1 /* 2 * QEMU AHCI Emulation 3 * 4 * Copyright (c) 2010 qiaochong@loongson.cn 5 * Copyright (c) 2010 Roland Elek <elek.roland@gmail.com> 6 * Copyright (c) 2010 Sebastian Herbszt <herbszt@gmx.de> 7 * Copyright (c) 2010 Alexander Graf <agraf@suse.de> 8 * 9 * This library is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Lesser General Public 11 * License as published by the Free Software Foundation; either 12 * version 2.1 of the License, or (at your option) any later version. 13 * 14 * This library is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Lesser General Public License for more details. 18 * 19 * You should have received a copy of the GNU Lesser General Public 20 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 21 * 22 */ 23 24 #include "qemu/osdep.h" 25 #include "hw/irq.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/pci.h" 28 #include "hw/qdev-properties.h" 29 #include "migration/vmstate.h" 30 31 #include "qemu/error-report.h" 32 #include "qemu/log.h" 33 #include "qemu/main-loop.h" 34 #include "qemu/module.h" 35 #include "sysemu/block-backend.h" 36 #include "sysemu/dma.h" 37 #include "hw/ide/pci.h" 38 #include "hw/ide/ahci-pci.h" 39 #include "hw/ide/ahci-sysbus.h" 40 #include "ahci-internal.h" 41 #include "ide-internal.h" 42 43 #include "trace.h" 44 45 static void check_cmd(AHCIState *s, int port); 46 static void handle_cmd(AHCIState *s, int port, uint8_t slot); 47 static void ahci_reset_port(AHCIState *s, int port); 48 static bool ahci_write_fis_d2h(AHCIDevice *ad, bool d2h_fis_i); 49 static void ahci_clear_cmd_issue(AHCIDevice *ad, uint8_t slot); 50 static void ahci_init_d2h(AHCIDevice *ad); 51 static int ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit); 52 static bool ahci_map_clb_address(AHCIDevice *ad); 53 static bool ahci_map_fis_address(AHCIDevice *ad); 54 static void ahci_unmap_clb_address(AHCIDevice *ad); 55 static void ahci_unmap_fis_address(AHCIDevice *ad); 56 57 static const char *AHCIHostReg_lookup[AHCI_HOST_REG__COUNT] = { 58 [AHCI_HOST_REG_CAP] = "CAP", 59 [AHCI_HOST_REG_CTL] = "GHC", 60 [AHCI_HOST_REG_IRQ_STAT] = "IS", 61 [AHCI_HOST_REG_PORTS_IMPL] = "PI", 62 [AHCI_HOST_REG_VERSION] = "VS", 63 [AHCI_HOST_REG_CCC_CTL] = "CCC_CTL", 64 [AHCI_HOST_REG_CCC_PORTS] = "CCC_PORTS", 65 [AHCI_HOST_REG_EM_LOC] = "EM_LOC", 66 [AHCI_HOST_REG_EM_CTL] = "EM_CTL", 67 [AHCI_HOST_REG_CAP2] = "CAP2", 68 [AHCI_HOST_REG_BOHC] = "BOHC", 69 }; 70 71 static const char *AHCIPortReg_lookup[AHCI_PORT_REG__COUNT] = { 72 [AHCI_PORT_REG_LST_ADDR] = "PxCLB", 73 [AHCI_PORT_REG_LST_ADDR_HI] = "PxCLBU", 74 [AHCI_PORT_REG_FIS_ADDR] = "PxFB", 75 [AHCI_PORT_REG_FIS_ADDR_HI] = "PxFBU", 76 [AHCI_PORT_REG_IRQ_STAT] = "PxIS", 77 [AHCI_PORT_REG_IRQ_MASK] = "PXIE", 78 [AHCI_PORT_REG_CMD] = "PxCMD", 79 [7] = "Reserved", 80 [AHCI_PORT_REG_TFDATA] = "PxTFD", 81 [AHCI_PORT_REG_SIG] = "PxSIG", 82 [AHCI_PORT_REG_SCR_STAT] = "PxSSTS", 83 [AHCI_PORT_REG_SCR_CTL] = "PxSCTL", 84 [AHCI_PORT_REG_SCR_ERR] = "PxSERR", 85 [AHCI_PORT_REG_SCR_ACT] = "PxSACT", 86 [AHCI_PORT_REG_CMD_ISSUE] = "PxCI", 87 [AHCI_PORT_REG_SCR_NOTIF] = "PxSNTF", 88 [AHCI_PORT_REG_FIS_CTL] = "PxFBS", 89 [AHCI_PORT_REG_DEV_SLEEP] = "PxDEVSLP", 90 [18 ... 27] = "Reserved", 91 [AHCI_PORT_REG_VENDOR_1 ... 92 AHCI_PORT_REG_VENDOR_4] = "PxVS", 93 }; 94 95 static const char *AHCIPortIRQ_lookup[AHCI_PORT_IRQ__COUNT] = { 96 [AHCI_PORT_IRQ_BIT_DHRS] = "DHRS", 97 [AHCI_PORT_IRQ_BIT_PSS] = "PSS", 98 [AHCI_PORT_IRQ_BIT_DSS] = "DSS", 99 [AHCI_PORT_IRQ_BIT_SDBS] = "SDBS", 100 [AHCI_PORT_IRQ_BIT_UFS] = "UFS", 101 [AHCI_PORT_IRQ_BIT_DPS] = "DPS", 102 [AHCI_PORT_IRQ_BIT_PCS] = "PCS", 103 [AHCI_PORT_IRQ_BIT_DMPS] = "DMPS", 104 [8 ... 21] = "RESERVED", 105 [AHCI_PORT_IRQ_BIT_PRCS] = "PRCS", 106 [AHCI_PORT_IRQ_BIT_IPMS] = "IPMS", 107 [AHCI_PORT_IRQ_BIT_OFS] = "OFS", 108 [25] = "RESERVED", 109 [AHCI_PORT_IRQ_BIT_INFS] = "INFS", 110 [AHCI_PORT_IRQ_BIT_IFS] = "IFS", 111 [AHCI_PORT_IRQ_BIT_HBDS] = "HBDS", 112 [AHCI_PORT_IRQ_BIT_HBFS] = "HBFS", 113 [AHCI_PORT_IRQ_BIT_TFES] = "TFES", 114 [AHCI_PORT_IRQ_BIT_CPDS] = "CPDS" 115 }; 116 117 static uint32_t ahci_port_read(AHCIState *s, int port, int offset) 118 { 119 uint32_t val; 120 AHCIPortRegs *pr = &s->dev[port].port_regs; 121 enum AHCIPortReg regnum = offset / sizeof(uint32_t); 122 assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); 123 124 switch (regnum) { 125 case AHCI_PORT_REG_LST_ADDR: 126 val = pr->lst_addr; 127 break; 128 case AHCI_PORT_REG_LST_ADDR_HI: 129 val = pr->lst_addr_hi; 130 break; 131 case AHCI_PORT_REG_FIS_ADDR: 132 val = pr->fis_addr; 133 break; 134 case AHCI_PORT_REG_FIS_ADDR_HI: 135 val = pr->fis_addr_hi; 136 break; 137 case AHCI_PORT_REG_IRQ_STAT: 138 val = pr->irq_stat; 139 break; 140 case AHCI_PORT_REG_IRQ_MASK: 141 val = pr->irq_mask; 142 break; 143 case AHCI_PORT_REG_CMD: 144 val = pr->cmd; 145 break; 146 case AHCI_PORT_REG_TFDATA: 147 val = pr->tfdata; 148 break; 149 case AHCI_PORT_REG_SIG: 150 val = pr->sig; 151 break; 152 case AHCI_PORT_REG_SCR_STAT: 153 if (s->dev[port].port.ifs[0].blk) { 154 val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP | 155 SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE; 156 } else { 157 val = SATA_SCR_SSTATUS_DET_NODEV; 158 } 159 break; 160 case AHCI_PORT_REG_SCR_CTL: 161 val = pr->scr_ctl; 162 break; 163 case AHCI_PORT_REG_SCR_ERR: 164 val = pr->scr_err; 165 break; 166 case AHCI_PORT_REG_SCR_ACT: 167 val = pr->scr_act; 168 break; 169 case AHCI_PORT_REG_CMD_ISSUE: 170 val = pr->cmd_issue; 171 break; 172 default: 173 trace_ahci_port_read_default(s, port, AHCIPortReg_lookup[regnum], 174 offset); 175 val = 0; 176 } 177 178 trace_ahci_port_read(s, port, AHCIPortReg_lookup[regnum], offset, val); 179 return val; 180 } 181 182 static void ahci_irq_raise(AHCIState *s) 183 { 184 DeviceState *dev_state = s->container; 185 PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), 186 TYPE_PCI_DEVICE); 187 188 trace_ahci_irq_raise(s); 189 190 if (pci_dev && msi_enabled(pci_dev)) { 191 msi_notify(pci_dev, 0); 192 } else { 193 qemu_irq_raise(s->irq); 194 } 195 } 196 197 static void ahci_irq_lower(AHCIState *s) 198 { 199 DeviceState *dev_state = s->container; 200 PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), 201 TYPE_PCI_DEVICE); 202 203 trace_ahci_irq_lower(s); 204 205 if (!pci_dev || !msi_enabled(pci_dev)) { 206 qemu_irq_lower(s->irq); 207 } 208 } 209 210 static void ahci_check_irq(AHCIState *s) 211 { 212 int i; 213 uint32_t old_irq = s->control_regs.irqstatus; 214 215 s->control_regs.irqstatus = 0; 216 for (i = 0; i < s->ports; i++) { 217 AHCIPortRegs *pr = &s->dev[i].port_regs; 218 if (pr->irq_stat & pr->irq_mask) { 219 s->control_regs.irqstatus |= (1 << i); 220 } 221 } 222 trace_ahci_check_irq(s, old_irq, s->control_regs.irqstatus); 223 if (s->control_regs.irqstatus && 224 (s->control_regs.ghc & HOST_CTL_IRQ_EN)) { 225 ahci_irq_raise(s); 226 } else { 227 ahci_irq_lower(s); 228 } 229 } 230 231 static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d, 232 enum AHCIPortIRQ irqbit) 233 { 234 g_assert((unsigned)irqbit < 32); 235 uint32_t irq = 1U << irqbit; 236 uint32_t irqstat = d->port_regs.irq_stat | irq; 237 238 trace_ahci_trigger_irq(s, d->port_no, 239 AHCIPortIRQ_lookup[irqbit], irq, 240 d->port_regs.irq_stat, irqstat, 241 irqstat & d->port_regs.irq_mask); 242 243 d->port_regs.irq_stat = irqstat; 244 ahci_check_irq(s); 245 } 246 247 static void map_page(AddressSpace *as, uint8_t **ptr, uint64_t addr, 248 uint32_t wanted) 249 { 250 hwaddr len = wanted; 251 252 if (*ptr) { 253 dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); 254 } 255 256 *ptr = dma_memory_map(as, addr, &len, DMA_DIRECTION_FROM_DEVICE, 257 MEMTXATTRS_UNSPECIFIED); 258 if (len < wanted && *ptr) { 259 dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); 260 *ptr = NULL; 261 } 262 } 263 264 /** 265 * Check the cmd register to see if we should start or stop 266 * the DMA or FIS RX engines. 267 * 268 * @ad: Device to dis/engage. 269 * 270 * @return 0 on success, -1 on error. 271 */ 272 static int ahci_cond_start_engines(AHCIDevice *ad) 273 { 274 AHCIPortRegs *pr = &ad->port_regs; 275 bool cmd_start = pr->cmd & PORT_CMD_START; 276 bool cmd_on = pr->cmd & PORT_CMD_LIST_ON; 277 bool fis_start = pr->cmd & PORT_CMD_FIS_RX; 278 bool fis_on = pr->cmd & PORT_CMD_FIS_ON; 279 280 if (cmd_start && !cmd_on) { 281 if (!ahci_map_clb_address(ad)) { 282 pr->cmd &= ~PORT_CMD_START; 283 error_report("AHCI: Failed to start DMA engine: " 284 "bad command list buffer address"); 285 return -1; 286 } 287 } else if (!cmd_start && cmd_on) { 288 ahci_unmap_clb_address(ad); 289 } 290 291 if (fis_start && !fis_on) { 292 if (!ahci_map_fis_address(ad)) { 293 pr->cmd &= ~PORT_CMD_FIS_RX; 294 error_report("AHCI: Failed to start FIS receive engine: " 295 "bad FIS receive buffer address"); 296 return -1; 297 } 298 } else if (!fis_start && fis_on) { 299 ahci_unmap_fis_address(ad); 300 } 301 302 return 0; 303 } 304 305 static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val) 306 { 307 AHCIPortRegs *pr = &s->dev[port].port_regs; 308 enum AHCIPortReg regnum = offset / sizeof(uint32_t); 309 assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); 310 trace_ahci_port_write(s, port, AHCIPortReg_lookup[regnum], offset, val); 311 312 switch (regnum) { 313 case AHCI_PORT_REG_LST_ADDR: 314 pr->lst_addr = val; 315 break; 316 case AHCI_PORT_REG_LST_ADDR_HI: 317 pr->lst_addr_hi = val; 318 break; 319 case AHCI_PORT_REG_FIS_ADDR: 320 pr->fis_addr = val; 321 break; 322 case AHCI_PORT_REG_FIS_ADDR_HI: 323 pr->fis_addr_hi = val; 324 break; 325 case AHCI_PORT_REG_IRQ_STAT: 326 pr->irq_stat &= ~val; 327 ahci_check_irq(s); 328 break; 329 case AHCI_PORT_REG_IRQ_MASK: 330 pr->irq_mask = val & 0xfdc000ff; 331 ahci_check_irq(s); 332 break; 333 case AHCI_PORT_REG_CMD: 334 if ((pr->cmd & PORT_CMD_START) && !(val & PORT_CMD_START)) { 335 pr->scr_act = 0; 336 pr->cmd_issue = 0; 337 } 338 339 /* Block any Read-only fields from being set; 340 * including LIST_ON and FIS_ON. 341 * The spec requires to set ICC bits to zero after the ICC change 342 * is done. We don't support ICC state changes, therefore always 343 * force the ICC bits to zero. 344 */ 345 pr->cmd = (pr->cmd & PORT_CMD_RO_MASK) | 346 (val & ~(PORT_CMD_RO_MASK | PORT_CMD_ICC_MASK)); 347 348 /* Check FIS RX and CLB engines */ 349 ahci_cond_start_engines(&s->dev[port]); 350 351 /* XXX usually the FIS would be pending on the bus here and 352 issuing deferred until the OS enables FIS receival. 353 Instead, we only submit it once - which works in most 354 cases, but is a hack. */ 355 if ((pr->cmd & PORT_CMD_FIS_ON) && 356 !s->dev[port].init_d2h_sent) { 357 ahci_init_d2h(&s->dev[port]); 358 } 359 360 check_cmd(s, port); 361 break; 362 case AHCI_PORT_REG_TFDATA: 363 case AHCI_PORT_REG_SIG: 364 case AHCI_PORT_REG_SCR_STAT: 365 /* Read Only */ 366 break; 367 case AHCI_PORT_REG_SCR_CTL: 368 if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) && 369 ((val & AHCI_SCR_SCTL_DET) == 0)) { 370 ahci_reset_port(s, port); 371 } 372 pr->scr_ctl = val; 373 break; 374 case AHCI_PORT_REG_SCR_ERR: 375 pr->scr_err &= ~val; 376 break; 377 case AHCI_PORT_REG_SCR_ACT: 378 /* RW1 */ 379 pr->scr_act |= val; 380 break; 381 case AHCI_PORT_REG_CMD_ISSUE: 382 pr->cmd_issue |= val; 383 check_cmd(s, port); 384 break; 385 default: 386 trace_ahci_port_write_unimpl(s, port, AHCIPortReg_lookup[regnum], 387 offset, val); 388 qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " 389 "AHCI port %d register %s, offset 0x%x: 0x%"PRIx32, 390 port, AHCIPortReg_lookup[regnum], offset, val); 391 break; 392 } 393 } 394 395 static uint64_t ahci_mem_read_32(void *opaque, hwaddr addr) 396 { 397 AHCIState *s = opaque; 398 uint32_t val = 0; 399 400 if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { 401 enum AHCIHostReg regnum = addr / 4; 402 assert(regnum < AHCI_HOST_REG__COUNT); 403 404 switch (regnum) { 405 case AHCI_HOST_REG_CAP: 406 val = s->control_regs.cap; 407 break; 408 case AHCI_HOST_REG_CTL: 409 val = s->control_regs.ghc; 410 break; 411 case AHCI_HOST_REG_IRQ_STAT: 412 val = s->control_regs.irqstatus; 413 break; 414 case AHCI_HOST_REG_PORTS_IMPL: 415 val = s->control_regs.impl; 416 break; 417 case AHCI_HOST_REG_VERSION: 418 val = s->control_regs.version; 419 break; 420 default: 421 trace_ahci_mem_read_32_host_default(s, AHCIHostReg_lookup[regnum], 422 addr); 423 } 424 trace_ahci_mem_read_32_host(s, AHCIHostReg_lookup[regnum], addr, val); 425 } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && 426 (addr < (AHCI_PORT_REGS_START_ADDR + 427 (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { 428 val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, 429 addr & AHCI_PORT_ADDR_OFFSET_MASK); 430 } else { 431 trace_ahci_mem_read_32_default(s, addr, val); 432 } 433 434 trace_ahci_mem_read_32(s, addr, val); 435 return val; 436 } 437 438 439 /** 440 * AHCI 1.3 section 3 ("HBA Memory Registers") 441 * Support unaligned 8/16/32 bit reads, and 64 bit aligned reads. 442 * Caller is responsible for masking unwanted higher order bytes. 