CAP", 55 [AHCI_HOST_REG_CTL] = "GHC", 56 [AHCI_HOST_REG_IRQ_STAT] = "IS", 57 [AHCI_HOST_REG_PORTS_IMPL] = "PI", 58 [AHCI_HOST_REG_VERSION] = "VS", 59 [AHCI_HOST_REG_CCC_CTL] = "CCC_CTL", 60 [AHCI_HOST_REG_CCC_PORTS] = "CCC_PORTS", 61 [AHCI_HOST_REG_EM_LOC] = "EM_LOC", 62 [AHCI_HOST_REG_EM_CTL] = "EM_CTL", 63 [AHCI_HOST_REG_CAP2] = "CAP2", 64 [AHCI_HOST_REG_BOHC] = "BOHC", 65 }; 66 67 static const char *AHCIPortReg_lookup[AHCI_PORT_REG__COUNT] = { 68 [AHCI_PORT_REG_LST_ADDR] = "PxCLB", 69 [AHCI_PORT_REG_LST_ADDR_HI] = "PxCLBU", 70 [AHCI_PORT_REG_FIS_ADDR] = "PxFB", 71 [AHCI_PORT_REG_FIS_ADDR_HI] = "PxFBU", 72 [AHCI_PORT_REG_IRQ_STAT] = "PxIS", 73 [AHCI_PORT_REG_IRQ_MASK] = "PXIE", 74 [AHCI_PORT_REG_CMD] = "PxCMD", 75 [7] = "Reserved", 76 [AHCI_PORT_REG_TFDATA] = "PxTFD", 77 [AHCI_PORT_REG_SIG] = "PxSIG", 78 [AHCI_PORT_REG_SCR_STAT] = "PxSSTS", 79 [AHCI_PORT_REG_SCR_CTL] = "PxSCTL", 80 [AHCI_PORT_REG_SCR_ERR] = "PxSERR", 81 [AHCI_PORT_REG_SCR_ACT] = "PxSACT", 82 [AHCI_PORT_REG_CMD_ISSUE] = "PxCI", 83 [AHCI_PORT_REG_SCR_NOTIF] = "PxSNTF", 84 [AHCI_PORT_REG_FIS_CTL] = "PxFBS", 85 [AHCI_PORT_REG_DEV_SLEEP] = "PxDEVSLP", 86 [18 ... 27] = "Reserved", 87 [AHCI_PORT_REG_VENDOR_1 ... 88 AHCI_PORT_REG_VENDOR_4] = "PxVS", 89 }; 90 91 static const char *AHCIPortIRQ_lookup[AHCI_PORT_IRQ__COUNT] = { 92 [AHCI_PORT_IRQ_BIT_DHRS] = "DHRS", 93 [AHCI_PORT_IRQ_BIT_PSS] = "PSS", 94 [AHCI_PORT_IRQ_BIT_DSS] = "DSS", 95 [AHCI_PORT_IRQ_BIT_SDBS] = "SDBS", 96 [AHCI_PORT_IRQ_BIT_UFS] = "UFS", 97 [AHCI_PORT_IRQ_BIT_DPS] = "DPS", 98 [AHCI_PORT_IRQ_BIT_PCS] = "PCS", 99 [AHCI_PORT_IRQ_BIT_DMPS] = "DMPS", 100 [8 ... 21] = "RESERVED", 101 [AHCI_PORT_IRQ_BIT_PRCS] = "PRCS", 102 [AHCI_PORT_IRQ_BIT_IPMS] = "IPMS", 103 [AHCI_PORT_IRQ_BIT_OFS] = "OFS", 104 [25] = "RESERVED", 105 [AHCI_PORT_IRQ_BIT_INFS] = "INFS", 106 [AHCI_PORT_IRQ_BIT_IFS] = "IFS", 107 [AHCI_PORT_IRQ_BIT_HBDS] = "HBDS", 108 [AHCI_PORT_IRQ_BIT_HBFS] = "HBFS", 109 [AHCI_PORT_IRQ_BIT_TFES] = "TFES", 110 [AHCI_PORT_IRQ_BIT_CPDS] = "CPDS" 111 }; 112 113 static uint32_t ahci_port_read(AHCIState *s, int port, int offset) 114 { 115 uint32_t val; 116 AHCIPortRegs *pr = &s->dev[port].port_regs; 117 enum AHCIPortReg regnum = offset / sizeof(uint32_t); 118 assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); 119 120 switch (regnum) { 121 case AHCI_PORT_REG_LST_ADDR: 122 val = pr->lst_addr; 123 break; 124 case AHCI_PORT_REG_LST_ADDR_HI: 125 val = pr->lst_addr_hi; 126 break; 127 case AHCI_PORT_REG_FIS_ADDR: 128 val = pr->fis_addr; 129 break; 130 case AHCI_PORT_REG_FIS_ADDR_HI: 131 val = pr->fis_addr_hi; 132 break; 133 case AHCI_PORT_REG_IRQ_STAT: 134 val = pr->irq_stat; 135 break; 136 case AHCI_PORT_REG_IRQ_MASK: 137 val = pr->irq_mask; 138 break; 139 case AHCI_PORT_REG_CMD: 140 val = pr->cmd; 141 break; 142 case AHCI_PORT_REG_TFDATA: 143 val = pr->tfdata; 144 break; 145 case AHCI_PORT_REG_SIG: 146 val = pr->sig; 147 break; 148 case AHCI_PORT_REG_SCR_STAT: 149 if (s->dev[port].port.ifs[0].blk) { 150 val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP | 151 SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE; 152 } else { 153 val = SATA_SCR_SSTATUS_DET_NODEV; 154 } 155 break; 156 case AHCI_PORT_REG_SCR_CTL: 157 val = pr->scr_ctl; 158 break; 159 case AHCI_PORT_REG_SCR_ERR: 160 val = pr->scr_err; 161 break; 162 case AHCI_PORT_REG_SCR_ACT: 163 val = pr->scr_act; 164 break; 165 case AHCI_PORT_REG_CMD_ISSUE: 166 val = pr->cmd_issue; 167 break; 168 default: 169 trace_ahci_port_read_default(s, port, AHCIPortReg_lookup[regnum], 170 offset); 171 val = 0; 172 } 173 174 trace_ahci_port_read(s, port, AHCIPortReg_lookup[regnum], offset, val); 175 return val; 176 } 177 178 static void ahci_irq_raise(AHCIState *s) 179 { 180 DeviceState *dev_state = s->container; 181 PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), 182 TYPE_PCI_DEVICE); 183 184 trace_ahci_irq_raise(s); 185 186 if (pci_dev && msi_enabled(pci_dev)) { 187 msi_notify(pci_dev, 0); 188 } else { 189 qemu_irq_raise(s->irq); 190 } 191 } 192 193 static void ahci_irq_lower(AHCIState *s) 194 { 195 DeviceState *dev_state = s->container; 196 PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), 197 TYPE_PCI_DEVICE); 198 199 trace_ahci_irq_lower(s); 200 201 if (!pci_dev || !msi_enabled(pci_dev)) { 202 qemu_irq_lower(s->irq); 203 } 204 } 205 206 static void ahci_check_irq(AHCIState *s) 207 { 208 int i; 209 uint32_t old_irq = s->control_regs.irqstatus; 210 211 s->control_regs.irqstatus = 0; 212 for (i = 0; i < s->ports; i++) { 213 AHCIPortRegs *pr = &s->dev[i].port_regs; 214 if (pr->irq_stat & pr->irq_mask) { 215 s->control_regs.irqstatus |= (1 << i); 216 } 217 } 218 trace_ahci_check_irq(s, old_irq, s->control_regs.irqstatus); 219 if (s->control_regs.irqstatus && 220 (s->control_regs.ghc & HOST_CTL_IRQ_EN)) { 221 ahci_irq_raise(s); 222 } else { 223 ahci_irq_lower(s); 224 } 225 } 226 227 static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d, 228 enum AHCIPortIRQ irqbit) 229 { 230 g_assert((unsigned)irqbit < 32); 231 uint32_t irq = 1U << irqbit; 232 uint32_t irqstat = d->port_regs.irq_stat | irq; 233 234 trace_ahci_trigger_irq(s, d->port_no, 235 AHCIPortIRQ_lookup[irqbit], irq, 236 d->port_regs.irq_stat, irqstat, 237 irqstat & d->port_regs.irq_mask); 238 239 d->port_regs.irq_stat = irqstat; 240 ahci_check_irq(s); 241 } 242 243 static void map_page(AddressSpace *as, uint8_t **ptr, uint64_t addr, 244 uint32_t wanted) 245 { 246 hwaddr len = wanted; 247 248 if (*ptr) { 249 dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); 250 } 251 252 *ptr = dma_memory_map(as, addr, &len, DMA_DIRECTION_FROM_DEVICE); 253 if (len < wanted) { 254 dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); 255 *ptr = NULL; 256 } 257 } 258 259 /** 260 * Check the cmd register to see if we should start or stop 261 * the DMA or FIS RX engines. 262 * 263 * @ad: Device to dis/engage. 264 * 265 * @return 0 on success, -1 on error. 266 */ 267 static int ahci_cond_start_engines(AHCIDevice *ad) 268 { 269 AHCIPortRegs *pr = &ad->port_regs; 270 bool cmd_start = pr->cmd & PORT_CMD_START; 271 bool cmd_on = pr->cmd & PORT_CMD_LIST_ON; 272 bool fis_start = pr->cmd & PORT_CMD_FIS_RX; 273 bool fis_on = pr->cmd & PORT_CMD_FIS_ON; 274 275 if (cmd_start && !cmd_on) { 276 if (!ahci_map_clb_address(ad)) { 277 pr->cmd &= ~PORT_CMD_START; 278 error_report("AHCI: Failed to start DMA engine: " 279 "bad command list buffer address"); 280 return -1; 281 } 282 } else if (!cmd_start && cmd_on) { 283 ahci_unmap_clb_address(ad); 284 } 285 286 if (fis_start && !fis_on) { 287 if (!ahci_map_fis_address(ad)) { 288 pr->cmd &= ~PORT_CMD_FIS_RX; 289 error_report("AHCI: Failed to start FIS receive engine: " 290 "bad FIS receive buffer address"); 291 return -1; 292 } 293 } else if (!fis_start && fis_on) { 294 ahci_unmap_fis_address(ad); 295 } 296 297 return 0; 298 } 299 300 static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val) 301 { 302 AHCIPortRegs *pr = &s->dev[port].port_regs; 303 enum AHCIPortReg regnum = offset / sizeof(uint32_t); 304 assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); 305 trace_ahci_port_write(s, port, AHCIPortReg_lookup[regnum], offset, val); 306 307 switch (regnum) { 308 case AHCI_PORT_REG_LST_ADDR: 309 pr->lst_addr = val; 310 break; 311 case AHCI_PORT_REG_LST_ADDR_HI: 312 pr->lst_addr_hi = val; 313 break; 314 case AHCI_PORT_REG_FIS_ADDR: 315 pr->fis_addr = val; 316 break; 317 case AHCI_PORT_REG_FIS_ADDR_HI: 318 pr->fis_addr_hi = val; 319 break; 320 case AHCI_PORT_REG_IRQ_STAT: 321 pr->irq_stat &= ~val; 322 ahci_check_irq(s); 323 break; 324 case AHCI_PORT_REG_IRQ_MASK: 325 pr->irq_mask = val & 0xfdc000ff; 326 ahci_check_irq(s); 327 break; 328 case AHCI_PORT_REG_CMD: 329 /* Block any Read-only fields from being set; 330 * including LIST_ON and FIS_ON. 331 * The spec requires to set ICC bits to zero after the ICC change 332 * is done. We don't support ICC state changes, therefore always 333 * force the ICC bits to zero. 334 */ 335 pr->cmd = (pr->cmd & PORT_CMD_RO_MASK) | 336 (val & ~(PORT_CMD_RO_MASK | PORT_CMD_ICC_MASK)); 337 338 /* Check FIS RX and CLB engines */ 339 ahci_cond_start_engines(&s->dev[port]); 340 341 /* XXX usually the FIS would be pending on the bus here and 342 issuing deferred until the OS enables FIS receival. 343 Instead, we only submit it once - which works in most 344 cases, but is a hack. */ 345 if ((pr->cmd & PORT_CMD_FIS_ON) && 346 !s->dev[port].init_d2h_sent) { 347 ahci_init_d2h(&s->dev[port]); 348 } 349 350 check_cmd(s, port); 351 break; 352 case AHCI_PORT_REG_TFDATA: 353 case AHCI_PORT_REG_SIG: 354 case AHCI_PORT_REG_SCR_STAT: 355 /* Read Only */ 356 break; 357 case AHCI_PORT_REG_SCR_CTL: 358 if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) && 359 ((val & AHCI_SCR_SCTL_DET) == 0)) { 360 ahci_reset_port(s, port); 361 } 362 pr->scr_ctl = val; 363 break; 364 case AHCI_PORT_REG_SCR_ERR: 365 pr->scr_err &= ~val; 366 break; 367 case AHCI_PORT_REG_SCR_ACT: 368 /* RW1 */ 369 pr->scr_act |= val; 370 break; 371 case AHCI_PORT_REG_CMD_ISSUE: 372 pr->cmd_issue |= val; 373 check_cmd(s, port); 374 break; 375 default: 376 trace_ahci_port_write_unimpl(s, port, AHCIPortReg_lookup[regnum], 377 offset, val); 378 qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " 379 "AHCI port %d register %s, offset 0x%x: 0x%"PRIx32, 380 port, AHCIPortReg_lookup[regnum], offset, val); 381 break; 382 } 383 } 384 385 static uint64_t ahci_mem_read_32(void *opaque, hwaddr addr) 386 { 387 AHCIState *s = opaque; 388 uint32_t val = 0; 389 390 if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { 391 enum AHCIHostReg regnum = addr / 4; 392 assert(regnum < AHCI_HOST_REG__COUNT); 393 394 switch (regnum) { 395 case AHCI_HOST_REG_CAP: 396 val = s->control_regs.cap; 397 break; 398 case AHCI_HOST_REG_CTL: 399 val = s->control_regs.ghc; 400 break; 401 case AHCI_HOST_REG_IRQ_STAT: 402 val = s->control_regs.irqstatus; 403 break; 404 case AHCI_HOST_REG_PORTS_IMPL: 405 val = s->control_regs.impl; 406 break; 407 case AHCI_HOST_REG_VERSION: 408 val = s->control_regs.version; 409 break; 410 default: 411 trace_ahci_mem_read_32_host_default(s, AHCIHostReg_lookup[regnum], 412 addr); 413 } 414 trace_ahci_mem_read_32_host(s, AHCIHostReg_lookup[regnum], addr, val); 415 } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && 416 (addr < (AHCI_PORT_REGS_START_ADDR + 417 (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { 418 val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, 419 addr & AHCI_PORT_ADDR_OFFSET_MASK); 420 } else { 421 trace_ahci_mem_read_32_default(s, addr, val); 422 } 423 424 trace_ahci_mem_read_32(s, addr, val); 425 return val; 426 } 427 428 429 /** 430 * AHCI 1.3 section 3 ("HBA Memory Registers") 431 * Support unaligned 8/16/32 bit reads, and 64 bit aligned reads. 432 * Caller is responsible for masking unwanted higher order bytes. 433 */ 434 static uint64_t ahci_mem_read(void *opaque, hwaddr addr, unsigned size) 435 { 436 hwaddr aligned = addr & ~0x3; 437 int ofst = addr - aligned; 438 uint64_t lo = ahci_mem_read_32(opaque, aligned); 439 uint64_t hi; 440 uint64_t val; 441 442 /* if < 8 byte read does not cross 4 byte boundary */ 443 if (ofst + size <= 4) { 444 val = lo >> (ofst * 8); 445 } else { 446 g_assert(size > 1); 447 448 /* If the 64bit read is unaligned, we will produce undefined 449 * results. AHCI does not support unaligned 64bit reads. */ 450 hi = ahci_mem_read_32(opaque, aligned + 4); 451 val = (hi << 32 | lo) >> (ofst * 8); 452 } 453 454 trace_ahci_mem_read(opaque, size, addr, val); 455 return val; 456 } 457 458 459 static void ahci_mem_write(void *opaque, hwaddr addr, 460 uint64_t val, unsigned size) 461 { 462 AHCIState *s = opaque; 463 464 trace_ahci_mem_write(s, size, addr, val); 465 466 /* Only aligned reads are allowed on AHCI */ 467 if (addr & 3) { 468 fprintf(stderr, "ahci: Mis-aligned write to addr 0x" 469 TARGET_FMT_plx "\n", addr); 470 return; 471 } 472 473 if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { 474 enum AHCIHostReg regnum = addr / 4; 475 assert(regnum < AHCI_HOST_REG__COUNT); 476 477 switch (regnum) { 478 case AHCI_HOST_REG_CAP: /* R/WO, RO */ 479 /* FIXME handle R/WO */ 480 break; 481 case AHCI_HOST_REG_CTL: /* R/W */ 482 if (val & HOST_CTL_RESET) { 483 ahci_reset(s); 484 } else { 485 s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN; 486 ahci_check_irq(s); 487 } 488 break; 489 case AHCI_HOST_REG_IRQ_STAT: /* R/WC, RO */ 490 s->control_regs.irqstatus &= ~val; 491 ahci_check_irq(s); 492 break; 493 case AHCI_HOST_REG_PORTS_IMPL: /* R/WO, RO */ 494 /* FIXME handle R/WO */ 495 break; 496 case AHCI_HOST_REG_VERSION: /* RO */ 497 /* FIXME report write? */ 498 break; 499 default: 500 qemu_log_mask(LOG_UNIMP, 501 "Attempted write to unimplemented register: " 502 "AHCI host register %s, " 503 "offset 0x%"PRIx64": 0x%"PRIx64, 504 AHCIHostReg_lookup[regnum], addr, val); 505 trace_ahci_mem_write_host_unimpl(s, size, 506 AHCIHostReg_lookup[regnum], addr); 507 } 508 trace_ahci_mem_write_host(s, size, AHCIHostReg_lookup[regnum], 509 addr, val); 510 } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && 511 (addr < (AHCI_PORT_REGS_START_ADDR + 512 (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { 513 ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, 