443 */ 444 static uint64_t ahci_mem_read(void *opaque, hwaddr addr, unsigned size) 445 { 446 hwaddr aligned = addr & ~0x3; 447 int ofst = addr - aligned; 448 uint64_t lo = ahci_mem_read_32(opaque, aligned); 449 uint64_t hi; 450 uint64_t val; 451 452 /* if < 8 byte read does not cross 4 byte boundary */ 453 if (ofst + size <= 4) { 454 val = lo >> (ofst * 8); 455 } else { 456 g_assert(size > 1); 457 458 /* If the 64bit read is unaligned, we will produce undefined 459 * results. AHCI does not support unaligned 64bit reads. */ 460 hi = ahci_mem_read_32(opaque, aligned + 4); 461 val = (hi << 32 | lo) >> (ofst * 8); 462 } 463 464 trace_ahci_mem_read(opaque, size, addr, val); 465 return val; 466 } 467 468 469 static void ahci_mem_write(void *opaque, hwaddr addr, 470 uint64_t val, unsigned size) 471 { 472 AHCIState *s = opaque; 473 474 trace_ahci_mem_write(s, size, addr, val); 475 476 /* Only aligned reads are allowed on AHCI */ 477 if (addr & 3) { 478 qemu_log_mask(LOG_GUEST_ERROR, 479 "ahci: Mis-aligned write to addr 0x%03" HWADDR_PRIX "\n", 480 addr); 481 return; 482 } 483 484 if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { 485 enum AHCIHostReg regnum = addr / 4; 486 assert(regnum < AHCI_HOST_REG__COUNT); 487 488 switch (regnum) { 489 case AHCI_HOST_REG_CAP: /* R/WO, RO */ 490 /* FIXME handle R/WO */ 491 break; 492 case AHCI_HOST_REG_CTL: /* R/W */ 493 if (val & HOST_CTL_RESET) { 494 ahci_reset(s); 495 } else { 496 s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN; 497 ahci_check_irq(s); 498 } 499 break; 500 case AHCI_HOST_REG_IRQ_STAT: /* R/WC, RO */ 501 s->control_regs.irqstatus &= ~val; 502 ahci_check_irq(s); 503 break; 504 case AHCI_HOST_REG_PORTS_IMPL: /* R/WO, RO */ 505 /* FIXME handle R/WO */ 506 break; 507 case AHCI_HOST_REG_VERSION: /* RO */ 508 /* FIXME report write? */ 509 break; 510 default: 511 qemu_log_mask(LOG_UNIMP, 512 "Attempted write to unimplemented register: " 513 "AHCI host register %s, " 514 "offset 0x%"PRIx64": 0x%"PRIx64, 515 AHCIHostReg_lookup[regnum], addr, val); 516 trace_ahci_mem_write_host_unimpl(s, size, 517 AHCIHostReg_lookup[regnum], addr); 518 } 519 trace_ahci_mem_write_host(s, size, AHCIHostReg_lookup[regnum], 520 addr, val); 521 } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && 522 (addr < (AHCI_PORT_REGS_START_ADDR + 523 (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { 524 ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, 525 addr & AHCI_PORT_ADDR_OFFSET_MASK, val); 526 } else { 527 qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " 528 "AHCI global register at offset 0x%"PRIx64": 0x%"PRIx64, 529 addr, val); 530 trace_ahci_mem_write_unimpl(s, size, addr, val); 531 } 532 } 533 534 static const MemoryRegionOps ahci_mem_ops = { 535 .read = ahci_mem_read, 536 .write = ahci_mem_write, 537 .endianness = DEVICE_LITTLE_ENDIAN, 538 }; 539 540 static uint64_t ahci_idp_read(void *opaque, hwaddr addr, 541 unsigned size) 542 { 543 AHCIState *s = opaque; 544 545 if (addr == s->idp_offset) { 546 /* index register */ 547 return s->idp_index; 548 } else if (addr == s->idp_offset + 4) { 549 /* data register - do memory read at location selected by index */ 550 return ahci_mem_read(opaque, s->idp_index, size); 551 } else { 552 return 0; 553 } 554 } 555 556 static void ahci_idp_write(void *opaque, hwaddr addr, 557 uint64_t val, unsigned size) 558 { 559 AHCIState *s = opaque; 560 561 if (addr == s->idp_offset) { 562 /* index register - mask off reserved bits */ 563 s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3); 564 } else if (addr == s->idp_offset + 4) { 565 /* data register - do memory write at location selected by index */ 566 ahci_mem_write(opaque, s->idp_index, val, size); 567 } 568 } 569 570 static const MemoryRegionOps ahci_idp_ops = { 571 .read = ahci_idp_read, 572 .write = ahci_idp_write, 573 .endianness = DEVICE_LITTLE_ENDIAN, 574 }; 575 576 577 static void ahci_reg_init(AHCIState *s) 578 { 579 int i; 580 581 s->control_regs.cap = (s->ports - 1) | 582 (AHCI_NUM_COMMAND_SLOTS << 8) | 583 (AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) | 584 HOST_CAP_NCQ | HOST_CAP_AHCI | HOST_CAP_64; 585 586 s->control_regs.impl = (1 << s->ports) - 1; 587 588 s->control_regs.version = AHCI_VERSION_1_0; 589 590 for (i = 0; i < s->ports; i++) { 591 s->dev[i].port_state = STATE_RUN; 592 } 593 } 594 595 static void check_cmd(AHCIState *s, int port) 596 { 597 AHCIPortRegs *pr = &s->dev[port].port_regs; 598 uint8_t slot; 599 600 if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) { 601 for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) { 602 if (pr->cmd_issue & (1U << slot)) { 603 handle_cmd(s, port, slot); 604 } 605 } 606 } 607 } 608 609 static void ahci_check_cmd_bh(void *opaque) 610 { 611 AHCIDevice *ad = opaque; 612 613 qemu_bh_delete(ad->check_bh); 614 ad->check_bh = NULL; 615 616 check_cmd(ad->hba, ad->port_no); 617 } 618 619 static void ahci_init_d2h(AHCIDevice *ad) 620 { 621 IDEState *ide_state = &ad->port.ifs[0]; 622 AHCIPortRegs *pr = &ad->port_regs; 623 624 if (ad->init_d2h_sent) { 625 return; 626 } 627 628 /* 629 * For simplicity, do not call ahci_clear_cmd_issue() for this 630 * ahci_write_fis_d2h(). (The reset value for PxCI is 0.) 631 */ 632 if (ahci_write_fis_d2h(ad, true)) { 633 ad->init_d2h_sent = true; 634 /* We're emulating receiving the first Reg D2H FIS from the device; 635 * Update the SIG register, but otherwise proceed as normal. */ 636 pr->sig = ((uint32_t)ide_state->hcyl << 24) | 637 (ide_state->lcyl << 16) | 638 (ide_state->sector << 8) | 639 (ide_state->nsector & 0xFF); 640 } 641 } 642 643 static void ahci_set_signature(AHCIDevice *ad, uint32_t sig) 644 { 645 IDEState *s = &ad->port.ifs[0]; 646 s->hcyl = sig >> 24 & 0xFF; 647 s->lcyl = sig >> 16 & 0xFF; 648 s->sector = sig >> 8 & 0xFF; 649 s->nsector = sig & 0xFF; 650 651 trace_ahci_set_signature(ad->hba, ad->port_no, s->nsector, s->sector, 652 s->lcyl, s->hcyl, sig); 653 } 654 655 static void ahci_reset_port(AHCIState *s, int port) 656 { 657 AHCIDevice *d = &s->dev[port]; 658 AHCIPortRegs *pr = &d->port_regs; 659 IDEState *ide_state = &d->port.ifs[0]; 660 int i; 661 662 trace_ahci_reset_port(s, port); 663 664 ide_bus_reset(&d->port); 665 ide_state->ncq_queues = AHCI_MAX_CMDS; 666 667 pr->scr_stat = 0; 668 pr->scr_err = 0; 669 pr->scr_act = 0; 670 pr->tfdata = 0x7F; 671 pr->sig = 0xFFFFFFFF; 672 pr->cmd_issue = 0; 673 d->busy_slot = -1; 674 d->init_d2h_sent = false; 675 676 ide_state = &s->dev[port].port.ifs[0]; 677 if (!ide_state->blk) { 678 return; 679 } 680 681 /* reset ncq queue */ 682 for (i = 0; i < AHCI_MAX_CMDS; i++) { 683 NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i]; 684 ncq_tfs->halt = false; 685 if (!ncq_tfs->used) { 686 continue; 687 } 688 689 if (ncq_tfs->aiocb) { 690 blk_aio_cancel(ncq_tfs->aiocb); 691 ncq_tfs->aiocb = NULL; 692 } 693 694 /* Maybe we just finished the request thanks to blk_aio_cancel() */ 695 if (!ncq_tfs->used) { 696 continue; 697 } 698 699 qemu_sglist_destroy(&ncq_tfs->sglist); 700 ncq_tfs->used = 0; 701 } 702 703 s->dev[port].port_state = STATE_RUN; 704 if (ide_state->drive_kind == IDE_CD) { 705 ahci_set_signature(d, SATA_SIGNATURE_CDROM); 706 ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT; 707 } else { 708 ahci_set_signature(d, SATA_SIGNATURE_DISK); 709 ide_state->status = SEEK_STAT | WRERR_STAT; 710 } 711 712 ide_state->error = 1; 713 ahci_init_d2h(d); 714 } 715 716 /* Buffer pretty output based on a raw FIS structure. */ 717 static char *ahci_pretty_buffer_fis(const uint8_t *fis, int cmd_len) 718 { 719 int i; 720 GString *s = g_string_new("FIS:"); 721 722 for (i = 0; i < cmd_len; i++) { 723 if ((i & 0xf) == 0) { 724 g_string_append_printf(s, "\n0x%02x: ", i); 725 } 726 g_string_append_printf(s, "%02x ", fis[i]); 727 } 728 g_string_append_c(s, '\n'); 729 730 return g_string_free(s, FALSE); 731 } 732 733 static bool ahci_map_fis_address(AHCIDevice *ad) 734 { 735 AHCIPortRegs *pr = &ad->port_regs; 736 map_page(ad->hba->as, &ad->res_fis, 737 ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); 738 if (ad->res_fis != NULL) { 739 pr->cmd |= PORT_CMD_FIS_ON; 740 return true; 741 } 742 743 pr->cmd &= ~PORT_CMD_FIS_ON; 744 return false; 745 } 746 747 static void ahci_unmap_fis_address(AHCIDevice *ad) 748 { 749 if (ad->res_fis == NULL) { 750 trace_ahci_unmap_fis_address_null(ad->hba, ad->port_no); 751 return; 752 } 753 ad->port_regs.cmd &= ~PORT_CMD_FIS_ON; 754 dma_memory_unmap(ad->hba->as, ad->res_fis, 256, 755 DMA_DIRECTION_FROM_DEVICE, 256); 756 ad->res_fis = NULL; 757 } 758 759 static bool ahci_map_clb_address(AHCIDevice *ad) 760 { 761 AHCIPortRegs *pr = &ad->port_regs; 762 ad->cur_cmd = NULL; 763 map_page(ad->hba->as, &ad->lst, 764 ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); 765 if (ad->lst != NULL) { 766 pr->cmd |= PORT_CMD_LIST_ON; 767 return true; 768 } 769 770 pr->cmd &= ~PORT_CMD_LIST_ON; 771 return false; 772 } 773 774 static void ahci_unmap_clb_address(AHCIDevice *ad) 775 { 776 if (ad->lst == NULL) { 777 trace_ahci_unmap_clb_address_null(ad->hba, ad->port_no); 778 return; 779 } 780 ad->port_regs.cmd &= ~PORT_CMD_LIST_ON; 781 dma_memory_unmap(ad->hba->as, ad->lst, 1024, 782 DMA_DIRECTION_FROM_DEVICE, 1024); 783 ad->lst = NULL; 784 } 785 786 static void ahci_write_fis_sdb(AHCIState *s, NCQTransferState *ncq_tfs) 787 { 788 AHCIDevice *ad = ncq_tfs->drive; 789 AHCIPortRegs *pr = &ad->port_regs; 790 IDEState *ide_state; 791 SDBFIS *sdb_fis; 792 793 if (!ad->res_fis || 794 !(pr->cmd & PORT_CMD_FIS_RX)) { 795 return; 796 } 797 798 sdb_fis = (SDBFIS *)&ad->res_fis[RES_FIS_SDBFIS]; 799 ide_state = &ad->port.ifs[0]; 800 801 sdb_fis->type = SATA_FIS_TYPE_SDB; 802 /* Interrupt pending & Notification bit */ 803 sdb_fis->flags = 0x40; /* Interrupt bit, always 1 for NCQ */ 804 sdb_fis->status = ide_state->status & 0x77; 805 sdb_fis->error = ide_state->error; 806 /* update SAct field in SDB_FIS */ 807 sdb_fis->payload = cpu_to_le32(ad->finished); 808 809 /* Update shadow registers (except BSY 0x80 and DRQ 0x08) */ 810 pr->tfdata = (ad->port.ifs[0].error << 8) | 811 (ad->port.ifs[0].status & 0x77) | 812 (pr->tfdata & 0x88); 813 pr->scr_act &= ~ad->finished; 814 ad->finished = 0; 815 816 /* 817 * TFES IRQ is always raised if ERR_STAT is set, regardless of I bit. 818 * If ERR_STAT is not set, trigger SDBS IRQ if interrupt bit is set 819 * (which currently, it always is). 820 */ 821 if (sdb_fis->status & ERR_STAT) { 822 ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_TFES); 823 } else if (sdb_fis->flags & 0x40) { 824 ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_SDBS); 825 } 826 } 827 828 static void ahci_write_fis_pio(AHCIDevice *ad, uint16_t len, bool pio_fis_i) 829 { 830 AHCIPortRegs *pr = &ad->port_regs; 831 uint8_t *pio_fis; 832 IDEState *s = &ad->port.ifs[0]; 833 834 if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { 835 return; 836 } 837 838 pio_fis = &ad->res_fis[RES_FIS_PSFIS]; 839 840 pio_fis[0] = SATA_FIS_TYPE_PIO_SETUP; 841 pio_fis[1] = (pio_fis_i ? (1 << 6) : 0); 842 pio_fis[2] = s->status; 843 pio_fis[3] = s->error; 844 845 pio_fis[4] = s->sector; 846 pio_fis[5] = s->lcyl; 847 pio_fis[6] = s->hcyl; 848 pio_fis[7] = s->select; 849 pio_fis[8] = s->hob_sector; 850 pio_fis[9] = s->hob_lcyl; 851 pio_fis[10] = s->hob_hcyl; 852 pio_fis[11] = 0; 853 pio_fis[12] = s->nsector & 0xFF; 854 pio_fis[13] = (s->nsector >> 8) & 0xFF; 855 pio_fis[14] = 0; 856 pio_fis[15] = s->status; 857 pio_fis[16] = len & 255; 858 pio_fis[17] = len >> 8; 859 pio_fis[18] = 0; 860 pio_fis[19] = 0; 861 862 /* Update shadow registers: */ 863 pr->tfdata = (ad->port.ifs[0].error << 8) | 864 ad->port.ifs[0].status; 865 866 if (pio_fis[2] & ERR_STAT) { 867 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); 868 } 869 } 870 871 static bool ahci_write_fis_d2h(AHCIDevice *ad, bool d2h_fis_i) 872 { 873 AHCIPortRegs *pr = &ad->port_regs; 874 uint8_t *d2h_fis; 875 int i; 876 IDEState *s = &ad->port.ifs[0]; 877 878 if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { 879 return false; 880 } 881 882 d2h_fis = &ad->res_fis[RES_FIS_RFIS]; 883 884 d2h_fis[0] = SATA_FIS_TYPE_REGISTER_D2H; 885 d2h_fis[1] = d2h_fis_i ? (1 << 6) : 0; /* interrupt bit */ 886 d2h_fis[2] = s->status; 887 d2h_fis[3] = s->error; 888 889 d2h_fis[4] = s->sector; 890 d2h_fis[5] = s->lcyl; 891 d2h_fis[6] = s->hcyl; 892 d2h_fis[7] = s->select; 893 d2h_fis[8] = s->hob_sector; 894 d2h_fis[9] = s->hob_lcyl; 895 d2h_fis[10] = s->hob_hcyl; 896 d2h_fis[11] = 0; 897 d2h_fis[12] = s->nsector & 0xFF; 898 d2h_fis[13] = (s->nsector >> 8) & 0xFF; 899 for (i = 14; i < 20; i++) { 900 d2h_fis[i] = 0; 901 } 902 903 /* Update shadow registers: */ 904 pr->tfdata = (ad->port.ifs[0].error << 8) | 905 ad->port.ifs[0].status; 906 907 /* TFES IRQ is always raised if ERR_STAT is set, regardless of I bit. */ 908 if (d2h_fis[2] & ERR_STAT) { 909 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); 910 } else if (d2h_fis_i) { 911 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_DHRS); 912 } 913 914 return true; 915 } 916 917 static int prdt_tbl_entry_size(const AHCI_SG *tbl) 918 { 919 /* flags_size is zero-based */ 920 return (le32_to_cpu(tbl->flags_size) & AHCI_PRDT_SIZE_MASK) + 1; 921 } 922 923 /** 924 * Fetch entries in a guest-provided PRDT and convert it into a QEMU SGlist. 925 * @ad: The AHCIDevice for whom we are building the SGList. 926 * @sglist: The SGList target to add PRD entries to. 927 * @cmd: The AHCI Command Header that describes where the PRDT is. 928 * @limit: The remaining size of the S/ATA transaction, in bytes. 929 * @offset: The number of bytes already transferred, in bytes. 