514 addr & AHCI_PORT_ADDR_OFFSET_MASK, val); 515 } else { 516 qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " 517 "AHCI global register at offset 0x%"PRIx64": 0x%"PRIx64, 518 addr, val); 519 trace_ahci_mem_write_unimpl(s, size, addr, val); 520 } 521 } 522 523 static const MemoryRegionOps ahci_mem_ops = { 524 .read = ahci_mem_read, 525 .write = ahci_mem_write, 526 .endianness = DEVICE_LITTLE_ENDIAN, 527 }; 528 529 static uint64_t ahci_idp_read(void *opaque, hwaddr addr, 530 unsigned size) 531 { 532 AHCIState *s = opaque; 533 534 if (addr == s->idp_offset) { 535 /* index register */ 536 return s->idp_index; 537 } else if (addr == s->idp_offset + 4) { 538 /* data register - do memory read at location selected by index */ 539 return ahci_mem_read(opaque, s->idp_index, size); 540 } else { 541 return 0; 542 } 543 } 544 545 static void ahci_idp_write(void *opaque, hwaddr addr, 546 uint64_t val, unsigned size) 547 { 548 AHCIState *s = opaque; 549 550 if (addr == s->idp_offset) { 551 /* index register - mask off reserved bits */ 552 s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3); 553 } else if (addr == s->idp_offset + 4) { 554 /* data register - do memory write at location selected by index */ 555 ahci_mem_write(opaque, s->idp_index, val, size); 556 } 557 } 558 559 static const MemoryRegionOps ahci_idp_ops = { 560 .read = ahci_idp_read, 561 .write = ahci_idp_write, 562 .endianness = DEVICE_LITTLE_ENDIAN, 563 }; 564 565 566 static void ahci_reg_init(AHCIState *s) 567 { 568 int i; 569 570 s->control_regs.cap = (s->ports - 1) | 571 (AHCI_NUM_COMMAND_SLOTS << 8) | 572 (AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) | 573 HOST_CAP_NCQ | HOST_CAP_AHCI | HOST_CAP_64; 574 575 s->control_regs.impl = (1 << s->ports) - 1; 576 577 s->control_regs.version = AHCI_VERSION_1_0; 578 579 for (i = 0; i < s->ports; i++) { 580 s->dev[i].port_state = STATE_RUN; 581 } 582 } 583 584 static void check_cmd(AHCIState *s, int port) 585 { 586 AHCIPortRegs *pr = &s->dev[port].port_regs; 587 uint8_t slot; 588 589 if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) { 590 for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) { 591 if ((pr->cmd_issue & (1U << slot)) && 592 !handle_cmd(s, port, slot)) { 593 pr->cmd_issue &= ~(1U << slot); 594 } 595 } 596 } 597 } 598 599 static void ahci_check_cmd_bh(void *opaque) 600 { 601 AHCIDevice *ad = opaque; 602 603 qemu_bh_delete(ad->check_bh); 604 ad->check_bh = NULL; 605 606 check_cmd(ad->hba, ad->port_no); 607 } 608 609 static void ahci_init_d2h(AHCIDevice *ad) 610 { 611 IDEState *ide_state = &ad->port.ifs[0]; 612 AHCIPortRegs *pr = &ad->port_regs; 613 614 if (ad->init_d2h_sent) { 615 return; 616 } 617 618 if (ahci_write_fis_d2h(ad)) { 619 ad->init_d2h_sent = true; 620 /* We're emulating receiving the first Reg H2D Fis from the device; 621 * Update the SIG register, but otherwise proceed as normal. */ 622 pr->sig = ((uint32_t)ide_state->hcyl << 24) | 623 (ide_state->lcyl << 16) | 624 (ide_state->sector << 8) | 625 (ide_state->nsector & 0xFF); 626 } 627 } 628 629 static void ahci_set_signature(AHCIDevice *ad, uint32_t sig) 630 { 631 IDEState *s = &ad->port.ifs[0]; 632 s->hcyl = sig >> 24 & 0xFF; 633 s->lcyl = sig >> 16 & 0xFF; 634 s->sector = sig >> 8 & 0xFF; 635 s->nsector = sig & 0xFF; 636 637 trace_ahci_set_signature(ad->hba, ad->port_no, s->nsector, s->sector, 638 s->lcyl, s->hcyl, sig); 639 } 640 641 static void ahci_reset_port(AHCIState *s, int port) 642 { 643 AHCIDevice *d = &s->dev[port]; 644 AHCIPortRegs *pr = &d->port_regs; 645 IDEState *ide_state = &d->port.ifs[0]; 646 int i; 647 648 trace_ahci_reset_port(s, port); 649 650 ide_bus_reset(&d->port); 651 ide_state->ncq_queues = AHCI_MAX_CMDS; 652 653 pr->scr_stat = 0; 654 pr->scr_err = 0; 655 pr->scr_act = 0; 656 pr->tfdata = 0x7F; 657 pr->sig = 0xFFFFFFFF; 658 d->busy_slot = -1; 659 d->init_d2h_sent = false; 660 661 ide_state = &s->dev[port].port.ifs[0]; 662 if (!ide_state->blk) { 663 return; 664 } 665 666 /* reset ncq queue */ 667 for (i = 0; i < AHCI_MAX_CMDS; i++) { 668 NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i]; 669 ncq_tfs->halt = false; 670 if (!ncq_tfs->used) { 671 continue; 672 } 673 674 if (ncq_tfs->aiocb) { 675 blk_aio_cancel(ncq_tfs->aiocb); 676 ncq_tfs->aiocb = NULL; 677 } 678 679 /* Maybe we just finished the request thanks to blk_aio_cancel() */ 680 if (!ncq_tfs->used) { 681 continue; 682 } 683 684 qemu_sglist_destroy(&ncq_tfs->sglist); 685 ncq_tfs->used = 0; 686 } 687 688 s->dev[port].port_state = STATE_RUN; 689 if (ide_state->drive_kind == IDE_CD) { 690 ahci_set_signature(d, SATA_SIGNATURE_CDROM);\ 691 ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT; 692 } else { 693 ahci_set_signature(d, SATA_SIGNATURE_DISK); 694 ide_state->status = SEEK_STAT | WRERR_STAT; 695 } 696 697 ide_state->error = 1; 698 ahci_init_d2h(d); 699 } 700 701 /* Buffer pretty output based on a raw FIS structure. */ 702 static char *ahci_pretty_buffer_fis(uint8_t *fis, int cmd_len) 703 { 704 int i; 705 GString *s = g_string_new("FIS:"); 706 707 for (i = 0; i < cmd_len; i++) { 708 if ((i & 0xf) == 0) { 709 g_string_append_printf(s, "\n0x%02x: ", i); 710 } 711 g_string_append_printf(s, "%02x ", fis[i]); 712 } 713 g_string_append_c(s, '\n'); 714 715 return g_string_free(s, FALSE); 716 } 717 718 static bool ahci_map_fis_address(AHCIDevice *ad) 719 { 720 AHCIPortRegs *pr = &ad->port_regs; 721 map_page(ad->hba->as, &ad->res_fis, 722 ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); 723 if (ad->res_fis != NULL) { 724 pr->cmd |= PORT_CMD_FIS_ON; 725 return true; 726 } 727 728 pr->cmd &= ~PORT_CMD_FIS_ON; 729 return false; 730 } 731 732 static void ahci_unmap_fis_address(AHCIDevice *ad) 733 { 734 if (ad->res_fis == NULL) { 735 trace_ahci_unmap_fis_address_null(ad->hba, ad->port_no); 736 return; 737 } 738 ad->port_regs.cmd &= ~PORT_CMD_FIS_ON; 739 dma_memory_unmap(ad->hba->as, ad->res_fis, 256, 740 DMA_DIRECTION_FROM_DEVICE, 256); 741 ad->res_fis = NULL; 742 } 743 744 static bool ahci_map_clb_address(AHCIDevice *ad) 745 { 746 AHCIPortRegs *pr = &ad->port_regs; 747 ad->cur_cmd = NULL; 748 map_page(ad->hba->as, &ad->lst, 749 ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); 750 if (ad->lst != NULL) { 751 pr->cmd |= PORT_CMD_LIST_ON; 752 return true; 753 } 754 755 pr->cmd &= ~PORT_CMD_LIST_ON; 756 return false; 757 } 758 759 static void ahci_unmap_clb_address(AHCIDevice *ad) 760 { 761 if (ad->lst == NULL) { 762 trace_ahci_unmap_clb_address_null(ad->hba, ad->port_no); 763 return; 764 } 765 ad->port_regs.cmd &= ~PORT_CMD_LIST_ON; 766 dma_memory_unmap(ad->hba->as, ad->lst, 1024, 767 DMA_DIRECTION_FROM_DEVICE, 1024); 768 ad->lst = NULL; 769 } 770 771 static void ahci_write_fis_sdb(AHCIState *s, NCQTransferState *ncq_tfs) 772 { 773 AHCIDevice *ad = ncq_tfs->drive; 774 AHCIPortRegs *pr = &ad->port_regs; 775 IDEState *ide_state; 776 SDBFIS *sdb_fis; 777 778 if (!ad->res_fis || 779 !(pr->cmd & PORT_CMD_FIS_RX)) { 780 return; 781 } 782 783 sdb_fis = (SDBFIS *)&ad->res_fis[RES_FIS_SDBFIS]; 784 ide_state = &ad->port.ifs[0]; 785 786 sdb_fis->type = SATA_FIS_TYPE_SDB; 787 /* Interrupt pending & Notification bit */ 788 sdb_fis->flags = 0x40; /* Interrupt bit, always 1 for NCQ */ 789 sdb_fis->status = ide_state->status & 0x77; 790 sdb_fis->error = ide_state->error; 791 /* update SAct field in SDB_FIS */ 792 sdb_fis->payload = cpu_to_le32(ad->finished); 793 794 /* Update shadow registers (except BSY 0x80 and DRQ 0x08) */ 795 pr->tfdata = (ad->port.ifs[0].error << 8) | 796 (ad->port.ifs[0].status & 0x77) | 797 (pr->tfdata & 0x88); 798 pr->scr_act &= ~ad->finished; 799 ad->finished = 0; 800 801 /* Trigger IRQ if interrupt bit is set (which currently, it always is) */ 802 if (sdb_fis->flags & 0x40) { 803 ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_SDBS); 804 } 805 } 806 807 static void ahci_write_fis_pio(AHCIDevice *ad, uint16_t len, bool pio_fis_i) 808 { 809 AHCIPortRegs *pr = &ad->port_regs; 810 uint8_t *pio_fis; 811 IDEState *s = &ad->port.ifs[0]; 812 813 if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { 814 return; 815 } 816 817 pio_fis = &ad->res_fis[RES_FIS_PSFIS]; 818 819 pio_fis[0] = SATA_FIS_TYPE_PIO_SETUP; 820 pio_fis[1] = (pio_fis_i ? (1 << 6) : 0); 821 pio_fis[2] = s->status; 822 pio_fis[3] = s->error; 823 824 pio_fis[4] = s->sector; 825 pio_fis[5] = s->lcyl; 826 pio_fis[6] = s->hcyl; 827 pio_fis[7] = s->select; 828 pio_fis[8] = s->hob_sector; 829 pio_fis[9] = s->hob_lcyl; 830 pio_fis[10] = s->hob_hcyl; 831 pio_fis[11] = 0; 832 pio_fis[12] = s->nsector & 0xFF; 833 pio_fis[13] = (s->nsector >> 8) & 0xFF; 834 pio_fis[14] = 0; 835 pio_fis[15] = s->status; 836 pio_fis[16] = len & 255; 837 pio_fis[17] = len >> 8; 838 pio_fis[18] = 0; 839 pio_fis[19] = 0; 840 841 /* Update shadow registers: */ 842 pr->tfdata = (ad->port.ifs[0].error << 8) | 843 ad->port.ifs[0].status; 844 845 if (pio_fis[2] & ERR_STAT) { 846 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); 847 } 848 } 849 850 static bool ahci_write_fis_d2h(AHCIDevice *ad) 851 { 852 AHCIPortRegs *pr = &ad->port_regs; 853 uint8_t *d2h_fis; 854 int i; 855 IDEState *s = &ad->port.ifs[0]; 856 857 if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { 858 return false; 859 } 860 861 d2h_fis = &ad->res_fis[RES_FIS_RFIS]; 862 863 d2h_fis[0] = SATA_FIS_TYPE_REGISTER_D2H; 864 d2h_fis[1] = (1 << 6); /* interrupt bit */ 865 d2h_fis[2] = s->status; 866 d2h_fis[3] = s->error; 867 868 d2h_fis[4] = s->sector; 869 d2h_fis[5] = s->lcyl; 870 d2h_fis[6] = s->hcyl; 871 d2h_fis[7] = s->select; 872 d2h_fis[8] = s->hob_sector; 873 d2h_fis[9] = s->hob_lcyl; 874 d2h_fis[10] = s->hob_hcyl; 875 d2h_fis[11] = 0; 876 d2h_fis[12] = s->nsector & 0xFF; 877 d2h_fis[13] = (s->nsector >> 8) & 0xFF; 878 for (i = 14; i < 20; i++) { 879 d2h_fis[i] = 0; 880 } 881 882 /* Update shadow registers: */ 883 pr->tfdata = (ad->port.ifs[0].error << 8) | 884 ad->port.ifs[0].status; 885 886 if (d2h_fis[2] & ERR_STAT) { 887 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); 888 } 889 890 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_DHRS); 891 return true; 892 } 893 894 static int prdt_tbl_entry_size(const AHCI_SG *tbl) 895 { 896 /* flags_size is zero-based */ 897 return (le32_to_cpu(tbl->flags_size) & AHCI_PRDT_SIZE_MASK) + 1; 898 } 899 900 /** 901 * Fetch entries in a guest-provided PRDT and convert it into a QEMU SGlist. 902 * @ad: The AHCIDevice for whom we are building the SGList. 903 * @sglist: The SGList target to add PRD entries to. 904 * @cmd: The AHCI Command Header that describes where the PRDT is. 905 * @limit: The remaining size of the S/ATA transaction, in bytes. 906 * @offset: The number of bytes already transferred, in bytes. 907 * 908 * The AHCI PRDT can describe up to 256GiB. S/ATA only support transactions of 909 * up to 32MiB as of ATA8-ACS3 rev 1b, assuming a 512 byte sector size. We stop 910 * building the sglist from the PRDT as soon as we hit @limit bytes, 911 * which is <= INT32_MAX/2GiB. 912 */ 913 static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist, 914 AHCICmdHdr *cmd, int64_t limit, uint64_t offset) 915 { 916 uint16_t opts = le16_to_cpu(cmd->opts); 917 uint16_t prdtl = le16_to_cpu(cmd->prdtl); 918 uint64_t cfis_addr = le64_to_cpu(cmd->tbl_addr); 919 uint64_t prdt_addr = cfis_addr + 0x80; 920 dma_addr_t prdt_len = (prdtl * sizeof(AHCI_SG)); 921 dma_addr_t real_prdt_len = prdt_len; 922 uint8_t *prdt; 923 int i; 924 int r = 0; 925 uint64_t sum = 0; 926 int off_idx = -1; 927 int64_t off_pos = -1; 928 int tbl_entry_size; 929 IDEBus *bus = &ad->port; 930 BusState *qbus = BUS(bus); 931 932 trace_ahci_populate_sglist(ad->hba, ad->port_no); 933 934 if (!prdtl) { 935 trace_ahci_populate_sglist_no_prdtl(ad->hba, ad->port_no, opts); 936 return -1; 937 } 938 939 /* map PRDT */ 940 if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len, 941 DMA_DIRECTION_TO_DEVICE))){ 942 trace_ahci_populate_sglist_no_map(ad->hba, ad->port_no); 943 return -1; 944 } 945 946 if (prdt_len < real_prdt_len) { 947 trace_ahci_populate_sglist_short_map(ad->hba, ad->port_no); 948 r = -1; 949 goto out; 950 } 951 952 /* Get entries in the PRDT, init a qemu sglist accordingly */ 953 if (prdtl > 0) { 954 AHCI_SG *tbl = (AHCI_SG *)prdt; 955 sum = 0; 956 for (i = 0; i < prdtl; i++) { 957 tbl_entry_size = prdt_tbl_entry_size(&tbl[i]); 958 if (offset < (sum + tbl_entry_size)) { 959 off_idx = i; 960 off_pos = offset - sum; 961 break; 962 } 963 sum += tbl_entry_size; 964 } 965 if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) { 966 trace_ahci_populate_sglist_bad_offset(ad->hba, ad->port_no, 967 off_idx, off_pos); 968 r = -1; 969 goto out; 970 } 971 972 qemu_sglist_init(sglist, qbus->parent, (prdtl - off_idx), 973 ad->hba->as); 974 qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr) + off_pos, 975 MIN(prdt_tbl_entry_size(&tbl[off_idx]) - off_pos, 976 limit)); 977 978 for (i = off_idx + 1; i < prdtl && sglist->size < limit; i++) { 979 qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr), 980 MIN(prdt_tbl_entry_size(&tbl[i]), 981 limit - sglist->size)); 982 } 983 } 984 985 out: 986 dma_memory_unmap(ad->hba->as, prdt, prdt_len, 987 DMA_DIRECTION_TO_DEVICE, prdt_len); 988 return r; 989 } 990 991 static void ncq_err(NCQTransferState *ncq_tfs) 992 { 993 IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; 994 995 ide_state->error = ABRT_ERR; 996 ide_state->status = READY_STAT | ERR_STAT; 997 ncq_tfs->drive->port_regs.scr_err |= (1 << ncq_tfs->tag); 998 qemu_sglist_destroy(&ncq_tfs->sglist); 999 ncq_tfs->used = 0; 1000 } 1001 1002 static void ncq_finish(NCQTransferState *ncq_tfs) 1003 { 1004 /* If we didn't error out, set our finished bit. Errored commands 1005 * do not get a bit set for the SDB FIS ACT register, nor do they 1006 * clear the outstanding bit in scr_act (PxSACT). */ 1007 if (!