930 * 931 * The AHCI PRDT can describe up to 256GiB. S/ATA only support transactions of 932 * up to 32MiB as of ATA8-ACS3 rev 1b, assuming a 512 byte sector size. We stop 933 * building the sglist from the PRDT as soon as we hit @limit bytes, 934 * which is <= INT32_MAX/2GiB. 935 */ 936 static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist, 937 AHCICmdHdr *cmd, int64_t limit, uint64_t offset) 938 { 939 uint16_t opts = le16_to_cpu(cmd->opts); 940 uint16_t prdtl = le16_to_cpu(cmd->prdtl); 941 uint64_t cfis_addr = le64_to_cpu(cmd->tbl_addr); 942 uint64_t prdt_addr = cfis_addr + 0x80; 943 dma_addr_t prdt_len = (prdtl * sizeof(AHCI_SG)); 944 dma_addr_t real_prdt_len = prdt_len; 945 uint8_t *prdt; 946 int i; 947 int r = 0; 948 uint64_t sum = 0; 949 int off_idx = -1; 950 int64_t off_pos = -1; 951 int tbl_entry_size; 952 IDEBus *bus = &ad->port; 953 BusState *qbus = BUS(bus); 954 955 trace_ahci_populate_sglist(ad->hba, ad->port_no); 956 957 if (!prdtl) { 958 trace_ahci_populate_sglist_no_prdtl(ad->hba, ad->port_no, opts); 959 return -1; 960 } 961 962 /* map PRDT */ 963 if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len, 964 DMA_DIRECTION_TO_DEVICE, 965 MEMTXATTRS_UNSPECIFIED))){ 966 trace_ahci_populate_sglist_no_map(ad->hba, ad->port_no); 967 return -1; 968 } 969 970 if (prdt_len < real_prdt_len) { 971 trace_ahci_populate_sglist_short_map(ad->hba, ad->port_no); 972 r = -1; 973 goto out; 974 } 975 976 /* Get entries in the PRDT, init a qemu sglist accordingly */ 977 if (prdtl > 0) { 978 AHCI_SG *tbl = (AHCI_SG *)prdt; 979 sum = 0; 980 for (i = 0; i < prdtl; i++) { 981 tbl_entry_size = prdt_tbl_entry_size(&tbl[i]); 982 if (offset < (sum + tbl_entry_size)) { 983 off_idx = i; 984 off_pos = offset - sum; 985 break; 986 } 987 sum += tbl_entry_size; 988 } 989 if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) { 990 trace_ahci_populate_sglist_bad_offset(ad->hba, ad->port_no, 991 off_idx, off_pos); 992 r = -1; 993 goto out; 994 } 995 996 qemu_sglist_init(sglist, qbus->parent, (prdtl - off_idx), 997 ad->hba->as); 998 qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr) + off_pos, 999 MIN(prdt_tbl_entry_size(&tbl[off_idx]) - off_pos, 1000 limit)); 1001 1002 for (i = off_idx + 1; i < prdtl && sglist->size < limit; i++) { 1003 qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr), 1004 MIN(prdt_tbl_entry_size(&tbl[i]), 1005 limit - sglist->size)); 1006 } 1007 } 1008 1009 out: 1010 dma_memory_unmap(ad->hba->as, prdt, prdt_len, 1011 DMA_DIRECTION_TO_DEVICE, prdt_len); 1012 return r; 1013 } 1014 1015 static void ncq_err(NCQTransferState *ncq_tfs) 1016 { 1017 IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; 1018 1019 ide_state->error = ABRT_ERR; 1020 ide_state->status = READY_STAT | ERR_STAT; 1021 qemu_sglist_destroy(&ncq_tfs->sglist); 1022 ncq_tfs->used = 0; 1023 } 1024 1025 static void ncq_finish(NCQTransferState *ncq_tfs) 1026 { 1027 /* If we didn't error out, set our finished bit. Errored commands 1028 * do not get a bit set for the SDB FIS ACT register, nor do they 1029 * clear the outstanding bit in scr_act (PxSACT). */ 1030 if (ncq_tfs->used) { 1031 ncq_tfs->drive->finished |= (1 << ncq_tfs->tag); 1032 } 1033 1034 ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs); 1035 1036 trace_ncq_finish(ncq_tfs->drive->hba, ncq_tfs->drive->port_no, 1037 ncq_tfs->tag); 1038 1039 block_acct_done(blk_get_stats(ncq_tfs->drive->port.ifs[0].blk), 1040 &ncq_tfs->acct); 1041 qemu_sglist_destroy(&ncq_tfs->sglist); 1042 ncq_tfs->used = 0; 1043 } 1044 1045 static void ncq_cb(void *opaque, int ret) 1046 { 1047 NCQTransferState *ncq_tfs = (NCQTransferState *)opaque; 1048 IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; 1049 1050 ncq_tfs->aiocb = NULL; 1051 1052 if (ret < 0) { 1053 bool is_read = ncq_tfs->cmd == READ_FPDMA_QUEUED; 1054 BlockErrorAction action = blk_get_error_action(ide_state->blk, 1055 is_read, -ret); 1056 if (action == BLOCK_ERROR_ACTION_STOP) { 1057 ncq_tfs->halt = true; 1058 ide_state->bus->error_status = IDE_RETRY_HBA; 1059 } else if (action == BLOCK_ERROR_ACTION_REPORT) { 1060 ncq_err(ncq_tfs); 1061 } 1062 blk_error_action(ide_state->blk, action, is_read, -ret); 1063 } else { 1064 ide_state->status = READY_STAT | SEEK_STAT; 1065 } 1066 1067 if (!ncq_tfs->halt) { 1068 ncq_finish(ncq_tfs); 1069 } 1070 } 1071 1072 static int is_ncq(uint8_t ata_cmd) 1073 { 1074 /* Based on SATA 3.2 section 13.6.3.2 */ 1075 switch (ata_cmd) { 1076 case READ_FPDMA_QUEUED: 1077 case WRITE_FPDMA_QUEUED: 1078 case NCQ_NON_DATA: 1079 case RECEIVE_FPDMA_QUEUED: 1080 case SEND_FPDMA_QUEUED: 1081 return 1; 1082 default: 1083 return 0; 1084 } 1085 } 1086 1087 static void execute_ncq_command(NCQTransferState *ncq_tfs) 1088 { 1089 AHCIDevice *ad = ncq_tfs->drive; 1090 IDEState *ide_state = &ad->port.ifs[0]; 1091 int port = ad->port_no; 1092 1093 g_assert(is_ncq(ncq_tfs->cmd)); 1094 ncq_tfs->halt = false; 1095 1096 switch (ncq_tfs->cmd) { 1097 case READ_FPDMA_QUEUED: 1098 trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag, 1099 ncq_tfs->sector_count, ncq_tfs->lba); 1100 dma_acct_start(ide_state->blk, &ncq_tfs->acct, 1101 &ncq_tfs->sglist, BLOCK_ACCT_READ); 1102 ncq_tfs->aiocb = dma_blk_read(ide_state->blk, &ncq_tfs->sglist, 1103 ncq_tfs->lba << BDRV_SECTOR_BITS, 1104 BDRV_SECTOR_SIZE, 1105 ncq_cb, ncq_tfs); 1106 break; 1107 case WRITE_FPDMA_QUEUED: 1108 trace_execute_ncq_command_write(ad->hba, port, ncq_tfs->tag, 1109 ncq_tfs->sector_count, ncq_tfs->lba); 1110 dma_acct_start(ide_state->blk, &ncq_tfs->acct, 1111 &ncq_tfs->sglist, BLOCK_ACCT_WRITE); 1112 ncq_tfs->aiocb = dma_blk_write(ide_state->blk, &ncq_tfs->sglist, 1113 ncq_tfs->lba << BDRV_SECTOR_BITS, 1114 BDRV_SECTOR_SIZE, 1115 ncq_cb, ncq_tfs); 1116 break; 1117 default: 1118 trace_execute_ncq_command_unsup(ad->hba, port, 1119 ncq_tfs->tag, ncq_tfs->cmd); 1120 ncq_err(ncq_tfs); 1121 } 1122 } 1123 1124 1125 static void process_ncq_command(AHCIState *s, int port, const uint8_t *cmd_fis, 1126 uint8_t slot) 1127 { 1128 AHCIDevice *ad = &s->dev[port]; 1129 const NCQFrame *ncq_fis = (NCQFrame *)cmd_fis; 1130 uint8_t tag = ncq_fis->tag >> 3; 1131 NCQTransferState *ncq_tfs = &ad->ncq_tfs[tag]; 1132 size_t size; 1133 1134 g_assert(is_ncq(ncq_fis->command)); 1135 if (ncq_tfs->used) { 1136 /* error - already in use */ 1137 qemu_log_mask(LOG_GUEST_ERROR, "%s: tag %d already used\n", 1138 __func__, tag); 1139 return; 1140 } 1141 1142 /* 1143 * A NCQ command clears the bit in PxCI after the command has been QUEUED 1144 * successfully (ERROR not set, BUSY and DRQ cleared). 1145 * 1146 * For NCQ commands, PxCI will always be cleared here. 1147 * 1148 * (Once the NCQ command is COMPLETED, the device will send a SDB FIS with 1149 * the interrupt bit set, which will clear PxSACT and raise an interrupt.) 1150 */ 1151 ahci_clear_cmd_issue(ad, slot); 1152 1153 /* 1154 * In reality, for NCQ commands, PxCI is cleared after receiving a D2H FIS 1155 * without the interrupt bit set, but since ahci_write_fis_d2h() can raise 1156 * an IRQ on error, we need to call them in reverse order. 