(ncq_tfs->drive->port_regs.scr_err & (1 << ncq_tfs->tag))) { 1008 ncq_tfs->drive->finished |= (1 << ncq_tfs->tag); 1009 } 1010 1011 ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs); 1012 1013 trace_ncq_finish(ncq_tfs->drive->hba, ncq_tfs->drive->port_no, 1014 ncq_tfs->tag); 1015 1016 block_acct_done(blk_get_stats(ncq_tfs->drive->port.ifs[0].blk), 1017 &ncq_tfs->acct); 1018 qemu_sglist_destroy(&ncq_tfs->sglist); 1019 ncq_tfs->used = 0; 1020 } 1021 1022 static void ncq_cb(void *opaque, int ret) 1023 { 1024 NCQTransferState *ncq_tfs = (NCQTransferState *)opaque; 1025 IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; 1026 1027 ncq_tfs->aiocb = NULL; 1028 1029 if (ret < 0) { 1030 bool is_read = ncq_tfs->cmd == READ_FPDMA_QUEUED; 1031 BlockErrorAction action = blk_get_error_action(ide_state->blk, 1032 is_read, -ret); 1033 if (action == BLOCK_ERROR_ACTION_STOP) { 1034 ncq_tfs->halt = true; 1035 ide_state->bus->error_status = IDE_RETRY_HBA; 1036 } else if (action == BLOCK_ERROR_ACTION_REPORT) { 1037 ncq_err(ncq_tfs); 1038 } 1039 blk_error_action(ide_state->blk, action, is_read, -ret); 1040 } else { 1041 ide_state->status = READY_STAT | SEEK_STAT; 1042 } 1043 1044 if (!ncq_tfs->halt) { 1045 ncq_finish(ncq_tfs); 1046 } 1047 } 1048 1049 static int is_ncq(uint8_t ata_cmd) 1050 { 1051 /* Based on SATA 3.2 section 13.6.3.2 */ 1052 switch (ata_cmd) { 1053 case READ_FPDMA_QUEUED: 1054 case WRITE_FPDMA_QUEUED: 1055 case NCQ_NON_DATA: 1056 case RECEIVE_FPDMA_QUEUED: 1057 case SEND_FPDMA_QUEUED: 1058 return 1; 1059 default: 1060 return 0; 1061 } 1062 } 1063 1064 static void execute_ncq_command(NCQTransferState *ncq_tfs) 1065 { 1066 AHCIDevice *ad = ncq_tfs->drive; 1067 IDEState *ide_state = &ad->port.ifs[0]; 1068 int port = ad->port_no; 1069 1070 g_assert(is_ncq(ncq_tfs->cmd)); 1071 ncq_tfs->halt = false; 1072 1073 switch (ncq_tfs->cmd) { 1074 case READ_FPDMA_QUEUED: 1075 trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag, 1076 ncq_tfs->sector_count, ncq_tfs->lba); 1077 dma_acct_start(ide_state->blk, &ncq_tfs->acct, 1078 &ncq_tfs->sglist, BLOCK_ACCT_READ); 1079 ncq_tfs->aiocb = dma_blk_read(ide_state->blk, &ncq_tfs->sglist, 1080 ncq_tfs->lba << BDRV_SECTOR_BITS, 1081 BDRV_SECTOR_SIZE, 1082 ncq_cb, ncq_tfs); 1083 break; 1084 case WRITE_FPDMA_QUEUED: 1085 trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag, 1086 ncq_tfs->sector_count, ncq_tfs->lba); 1087 dma_acct_start(ide_state->blk, &ncq_tfs->acct, 1088 &ncq_tfs->sglist, BLOCK_ACCT_WRITE); 1089 ncq_tfs->aiocb = dma_blk_write(ide_state->blk, &ncq_tfs->sglist, 1090 ncq_tfs->lba << BDRV_SECTOR_BITS, 1091 BDRV_SECTOR_SIZE, 1092 ncq_cb, ncq_tfs); 1093 break; 1094 default: 1095 trace_execute_ncq_command_unsup(ad->hba, port, 1096 ncq_tfs->tag, ncq_tfs->cmd); 1097 ncq_err(ncq_tfs); 1098 } 1099 } 1100 1101 1102 static void process_ncq_command(AHCIState *s, int port, uint8_t *cmd_fis, 1103 uint8_t slot) 1104 { 1105 AHCIDevice *ad = &s->dev[port]; 1106 NCQFrame *ncq_fis = (NCQFrame*)cmd_fis; 1107 uint8_t tag = ncq_fis->tag >> 3; 1108 NCQTransferState *ncq_tfs = &ad->ncq_tfs[tag]; 1109 size_t size; 1110 1111 g_assert(is_ncq(ncq_fis->command)); 1112 if (ncq_tfs->used) { 1113 /* error - already in use */ 1114 fprintf(stderr, "%s: tag %d already used\n", __func__, tag); 1115 return; 1116 } 1117 1118 ncq_tfs->used = 1; 1119 ncq_tfs->drive = ad; 1120 ncq_tfs->slot = slot; 1121 ncq_tfs->cmdh = &((AHCICmdHdr *)ad->lst)[slot]; 1122 ncq_tfs->cmd = ncq_fis->command; 1123 ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) | 1124 ((uint64_t)ncq_fis->lba4 << 32) | 1125 ((uint64_t)ncq_fis->lba3 << 24) | 1126 ((uint64_t)ncq_fis->lba2 << 16) | 1127 ((uint64_t)ncq_fis->lba1 << 8) | 1128 (uint64_t)ncq_fis->lba0; 1129 ncq_tfs->tag = tag; 1130 1131 /* Sanity-check the NCQ packet */ 1132 if (tag != slot) { 1133 trace_process_ncq_command_mismatch(s, port, tag, slot); 1134 } 1135 1136 if (ncq_fis->aux0 || ncq_fis->aux1 || ncq_fis->aux2 || ncq_fis->aux3) { 1137 trace_process_ncq_command_aux(s, port, tag); 1138 } 1139 if (ncq_fis->prio || ncq_fis->icc) { 1140 trace_process_ncq_command_prioicc(s, port, tag); 1141 } 1142 if (ncq_fis->fua & NCQ_FIS_FUA_MASK) { 1143 trace_process_ncq_command_fua(s, port, tag); 1144 } 1145 if (ncq_fis->tag & NCQ_FIS_RARC_MASK) { 1146 trace_process_ncq_command_rarc(s, port, tag); 1147 } 1148 1149 ncq_tfs->sector_count = ((ncq_fis->sector_count_high << 8) | 1150 ncq_fis->sector_count_low); 1151 if (!ncq_tfs->sector_count) { 1152 ncq_tfs->sector_count = 0x10000; 1153 } 1154 size = ncq_tfs->sector_count * BDRV_SECTOR_SIZE; 1155 ahci_populate_sglist(ad, &ncq_tfs->sglist, ncq_tfs->cmdh, size, 0); 1156 1157 if (ncq_tfs->sglist.size < size) { 1158 error_report("ahci: PRDT length for NCQ command (0x%zx) " 1159 "is smaller than the requested size (0x%zx)", 1160 ncq_tfs->sglist.size, size); 1161 ncq_err(ncq_tfs); 1162 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_OFS); 1163 return; 1164 } else if (ncq_tfs->sglist.size != size) { 1165 trace_process_ncq_command_large(s, port, tag, 1166 ncq_tfs->sglist.size, size); 1167 } 1168 1169 trace_process_ncq_command(s, port, tag, 1170 ncq_fis->command, 1171 ncq_tfs->lba, 1172 ncq_tfs->lba + ncq_tfs->sector_count - 1); 1173 execute_ncq_command(ncq_tfs); 1174 } 1175 1176 static AHCICmdHdr *get_cmd_header(AHCIState *s, uint8_t port, uint8_t slot) 1177 { 1178 if (port >= s->ports || slot >= AHCI_MAX_CMDS) { 1179 return NULL; 1180 } 1181 1182 return s->dev[port].lst ? &((AHCICmdHdr *)s->dev[port].lst)[slot] : NULL; 1183 } 1184 1185 static void handle_reg_h2d_fis(AHCIState *s, int port, 1186 uint8_t slot, uint8_t *cmd_fis) 1187 { 1188 IDEState *ide_state = &s->dev[port].port.ifs[0]; 1189 AHCICmdHdr *cmd = get_cmd_header(s, port, slot); 1190 uint16_t opts = le16_to_cpu(cmd->opts); 1191 1192 if (cmd_fis[1] & 0x0F) { 1193 trace_handle_reg_h2d_fis_pmp(s, port, cmd_fis[1], 1194 cmd_fis[2], cmd_fis[3]); 1195 return; 1196 } 1197 1198 if (cmd_fis[1] & 0x70) { 1199 trace_handle_reg_h2d_fis_res(s, port, cmd_fis[1], 1200 cmd_fis[2], cmd_fis[3]); 1201 return; 1202 } 1203 1204 if (!(cmd_fis[1] & SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER)) { 1205 switch (s->dev[port].port_state) { 1206 case STATE_RUN: 1207 if (cmd_fis[15] & ATA_SRST) { 1208 s->dev[port].port_state = STATE_RESET; 1209 } 1210 break; 1211 case STATE_RESET: 1212 if (!(cmd_fis[15] & ATA_SRST)) { 1213 ahci_reset_port(s, port); 1214 } 1215 break; 1216 } 1217 return; 1218 } 1219 1220 /* Check for NCQ command */ 1221 if (is_ncq(cmd_fis[2])) { 1222 process_ncq_command(s, port, cmd_fis, slot); 1223 return; 1224 } 1225 1226 /* Decompose the FIS: 1227 * AHCI does not interpret FIS packets, it only forwards them. 1228 * SATA 1.0 describes how to decode LBA28 and CHS FIS packets. 1229 * Later specifications, e.g, SATA 3.2, describe LBA48 FIS packets. 1230 * 1231 * ATA4 describes sector number for LBA28/CHS commands. 1232 * ATA6 describes sector number for LBA48 commands. 1233 * ATA8 deprecates CHS fully, describing only LBA28/48. 1234 * 1235 * We dutifully convert the FIS into IDE registers, and allow the 1236 * core layer to interpret them as needed. */ 1237 ide_state->feature = cmd_fis[3]; 1238 ide_state->sector = cmd_fis[4]; /* LBA 7:0 */ 1239 ide_state->lcyl = cmd_fis[5]; /* LBA 15:8 */ 1240 ide_state->hcyl = cmd_fis[6]; /* LBA 23:16 */ 1241 ide_state->select = cmd_fis[7]; /* LBA 27:24 (LBA28) */ 1242 ide_state->hob_sector = cmd_fis[8]; /* LBA 31:24 */ 1243 ide_state->hob_lcyl = cmd_fis[9]; /* LBA 39:32 */ 1244 ide_state->hob_hcyl = cmd_fis[10]; /* LBA 47:40 */ 1245 ide_state->hob_feature = cmd_fis[11]; 1246 ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]); 1247 /* 14, 16, 17, 18, 19: Reserved (SATA 1.0) */ 1248 /* 15: Only valid when UPDATE_COMMAND not set. */ 1249 1250 /* Copy the ACMD field (ATAPI packet, if any) from the AHCI command 1251 * table to ide_state->io_buffer */ 1252 if (opts & AHCI_CMD_ATAPI) { 1253 memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10); 1254 if (trace_event_get_state_backends(TRACE_HANDLE_REG_H2D_FIS_DUMP)) { 1255 char *pretty_fis = ahci_pretty_buffer_fis(ide_state->io_buffer, 0x10); 1256 trace_handle_reg_h2d_fis_dump(s, port, pretty_fis); 1257 g_free(pretty_fis); 1258 } 1259 } 1260 1261 ide_state->error = 0; 1262 s->dev[port].done_first_drq = false; 1263 /* Reset transferred byte counter */ 1264 cmd->status = 0; 1265 1266 /* We're ready to process the command in FIS byte 2. */ 1267 ide_exec_cmd(&s->dev[port].port, cmd_fis[2]); 1268 } 1269 1270 static int handle_cmd(AHCIState *s, int port, uint8_t slot) 1271 { 1272 IDEState *ide_state; 1273 uint64_t tbl_addr; 1274 AHCICmdHdr *cmd; 1275 uint8_t *cmd_fis; 1276 dma_addr_t cmd_len; 1277 1278 if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { 1279 /* Engine currently busy, try again later */ 1280 trace_handle_cmd_busy(s, port); 1281 return -1; 1282 } 1283 1284 if (!s->dev[port].lst) { 1285 trace_handle_cmd_nolist(s, port); 1286 return -1; 1287 } 1288 cmd = get_cmd_header(s, port, slot); 1289 /* remember current slot handle for later */ 1290 s->dev[port].cur_cmd = cmd; 1291 1292 /* The device we are working for */ 1293 ide_state = &s->dev[port].port.ifs[0]; 1294 if (!ide_state->blk) { 1295 trace_handle_cmd_badport(s, port); 1296 return -1; 1297 } 1298 1299 tbl_addr = le64_to_cpu(cmd->tbl_addr); 1300 cmd_len = 0x80; 1301 cmd_fis = dma_memory_map(s->as, tbl_addr, &cmd_len, 1302 DMA_DIRECTION_FROM_DEVICE); 1303 if (!cmd_fis) { 1304 trace_handle_cmd_badfis(s, port); 1305 return -1; 1306 } else if (cmd_len != 0x80) { 1307 ahci_trigger_irq(s, &s->dev[port], AHCI_PORT_IRQ_BIT_HBFS); 1308 trace_handle_cmd_badmap(s, port, cmd_len); 1309 goto out; 1310 } 1311 if (trace_event_get_state_backends(TRACE_HANDLE_CMD_FIS_DUMP)) { 1312 char *pretty_fis = ahci_pretty_buffer_fis(cmd_fis, 0x80); 1313 trace_handle_cmd_fis_dump(s, port, pretty_fis); 1314 g_free(pretty_fis); 1315 } 1316 switch (cmd_fis[0]) { 1317 case SATA_FIS_TYPE_REGISTER_H2D: 1318 handle_reg_h2d_fis(s, port, slot, cmd_fis); 1319 break; 1320 default: 1321 trace_handle_cmd_unhandled_fis(s, port, 1322 cmd_fis[0], cmd_fis[1], cmd_fis[2]); 1323 break; 1324 } 1325 1326 out: 1327 dma_memory_unmap(s->as, cmd_fis, cmd_len, DMA_DIRECTION_FROM_DEVICE, 1328 cmd_len); 1329 1330 if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { 1331 /* async command, complete later */ 1332 s->dev[port].busy_slot = slot; 1333 return -1; 1334 } 1335 1336 /* done handling the command */ 1337 return 0; 1338 } 1339 1340 /* Transfer PIO data between RAM and device */ 1341 static void ahci_pio_transfer(const IDEDMA *dma) 1342 { 1343 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1344 IDEState *s = &ad->port.ifs[0]; 1345 uint32_t size = (uint32_t)(s->data_end - s->data_ptr); 1346 /* write == ram -> device */ 1347 uint16_t opts = le16_to_cpu(ad->cur_cmd->opts); 1348 int is_write = opts & AHCI_CMD_WRITE; 1349 int is_atapi = opts & AHCI_CMD_ATAPI; 1350 int has_sglist = 0; 1351 bool pio_fis_i; 1352 1353 /* The PIO Setup FIS is received prior to transfer, but the interrupt 1354 * is only triggered after data is received. 1355 * 1356 * The device only sets the 'I' bit in the PIO Setup FIS for device->host 1357 * requests (see "DPIOI1" in the SATA spec), or for host->device DRQs after 1358 * the first (see "DPIOO1"). The latter is consistent with the spec's 1359 * description of the PACKET protocol, where the command part of ATAPI requests 1360 * ("DPKT0") has the 'I' bit clear, while the data part of PIO ATAPI requests 1361 * ("DPKT4a" and "DPKT7") has the 'I' bit set for both directions for all DRQs. 1362 */ 1363 pio_fis_i = ad->done_first_drq || (!is_atapi && !is_write); 1364 ahci_write_fis_pio(ad, size, pio_fis_i); 1365 1366 if (is_atapi && !ad->done_first_drq) { 1367 /* already prepopulated iobuffer */ 1368 goto out; 1369 } 1370 1371 if (ahci_dma_prepare_buf(dma, size)) { 1372 has_sglist = 1; 1373 } 1374 1375 trace_ahci_pio_transfer(ad->hba, ad->port_no, is_write ? "writ" : "read", 1376 size, is_atapi ? "atapi" : "ata", 1377 has_sglist ? "" : "o"); 1378 1379 if (has_sglist && size) { 1380 if (is_write) { 1381 dma_buf_write(s->data_ptr, size, &s->sg); 1382 } else { 1383 dma_buf_read(s->data_ptr, size, &s->sg); 1384 } 1385 } 1386 1387 /* Update number of transferred bytes, destroy sglist */ 1388 dma_buf_commit(s, size); 1389 1390 out: 1391 /* declare that we processed everything */ 1392 s->data_ptr = s->data_end; 1393 1394 ad->done_first_drq = true; 1395 if (pio_fis_i) { 1396 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_PSS); 1397 } 1398 } 1399 1400 static void ahci_start_dma(const IDEDMA *dma, IDEState *s, 1401 BlockCompletionFunc *dma_cb) 1402 { 1403 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1404 trace_ahci_start_dma(ad->hba, ad->port_no); 1405 s->io_buffer_offset = 0; 1406 dma_cb(s, 0); 1407 } 1408 1409 static void ahci_restart_dma(const IDEDMA *dma) 1410 { 1411 /* Nothing to do, ahci_start_dma already resets s->io_buffer_offset. */ 1412 } 1413 1414 /** 1415 * IDE/PIO restarts are handled by the core layer, but NCQ commands 1416 * need an extra kick from the AHCI HBA. 1417 */ 1418 static void ahci_restart(const IDEDMA *dma) 1419 { 1420 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1421 int i; 1422 1423 for (i = 0; i < AHCI_MAX_CMDS; i++) { 1424 NCQTransferState *ncq_tfs = &ad->ncq_tfs[i]; 1425 if (ncq_tfs->halt) { 1426 execute_ncq_command(ncq_tfs); 1427 } 1428 } 1429 } 1430 1431 /** 1432 * Called in DMA and PIO R/W chains to read the PRDT. 1433 * Not shared with NCQ pathways. 