1157 */ 1158 ahci_write_fis_d2h(ad, false); 1159 1160 ncq_tfs->used = 1; 1161 ncq_tfs->drive = ad; 1162 ncq_tfs->slot = slot; 1163 ncq_tfs->cmdh = &((AHCICmdHdr *)ad->lst)[slot]; 1164 ncq_tfs->cmd = ncq_fis->command; 1165 ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) | 1166 ((uint64_t)ncq_fis->lba4 << 32) | 1167 ((uint64_t)ncq_fis->lba3 << 24) | 1168 ((uint64_t)ncq_fis->lba2 << 16) | 1169 ((uint64_t)ncq_fis->lba1 << 8) | 1170 (uint64_t)ncq_fis->lba0; 1171 ncq_tfs->tag = tag; 1172 1173 /* Sanity-check the NCQ packet */ 1174 if (tag != slot) { 1175 trace_process_ncq_command_mismatch(s, port, tag, slot); 1176 } 1177 1178 if (ncq_fis->aux0 || ncq_fis->aux1 || ncq_fis->aux2 || ncq_fis->aux3) { 1179 trace_process_ncq_command_aux(s, port, tag); 1180 } 1181 if (ncq_fis->prio || ncq_fis->icc) { 1182 trace_process_ncq_command_prioicc(s, port, tag); 1183 } 1184 if (ncq_fis->fua & NCQ_FIS_FUA_MASK) { 1185 trace_process_ncq_command_fua(s, port, tag); 1186 } 1187 if (ncq_fis->tag & NCQ_FIS_RARC_MASK) { 1188 trace_process_ncq_command_rarc(s, port, tag); 1189 } 1190 1191 ncq_tfs->sector_count = ((ncq_fis->sector_count_high << 8) | 1192 ncq_fis->sector_count_low); 1193 if (!ncq_tfs->sector_count) { 1194 ncq_tfs->sector_count = 0x10000; 1195 } 1196 size = ncq_tfs->sector_count * BDRV_SECTOR_SIZE; 1197 ahci_populate_sglist(ad, &ncq_tfs->sglist, ncq_tfs->cmdh, size, 0); 1198 1199 if (ncq_tfs->sglist.size < size) { 1200 error_report("ahci: PRDT length for NCQ command (0x" DMA_ADDR_FMT ") " 1201 "is smaller than the requested size (0x%zx)", 1202 ncq_tfs->sglist.size, size); 1203 ncq_err(ncq_tfs); 1204 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_OFS); 1205 return; 1206 } else if (ncq_tfs->sglist.size != size) { 1207 trace_process_ncq_command_large(s, port, tag, 1208 ncq_tfs->sglist.size, size); 1209 } 1210 1211 trace_process_ncq_command(s, port, tag, 1212 ncq_fis->command, 1213 ncq_tfs->lba, 1214 ncq_tfs->lba + ncq_tfs->sector_count - 1); 1215 execute_ncq_command(ncq_tfs); 1216 } 1217 1218 static AHCICmdHdr *get_cmd_header(AHCIState *s, uint8_t port, uint8_t slot) 1219 { 1220 if (port >= s->ports || slot >= AHCI_MAX_CMDS) { 1221 return NULL; 1222 } 1223 1224 return s->dev[port].lst ? &((AHCICmdHdr *)s->dev[port].lst)[slot] : NULL; 1225 } 1226 1227 static void handle_reg_h2d_fis(AHCIState *s, int port, 1228 uint8_t slot, const uint8_t *cmd_fis) 1229 { 1230 IDEState *ide_state = &s->dev[port].port.ifs[0]; 1231 AHCICmdHdr *cmd = get_cmd_header(s, port, slot); 1232 AHCIDevice *ad = &s->dev[port]; 1233 uint16_t opts = le16_to_cpu(cmd->opts); 1234 1235 if (cmd_fis[1] & 0x0F) { 1236 trace_handle_reg_h2d_fis_pmp(s, port, cmd_fis[1], 1237 cmd_fis[2], cmd_fis[3]); 1238 return; 1239 } 1240 1241 if (cmd_fis[1] & 0x70) { 1242 trace_handle_reg_h2d_fis_res(s, port, cmd_fis[1], 1243 cmd_fis[2], cmd_fis[3]); 1244 return; 1245 } 1246 1247 if (!(cmd_fis[1] & SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER)) { 1248 switch (s->dev[port].port_state) { 1249 case STATE_RUN: 1250 if (cmd_fis[15] & ATA_SRST) { 1251 s->dev[port].port_state = STATE_RESET; 1252 /* 1253 * When setting SRST in the first H2D FIS in the reset sequence, 1254 * the device does not send a D2H FIS. Host software thus has to 1255 * set the "Clear Busy upon R_OK" bit such that PxCI (and BUSY) 1256 * gets cleared. See AHCI 1.3.1, section 10.4.1 Software Reset. 1257 */ 1258 if (opts & AHCI_CMD_CLR_BUSY) { 1259 ahci_clear_cmd_issue(ad, slot); 1260 } 1261 } 1262 break; 1263 case STATE_RESET: 1264 if (!(cmd_fis[15] & ATA_SRST)) { 1265 /* 1266 * When clearing SRST in the second H2D FIS in the reset 1267 * sequence, the device will execute diagnostics. When this is 1268 * done, the device will send a D2H FIS with the good status. 1269 * See SATA 3.5a Gold, section 11.4 Software reset protocol. 1270 * 1271 * This D2H FIS is the first D2H FIS received from the device, 1272 * and is received regardless if the reset was performed by a 1273 * COMRESET or by setting and clearing the SRST bit. Therefore, 1274 * the logic for this is found in ahci_init_d2h() and not here. 1275 */ 1276 ahci_reset_port(s, port); 1277 } 1278 break; 1279 } 1280 return; 1281 } 1282 1283 /* Check for NCQ command */ 1284 if (is_ncq(cmd_fis[2])) { 1285 process_ncq_command(s, port, cmd_fis, slot); 1286 return; 1287 } 1288 1289 /* Decompose the FIS: 1290 * AHCI does not interpret FIS packets, it only forwards them. 1291 * SATA 1.0 describes how to decode LBA28 and CHS FIS packets. 1292 * Later specifications, e.g, SATA 3.2, describe LBA48 FIS packets. 1293 * 1294 * ATA4 describes sector number for LBA28/CHS commands. 1295 * ATA6 describes sector number for LBA48 commands. 1296 * ATA8 deprecates CHS fully, describing only LBA28/48. 1297 * 1298 * We dutifully convert the FIS into IDE registers, and allow the 1299 * core layer to interpret them as needed. */ 1300 ide_state->feature = cmd_fis[3]; 1301 ide_state->sector = cmd_fis[4]; /* LBA 7:0 */ 1302 ide_state->lcyl = cmd_fis[5]; /* LBA 15:8 */ 1303 ide_state->hcyl = cmd_fis[6]; /* LBA 23:16 */ 1304 ide_state->select = cmd_fis[7]; /* LBA 27:24 (LBA28) */ 1305 ide_state->hob_sector = cmd_fis[8]; /* LBA 31:24 */ 1306 ide_state->hob_lcyl = cmd_fis[9]; /* LBA 39:32 */ 1307 ide_state->hob_hcyl = cmd_fis[10]; /* LBA 47:40 */ 1308 ide_state->hob_feature = cmd_fis[11]; 1309 ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]); 1310 /* 14, 16, 17, 18, 19: Reserved (SATA 1.0) */ 1311 /* 15: Only valid when UPDATE_COMMAND not set. */ 1312 1313 /* Copy the ACMD field (ATAPI packet, if any) from the AHCI command 1314 * table to ide_state->io_buffer */ 1315 if (opts & AHCI_CMD_ATAPI) { 1316 memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10); 1317 if (trace_event_get_state_backends(TRACE_HANDLE_REG_H2D_FIS_DUMP)) { 1318 char *pretty_fis = ahci_pretty_buffer_fis(ide_state->io_buffer, 0x10); 1319 trace_handle_reg_h2d_fis_dump(s, port, pretty_fis); 1320 g_free(pretty_fis); 1321 } 1322 } 1323 1324 ide_state->error = 0; 1325 s->dev[port].done_first_drq = false; 1326 /* Reset transferred byte counter */ 1327 cmd->status = 0; 1328 1329 /* 1330 * A non-NCQ command clears the bit in PxCI after the command has COMPLETED 1331 * successfully (ERROR not set, BUSY and DRQ cleared). 1332 * 1333 * For non-NCQ commands, PxCI will always be cleared by ahci_cmd_done(). 