1434 */ 1435 static int32_t ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit) 1436 { 1437 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1438 IDEState *s = &ad->port.ifs[0]; 1439 1440 if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, 1441 limit, s->io_buffer_offset) == -1) { 1442 trace_ahci_dma_prepare_buf_fail(ad->hba, ad->port_no); 1443 return -1; 1444 } 1445 s->io_buffer_size = s->sg.size; 1446 1447 trace_ahci_dma_prepare_buf(ad->hba, ad->port_no, limit, s->io_buffer_size); 1448 return s->io_buffer_size; 1449 } 1450 1451 /** 1452 * Updates the command header with a bytes-read value. 1453 * Called via dma_buf_commit, for both DMA and PIO paths. 1454 * sglist destruction is handled within dma_buf_commit. 1455 */ 1456 static void ahci_commit_buf(const IDEDMA *dma, uint32_t tx_bytes) 1457 { 1458 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1459 1460 tx_bytes += le32_to_cpu(ad->cur_cmd->status); 1461 ad->cur_cmd->status = cpu_to_le32(tx_bytes); 1462 } 1463 1464 static int ahci_dma_rw_buf(const IDEDMA *dma, bool is_write) 1465 { 1466 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1467 IDEState *s = &ad->port.ifs[0]; 1468 uint8_t *p = s->io_buffer + s->io_buffer_index; 1469 int l = s->io_buffer_size - s->io_buffer_index; 1470 1471 if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, l, s->io_buffer_offset)) { 1472 return 0; 1473 } 1474 1475 if (is_write) { 1476 dma_buf_read(p, l, &s->sg); 1477 } else { 1478 dma_buf_write(p, l, &s->sg); 1479 } 1480 1481 /* free sglist, update byte count */ 1482 dma_buf_commit(s, l); 1483 s->io_buffer_index += l; 1484 1485 trace_ahci_dma_rw_buf(ad->hba, ad->port_no, l); 1486 return 1; 1487 } 1488 1489 static void ahci_cmd_done(const IDEDMA *dma) 1490 { 1491 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1492 1493 trace_ahci_cmd_done(ad->hba, ad->port_no); 1494 1495 /* no longer busy */ 1496 if (ad->busy_slot != -1) { 1497 ad->port_regs.cmd_issue &= ~(1 << ad->busy_slot); 1498 ad->busy_slot = -1; 1499 } 1500 1501 /* update d2h status */ 1502 ahci_write_fis_d2h(ad); 1503 1504 if (ad->port_regs.cmd_issue && !ad->check_bh) { 1505 ad->check_bh = qemu_bh_new(ahci_check_cmd_bh, ad); 1506 qemu_bh_schedule(ad->check_bh); 1507 } 1508 } 1509 1510 static void ahci_irq_set(void *opaque, int n, int level) 1511 { 1512 qemu_log_mask(LOG_UNIMP, "ahci: IRQ#%d level:%d\n", n, level); 1513 } 1514 1515 static const IDEDMAOps ahci_dma_ops = { 1516 .start_dma = ahci_start_dma, 1517 .restart = ahci_restart, 1518 .restart_dma = ahci_restart_dma, 1519 .pio_transfer = ahci_pio_transfer, 1520 .prepare_buf = ahci_dma_prepare_buf, 1521 .commit_buf = ahci_commit_buf, 1522 .rw_buf = ahci_dma_rw_buf, 1523 .cmd_done = ahci_cmd_done, 1524 }; 1525 1526 void ahci_init(AHCIState *s, DeviceState *qdev) 1527 { 1528 s->container = qdev; 1529 /* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */ 1530 memory_region_init_io(&s->mem, OBJECT(qdev), &ahci_mem_ops, s, 1531 "ahci", AHCI_MEM_BAR_SIZE); 1532 memory_region_init_io(&s->idp, OBJECT(qdev), &ahci_idp_ops, s, 1533 "ahci-idp", 32); 1534 } 1535 1536 void ahci_realize(AHCIState *s, DeviceState *qdev, AddressSpace *as, int ports) 1537 { 1538 qemu_irq *irqs; 1539 int i; 1540 1541 s->as = as; 1542 s->ports = ports; 1543 s->dev = g_new0(AHCIDevice, ports); 1544 ahci_reg_init(s); 1545 irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports); 1546 for (i = 0; i < s->ports; i++) { 1547 AHCIDevice *ad = &s->dev[i]; 1548 1549 ide_bus_new(&ad->port, sizeof(ad->port), qdev, i, 1); 1550 ide_init2(&ad->port, irqs[i]); 1551 1552 ad->hba = s; 1553 ad->port_no = i; 1554 ad->port.dma = &ad->dma; 1555 ad->port.dma->ops = &ahci_dma_ops; 1556 ide_register_restart_cb(&ad->port); 1557 } 1558 g_free(irqs); 1559 } 1560 1561 void ahci_uninit(AHCIState *s) 1562 { 1563 int i, j; 1564 1565 for (i = 0; i < s->ports; i++) { 1566 AHCIDevice *ad = &s->dev[i]; 1567 1568 for (j = 0; j < 2; j++) { 1569 IDEState *s = &ad->port.ifs[j]; 1570 1571 ide_exit(s); 1572 } 1573 object_unparent(OBJECT(&ad->port)); 1574 } 1575 1576 g_free(s->dev); 1577 } 1578 1579 void ahci_reset(AHCIState *s) 1580 { 1581 AHCIPortRegs *pr; 1582 int i; 1583 1584 trace_ahci_reset(s); 1585 1586 s->control_regs.irqstatus = 0; 1587 /* AHCI Enable (AE) 1588 * The implementation of this bit is dependent upon the value of the 1589 * CAP.SAM bit. If CAP.SAM is '0', then GHC.AE shall be read-write and 1590 * shall have a reset value of '0'. If CAP.SAM is '1', then AE shall be 1591 * read-only and shall have a reset value of '1'. 1592 * 1593 * We set HOST_CAP_AHCI so we must enable AHCI at reset. 1594 */ 1595 s->control_regs.ghc = HOST_CTL_AHCI_EN; 1596 1597 for (i = 0; i < s->ports; i++) { 1598 pr = &s->dev[i].port_regs; 1599 pr->irq_stat = 0; 1600 pr->irq_mask = 0; 1601 pr->scr_ctl = 0; 1602 pr->cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON; 1603 ahci_reset_port(s, i); 1604 } 1605 } 1606 1607 static const VMStateDescription vmstate_ncq_tfs = { 1608 .name = "ncq state", 1609 .version_id = 1, 1610 .fields = (VMStateField[]) { 1611 VMSTATE_UINT32(sector_count, NCQTransferState), 1612 VMSTATE_UINT64(lba, NCQTransferState), 1613 VMSTATE_UINT8(tag, NCQTransferState), 1614 VMSTATE_UINT8(cmd, NCQTransferState), 1615 VMSTATE_UINT8(slot, NCQTransferState), 1616 VMSTATE_BOOL(used, NCQTransferState), 1617 VMSTATE_BOOL(halt, NCQTransferState), 1618 VMSTATE_END_OF_LIST() 1619 }, 1620 }; 1621 1622 static const VMStateDescription vmstate_ahci_device = { 1623 .name = "ahci port", 1624 .version_id = 1, 1625 .fields = (VMStateField[]) { 1626 VMSTATE_IDE_BUS(port, AHCIDevice), 1627 VMSTATE_IDE_DRIVE(port.ifs[0], AHCIDevice), 1628 VMSTATE_UINT32(port_state, AHCIDevice), 1629 VMSTATE_UINT32(finished, AHCIDevice), 1630 VMSTATE_UINT32(port_regs.lst_addr, AHCIDevice), 1631 VMSTATE_UINT32(port_regs.lst_addr_hi, AHCIDevice), 1632 VMSTATE_UINT32(port_regs.fis_addr, AHCIDevice), 1633 VMSTATE_UINT32(port_regs.fis_addr_hi, AHCIDevice), 1634 VMSTATE_UINT32(port_regs.irq_stat, AHCIDevice), 1635 VMSTATE_UINT32(port_regs.irq_mask, AHCIDevice), 1636 VMSTATE_UINT32(port_regs.cmd, AHCIDevice), 1637 VMSTATE_UINT32(port_regs.tfdata, AHCIDevice), 1638 VMSTATE_UINT32(port_regs.sig, AHCIDevice), 1639 VMSTATE_UINT32(port_regs.scr_stat, AHCIDevice), 1640 VMSTATE_UINT32(port_regs.scr_ctl, AHCIDevice), 1641 VMSTATE_UINT32(port_regs.scr_err, AHCIDevice), 1642 VMSTATE_UINT32(port_regs.scr_act, AHCIDevice), 1643 VMSTATE_UINT32(port_regs.cmd_issue, AHCIDevice), 1644 VMSTATE_BOOL(done_first_drq, AHCIDevice), 1645 VMSTATE_INT32(busy_slot, AHCIDevice), 1646 VMSTATE_BOOL(init_d2h_sent, AHCIDevice), 1647 VMSTATE_STRUCT_ARRAY(ncq_tfs, AHCIDevice, AHCI_MAX_CMDS, 1648 1, vmstate_ncq_tfs, NCQTransferState), 1649 VMSTATE_END_OF_LIST() 1650 }, 1651 }; 1652 1653 static int ahci_state_post_load(void *opaque, int version_id) 1654 { 1655 int i, j; 1656 struct AHCIDevice *ad; 1657 NCQTransferState *ncq_tfs; 1658 AHCIPortRegs *pr; 1659 AHCIState *s = opaque; 1660 1661 for (i = 0; i < s->ports; i++) { 1662 ad = &s->dev[i]; 1663 pr = &ad->port_regs; 1664 1665 if (!(pr->cmd & PORT_CMD_START) && (pr->cmd & PORT_CMD_LIST_ON)) { 1666 error_report("AHCI: DMA engine should be off, but status bit " 1667 "indicates it is still running."); 1668 return -1; 1669 } 1670 if (!(pr->cmd & PORT_CMD_FIS_RX) && (pr->cmd & PORT_CMD_FIS_ON)) { 1671 error_report("AHCI: FIS RX engine should be off, but status bit " 1672 "indicates it is still running."); 1673 return -1; 1674 } 1675 1676 /* After a migrate, the DMA/FIS engines are "off" and 1677 * need to be conditionally restarted */ 1678 pr->cmd &= ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON); 1679 if (ahci_cond_start_engines(ad) != 0) { 1680 return -1; 1681 } 1682 1683 for (j = 0; j < AHCI_MAX_CMDS; j++) { 1684 ncq_tfs = &ad->ncq_tfs[j]; 1685 ncq_tfs->drive = ad; 1686 1687 if (ncq_tfs->used != ncq_tfs->halt) { 1688 return -1; 1689 } 1690 if (!ncq_tfs->halt) { 1691 continue; 1692 } 1693 if (!is_ncq(ncq_tfs->cmd)) { 1694 return -1; 1695 } 1696 if (ncq_tfs->slot != ncq_tfs->tag) { 1697 return -1; 1698 } 1699 /* If ncq_tfs->halt is justly set, the engine should be engaged, 1700 * and the command list buffer should be mapped. */ 1701 ncq_tfs->cmdh = get_cmd_header(s, i, ncq_tfs->slot); 1702 if (!ncq_tfs->cmdh) { 1703 return -1; 1704 } 1705 ahci_populate_sglist(ncq_tfs->drive, &ncq_tfs->sglist, 1706 ncq_tfs->cmdh, 1707 ncq_tfs->sector_count * BDRV_SECTOR_SIZE, 1708 0); 1709 if (ncq_tfs->sector_count != ncq_tfs->sglist.size >> 9) { 1710 return -1; 1711 } 1712 } 1713 1714 1715 /* 1716 * If an error is present, ad->busy_slot will be valid and not -1. 1717 * In this case, an operation is waiting to resume and will re-check 1718 * for additional AHCI commands to execute upon completion. 1719 * 1720 * In the case where no error was present, busy_slot will be -1, 1721 * and we should check to see if there are additional commands waiting. 1722 */ 1723 if (ad->busy_slot == -1) { 1724 check_cmd(s, i); 1725 } else { 1726 /* We are in the middle of a command, and may need to access 1727 * the command header in guest memory again. */ 1728 if (ad->busy_slot < 0 || ad->busy_slot >= AHCI_MAX_CMDS) { 1729 return -1; 1730 } 1731 ad->cur_cmd = get_cmd_header(s, i, ad->busy_slot); 1732 } 1733 } 1734 1735 return 0; 1736 } 1737 1738 const VMStateDescription vmstate_ahci = { 1739 .name = "ahci", 1740 .version_id = 1, 1741 .post_load = ahci_state_post_load, 1742 .fields = (VMStateField[]) { 1743 VMSTATE_STRUCT_VARRAY_POINTER_INT32(dev, AHCIState, ports, 1744 vmstate_ahci_device, AHCIDevice), 1745 VMSTATE_UINT32(control_regs.cap, AHCIState), 1746 VMSTATE_UINT32(control_regs.ghc, AHCIState), 1747 VMSTATE_UINT32(control_regs.irqstatus, AHCIState), 1748 VMSTATE_UINT32(control_regs.impl, AHCIState), 1749 VMSTATE_UINT32(control_regs.version, AHCIState), 1750 VMSTATE_UINT32(idp_index, AHCIState), 1751 VMSTATE_INT32_EQUAL(ports, AHCIState, NULL), 1752 VMSTATE_END_OF_LIST() 1753 }, 1754 }; 1755 1756 static const VMStateDescription vmstate_sysbus_ahci = { 1757 .name = "sysbus-ahci", 1758 .fields = (VMStateField[]) { 1759 VMSTATE_AHCI(ahci, SysbusAHCIState), 1760 VMSTATE_END_OF_LIST() 1761 }, 1762 }; 1763 1764 static void sysbus_ahci_reset(DeviceState *dev) 1765 { 1766 SysbusAHCIState *s = SYSBUS_AHCI(dev); 1767 1768 ahci_reset(&s->ahci); 1769 } 1770 1771 static void sysbus_ahci_init(Object *obj) 1772 { 1773 SysbusAHCIState *s = SYSBUS_AHCI(obj); 1774 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1775 1776 ahci_init(&s->ahci, DEVICE(obj)); 1777 1778 sysbus_init_mmio(sbd, &s->ahci.mem); 1779 sysbus_init_irq(sbd, &s->ahci.irq); 1780 } 1781 1782 static void sysbus_ahci_realize(DeviceState *dev, Error **errp) 1783 { 1784 SysbusAHCIState *s = SYSBUS_AHCI(dev); 1785 1786 ahci_realize(&s->ahci, dev, &address_space_memory, s->num_ports); 1787 } 1788 1789 static Property sysbus_ahci_properties[] = { 1790 DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, num_ports, 1), 1791 DEFINE_PROP_END_OF_LIST(), 1792 }; 1793 1794 static void sysbus_ahci_class_init(ObjectClass *klass, void *data) 1795 { 1796 DeviceClass *dc = DEVICE_CLASS(klass); 1797 1798 dc->realize = sysbus_ahci_realize; 1799 dc->vmsd = &vmstate_sysbus_ahci; 1800 device_class_set_props(dc, sysbus_ahci_properties); 1801 dc->reset = sysbus_ahci_reset; 1802 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 1803 } 1804 1805 static const TypeInfo sysbus_ahci_info = { 1806 .name = TYPE_SYSBUS_AHCI, 1807 .parent = TYPE_SYS_BUS_DEVICE, 1808 .instance_size = sizeof(SysbusAHCIState), 1809 .instance_init = sysbus_ahci_init, 1810 .class_init = sysbus_ahci_class_init, 1811 }; 1812 1813 static void sysbus_ahci_register_types(void) 1814 { 1815 type_register_static(&sysbus_ahci_info); 1816 } 1817 1818 type_init(sysbus_ahci_register_types) 1819 1820 int32_t ahci_get_num_ports(PCIDevice *dev) 1821 { 1822 AHCIPCIState *d = ICH9_AHCI(dev); 1823 AHCIState *ahci = &d->ahci; 1824 1825 return ahci->ports; 1826 } 1827 1828 void ahci_ide_create_devs(PCIDevice *dev, DriveInfo **hd) 1829 { 1830 AHCIPCIState *d = ICH9_AHCI(dev); 1831 AHCIState *ahci = &d->ahci; 1832 int i; 1833 1834 for (i = 0; i < ahci->ports; i++) { 1835 if (hd[i] == NULL) { 1836 continue; 1837 } 1838 ide_create_drive(&ahci->dev[i].port, 0, hd[i]); 1839 } 1840 1841 } 1842