1334 */ 1335 ad->busy_slot = slot; 1336 1337 /* We're ready to process the command in FIS byte 2. */ 1338 ide_bus_exec_cmd(&s->dev[port].port, cmd_fis[2]); 1339 } 1340 1341 static void handle_cmd(AHCIState *s, int port, uint8_t slot) 1342 { 1343 IDEState *ide_state; 1344 uint64_t tbl_addr; 1345 AHCICmdHdr *cmd; 1346 uint8_t *cmd_fis; 1347 dma_addr_t cmd_len; 1348 1349 if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { 1350 /* Engine currently busy, try again later */ 1351 trace_handle_cmd_busy(s, port); 1352 return; 1353 } 1354 1355 if (!s->dev[port].lst) { 1356 trace_handle_cmd_nolist(s, port); 1357 return; 1358 } 1359 cmd = get_cmd_header(s, port, slot); 1360 /* remember current slot handle for later */ 1361 s->dev[port].cur_cmd = cmd; 1362 1363 /* The device we are working for */ 1364 ide_state = &s->dev[port].port.ifs[0]; 1365 if (!ide_state->blk) { 1366 trace_handle_cmd_badport(s, port); 1367 return; 1368 } 1369 1370 tbl_addr = le64_to_cpu(cmd->tbl_addr); 1371 cmd_len = 0x80; 1372 cmd_fis = dma_memory_map(s->as, tbl_addr, &cmd_len, 1373 DMA_DIRECTION_TO_DEVICE, MEMTXATTRS_UNSPECIFIED); 1374 if (!cmd_fis) { 1375 trace_handle_cmd_badfis(s, port); 1376 return; 1377 } else if (cmd_len != 0x80) { 1378 ahci_trigger_irq(s, &s->dev[port], AHCI_PORT_IRQ_BIT_HBFS); 1379 trace_handle_cmd_badmap(s, port, cmd_len); 1380 goto out; 1381 } 1382 if (trace_event_get_state_backends(TRACE_HANDLE_CMD_FIS_DUMP)) { 1383 char *pretty_fis = ahci_pretty_buffer_fis(cmd_fis, 0x80); 1384 trace_handle_cmd_fis_dump(s, port, pretty_fis); 1385 g_free(pretty_fis); 1386 } 1387 switch (cmd_fis[0]) { 1388 case SATA_FIS_TYPE_REGISTER_H2D: 1389 handle_reg_h2d_fis(s, port, slot, cmd_fis); 1390 break; 1391 default: 1392 trace_handle_cmd_unhandled_fis(s, port, 1393 cmd_fis[0], cmd_fis[1], cmd_fis[2]); 1394 break; 1395 } 1396 1397 out: 1398 dma_memory_unmap(s->as, cmd_fis, cmd_len, DMA_DIRECTION_TO_DEVICE, 1399 cmd_len); 1400 } 1401 1402 /* Transfer PIO data between RAM and device */ 1403 static void ahci_pio_transfer(const IDEDMA *dma) 1404 { 1405 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1406 IDEState *s = &ad->port.ifs[0]; 1407 uint32_t size = (uint32_t)(s->data_end - s->data_ptr); 1408 /* write == ram -> device */ 1409 uint16_t opts = le16_to_cpu(ad->cur_cmd->opts); 1410 int is_write = opts & AHCI_CMD_WRITE; 1411 int is_atapi = opts & AHCI_CMD_ATAPI; 1412 int has_sglist = 0; 1413 bool pio_fis_i; 1414 1415 /* The PIO Setup FIS is received prior to transfer, but the interrupt 1416 * is only triggered after data is received. 1417 * 1418 * The device only sets the 'I' bit in the PIO Setup FIS for device->host 1419 * requests (see "DPIOI1" in the SATA spec), or for host->device DRQs after 1420 * the first (see "DPIOO1"). The latter is consistent with the spec's 1421 * description of the PACKET protocol, where the command part of ATAPI requests 1422 * ("DPKT0") has the 'I' bit clear, while the data part of PIO ATAPI requests 1423 * ("DPKT4a" and "DPKT7") has the 'I' bit set for both directions for all DRQs. 1424 */ 1425 pio_fis_i = ad->done_first_drq || (!is_atapi && !is_write); 1426 ahci_write_fis_pio(ad, size, pio_fis_i); 1427 1428 if (is_atapi && !ad->done_first_drq) { 1429 /* already prepopulated iobuffer */ 1430 goto out; 1431 } 1432 1433 if (ahci_dma_prepare_buf(dma, size)) { 1434 has_sglist = 1; 1435 } 1436 1437 trace_ahci_pio_transfer(ad->hba, ad->port_no, is_write ? "writ" : "read", 1438 size, is_atapi ? "atapi" : "ata", 1439 has_sglist ? "" : "o"); 1440 1441 if (has_sglist && size) { 1442 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 1443 1444 if (is_write) { 1445 dma_buf_write(s->data_ptr, size, NULL, &s->sg, attrs); 1446 } else { 1447 dma_buf_read(s->data_ptr, size, NULL, &s->sg, attrs); 1448 } 1449 } 1450 1451 /* Update number of transferred bytes, destroy sglist */ 1452 dma_buf_commit(s, size); 1453 1454 out: 1455 /* declare that we processed everything */ 1456 s->data_ptr = s->data_end; 1457 1458 ad->done_first_drq = true; 1459 if (pio_fis_i) { 1460 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_PSS); 1461 } 1462 } 1463 1464 static void ahci_start_dma(const IDEDMA *dma, IDEState *s, 1465 BlockCompletionFunc *dma_cb) 1466 { 1467 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1468 trace_ahci_start_dma(ad->hba, ad->port_no); 1469 s->io_buffer_offset = 0; 1470 dma_cb(s, 0); 1471 } 1472 1473 static void ahci_restart_dma(const IDEDMA *dma) 1474 { 1475 /* Nothing to do, ahci_start_dma already resets s->io_buffer_offset. */ 1476 } 1477 1478 /** 1479 * IDE/PIO restarts are handled by the core layer, but NCQ commands 1480 * need an extra kick from the AHCI HBA. 1481 */ 1482 static void ahci_restart(const IDEDMA *dma) 1483 { 1484 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1485 int i; 1486 1487 for (i = 0; i < AHCI_MAX_CMDS; i++) { 1488 NCQTransferState *ncq_tfs = &ad->ncq_tfs[i]; 1489 if (ncq_tfs->halt) { 1490 execute_ncq_command(ncq_tfs); 1491 } 1492 } 1493 } 1494 1495 /** 1496 * Called in DMA and PIO R/W chains to read the PRDT. 1497 * Not shared with NCQ pathways. 1498 */ 1499 static int32_t ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit) 1500 { 1501 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1502 IDEState *s = &ad->port.ifs[0]; 1503 1504 if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, 1505 limit, s->io_buffer_offset) == -1) { 1506 trace_ahci_dma_prepare_buf_fail(ad->hba, ad->port_no); 1507 return -1; 1508 } 1509 s->io_buffer_size = s->sg.size; 1510 1511 trace_ahci_dma_prepare_buf(ad->hba, ad->port_no, limit, s->io_buffer_size); 1512 return s->io_buffer_size; 1513 } 1514 1515 /** 1516 * Updates the command header with a bytes-read value. 1517 * Called via dma_buf_commit, for both DMA and PIO paths. 1518 * sglist destruction is handled within dma_buf_commit. 1519 */ 1520 static void ahci_commit_buf(const IDEDMA *dma, uint32_t tx_bytes) 1521 { 1522 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1523 1524 tx_bytes += le32_to_cpu(ad->cur_cmd->status); 1525 ad->cur_cmd->status = cpu_to_le32(tx_bytes); 1526 } 1527 1528 static int ahci_dma_rw_buf(const IDEDMA *dma, bool is_write) 1529 { 1530 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1531 IDEState *s = &ad->port.ifs[0]; 1532 uint8_t *p = s->io_buffer + s->io_buffer_index; 1533 int l = s->io_buffer_size - s->io_buffer_index; 1534 1535 if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, l, s->io_buffer_offset)) { 1536 return 0; 1537 } 1538 1539 if (is_write) { 1540 dma_buf_read(p, l, NULL, &s->sg, MEMTXATTRS_UNSPECIFIED); 1541 } else { 1542 dma_buf_write(p, l, NULL, &s->sg, MEMTXATTRS_UNSPECIFIED); 1543 } 1544 1545 /* free sglist, update byte count */ 1546 dma_buf_commit(s, l); 1547 s->io_buffer_index += l; 1548 1549 trace_ahci_dma_rw_buf(ad->hba, ad->port_no, l); 1550 return 1; 1551 } 1552 1553 static void ahci_clear_cmd_issue(AHCIDevice *ad, uint8_t slot) 1554 { 1555 IDEState *ide_state = &ad->port.ifs[0]; 1556 1557 if (!(ide_state->status & ERR_STAT) && 1558 !(ide_state->status & (BUSY_STAT | DRQ_STAT))) { 1559 ad->port_regs.cmd_issue &= ~(1 << slot); 1560 } 1561 } 1562 1563 /* Non-NCQ command is done - This function is never called for NCQ commands. */ 1564 static void ahci_cmd_done(const IDEDMA *dma) 1565 { 1566 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1567 IDEState *ide_state = &ad->port.ifs[0]; 1568 1569 trace_ahci_cmd_done(ad->hba, ad->port_no); 1570 1571 /* no longer busy */ 1572 if (ad->busy_slot != -1) { 1573 ahci_clear_cmd_issue(ad, ad->busy_slot); 1574 ad->busy_slot = -1; 1575 } 1576 1577 /* 1578 * In reality, for non-NCQ commands, PxCI is cleared after receiving a D2H 1579 * FIS with the interrupt bit set, but since ahci_write_fis_d2h() will raise 1580 * an IRQ, we need to call them in reverse order. 1581 */ 1582 ahci_write_fis_d2h(ad, true); 1583 1584 if (!(ide_state->status & ERR_STAT) && 1585 ad->port_regs.cmd_issue && !ad->check_bh) { 1586 ad->check_bh = qemu_bh_new_guarded(ahci_check_cmd_bh, ad, 1587 &ad->mem_reentrancy_guard); 1588 qemu_bh_schedule(ad->check_bh); 1589 } 1590 } 1591 1592 static void ahci_irq_set(void *opaque, int n, int level) 1593 { 1594 qemu_log_mask(LOG_UNIMP, "ahci: IRQ#%d level:%d\n", n, level); 1595 } 1596 1597 static const IDEDMAOps ahci_dma_ops = { 1598 .start_dma = ahci_start_dma, 1599 .restart = ahci_restart, 1600 .restart_dma = ahci_restart_dma, 1601 .pio_transfer = ahci_pio_transfer, 1602 .prepare_buf = ahci_dma_prepare_buf, 1603 .commit_buf = ahci_commit_buf, 1604 .rw_buf = ahci_dma_rw_buf, 1605 .cmd_done = ahci_cmd_done, 1606 }; 1607 1608 void ahci_init(AHCIState *s, DeviceState *qdev) 1609 { 1610 s->container = qdev; 1611 /* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */ 1612 memory_region_init_io(&s->mem, OBJECT(qdev), &ahci_mem_ops, s, 1613 "ahci", AHCI_MEM_BAR_SIZE); 1614 memory_region_init_io(&s->idp, OBJECT(qdev), &ahci_idp_ops, s, 1615 "ahci-idp", 32); 1616 } 1617 1618 void ahci_realize(AHCIState *s, DeviceState *qdev, AddressSpace *as) 1619 { 1620 qemu_irq *irqs; 1621 int i; 1622 1623 s->as = as; 1624 assert(s->ports > 0); 1625 s->dev = g_new0(AHCIDevice, s->ports); 1626 ahci_reg_init(s); 1627 irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports); 1628 for (i = 0; i < s->ports; i++) { 1629 AHCIDevice *ad = &s->dev[i]; 1630 1631 ide_bus_init(&ad->port, sizeof(ad->port), qdev, i, 1); 1632 ide_bus_init_output_irq(&ad->port, irqs[i]); 1633 1634 ad->hba = s; 1635 ad->port_no = i; 1636 ad->port.dma = &ad->dma; 1637 ad->port.dma->ops = &ahci_dma_ops; 1638 ide_bus_register_restart_cb(&ad->port); 1639 } 1640 g_free(irqs); 1641 } 1642 1643 void ahci_uninit(AHCIState *s) 1644 { 1645 int i, j; 1646 1647 for (i = 0; i < s->ports; i++) { 1648 AHCIDevice *ad = &s->dev[i]; 1649 1650 for (j = 0; j < 2; j++) { 1651 ide_exit(&ad->port.ifs[j]); 1652 } 1653 object_unparent(OBJECT(&ad->port)); 1654 } 1655 1656 g_free(s->dev); 1657 } 1658 1659 void ahci_reset(AHCIState *s) 1660 { 1661 AHCIPortRegs *pr; 1662 int i; 1663 1664 trace_ahci_reset(s); 1665 1666 s->control_regs.irqstatus = 0; 1667 /* AHCI Enable (AE) 1668 * The implementation of this bit is dependent upon the value of the 1669 * CAP.SAM bit. If CAP.SAM is '0', then GHC.AE shall be read-write and 1670 * shall have a reset value of '0'. If CAP.SAM is '1', then AE shall be 1671 * read-only and shall have a reset value of '1'. 1672 * 1673 * We set HOST_CAP_AHCI so we must enable AHCI at reset. 1674 */ 1675 s->control_regs.ghc = HOST_CTL_AHCI_EN; 1676 1677 for (i = 0; i < s->ports; i++) { 1678 pr = &s->dev[i].port_regs; 1679 pr->irq_stat = 0; 1680 pr->irq_mask = 0; 1681 pr->scr_ctl = 0; 1682 pr->cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON; 1683 ahci_reset_port(s, i); 1684 } 1685 } 1686 1687 static const VMStateDescription vmstate_ncq_tfs = { 1688 .name = "ncq state", 1689 .version_id = 1, 1690 .fields = (const VMStateField[]) { 1691 VMSTATE_UINT32(sector_count, NCQTransferState), 1692 VMSTATE_UINT64(lba, NCQTransferState), 1693 VMSTATE_UINT8(tag, NCQTransferState), 1694 VMSTATE_UINT8(cmd, NCQTransferState), 1695 VMSTATE_UINT8(slot, NCQTransferState), 1696 VMSTATE_BOOL(used, NCQTransferState), 1697 VMSTATE_BOOL(halt, NCQTransferState), 1698 VMSTATE_END_OF_LIST() 1699 }, 1700 }; 1701 1702 static const VMStateDescription vmstate_ahci_device = { 1703 .name = "ahci port", 1704 .version_id = 1, 1705 .fields = (const VMStateField[]) { 1706 VMSTATE_IDE_BUS(port, AHCIDevice), 1707 VMSTATE_IDE_DRIVE(port.ifs[0], AHCIDevice), 1708 VMSTATE_UINT32(port_state, AHCIDevice), 1709 VMSTATE_UINT32(finished, AHCIDevice), 1710 VMSTATE_UINT32(port_regs.lst_addr, AHCIDevice), 1711 VMSTATE_UINT32(port_regs.lst_addr_hi, AHCIDevice), 1712 VMSTATE_UINT32(port_regs.fis_addr, AHCIDevice), 1713 VMSTATE_UINT32(port_regs.fis_addr_hi, AHCIDevice), 1714 VMSTATE_UINT32(port_regs.irq_stat, AHCIDevice), 1715 VMSTATE_UINT32(port_regs.irq_mask, AHCIDevice), 1716 VMSTATE_UINT32(port_regs.cmd, AHCIDevice), 1717 VMSTATE_UINT32(port_regs.tfdata, AHCIDevice), 1718 VMSTATE_UINT32(port_regs.sig, AHCIDevice), 1719 VMSTATE_UINT32(port_regs.scr_stat, AHCIDevice), 1720 VMSTATE_UINT32(port_regs.scr_ctl, AHCIDevice), 1721 VMSTATE_UINT32(port_regs.scr_err, AHCIDevice), 1722 VMSTATE_UINT32(port_regs.scr_act, AHCIDevice), 1723 VMSTATE_UINT32(port_regs.cmd_issue, AHCIDevice), 1724 VMSTATE_BOOL(done_first_drq, AHCIDevice), 1725 VMSTATE_INT32(busy_slot, AHCIDevice), 1726 VMSTATE_BOOL(init_d2h_sent, AHCIDevice), 1727 VMSTATE_STRUCT_ARRAY(ncq_tfs, AHCIDevice, AHCI_MAX_CMDS, 1728 1, vmstate_ncq_tfs, NCQTransferState), 1729 VMSTATE_END_OF_LIST() 1730 }, 1731 }; 1732 1733 static int ahci_state_post_load(void *opaque, int version_id) 1734 { 1735 int i, j; 1736 struct AHCIDevice *ad; 1737 NCQTransferState *ncq_tfs; 1738 AHCIPortRegs *pr; 1739 AHCIState *s = opaque; 1740 1741 for (i = 0; i < s->ports; i++) { 1742 ad = &s->dev[i]; 1743 pr = &ad->port_regs; 1744 1745 if (!(pr->cmd & PORT_CMD_START) && (pr->cmd & PORT_CMD_LIST_ON)) { 1746 error_report("AHCI: DMA engine should be off, but status bit " 1747 "indicates it is still running."); 1748 return -1; 1749 } 1750 if (!(pr->cmd & PORT_CMD_FIS_RX) && (pr->cmd & PORT_CMD_FIS_ON)) { 1751 error_report("AHCI: FIS RX engine should be off, but status bit " 1752 "indicates it is still running."); 1753 return -1; 1754 } 1755 1756 /* After a migrate, the DMA/FIS engines are "off" and 1757 * need to be conditionally restarted */ 1758 pr->cmd &= ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON); 1759 if (ahci_cond_start_engines(ad) != 0) { 1760 return -1; 1761 } 1762 1763 for (j = 0; j < AHCI_MAX_CMDS; j++) { 1764 ncq_tfs = &ad->ncq_tfs[j]; 1765 ncq_tfs->drive = ad; 1766 1767 if (ncq_tfs->used != ncq_tfs->halt) { 1768 return -1; 1769 } 1770 if (!ncq_tfs->halt) { 1771 continue; 1772 } 1773 if (!is_ncq(ncq_tfs->cmd)) { 1774 return -1; 1775 } 1776 if (ncq_tfs->slot != ncq_tfs->tag) { 1777 return -1; 1778 } 1779 /* If ncq_tfs->halt is justly set, the engine should be engaged, 1780 * and the command list buffer should be mapped. */ 1781 ncq_tfs->cmdh = get_cmd_header(s, i, ncq_tfs->slot); 1782 if (!ncq_tfs->cmdh) { 1783 return -1; 1784 } 1785 ahci_populate_sglist(ncq_tfs->drive, &ncq_tfs->sglist, 1786 ncq_tfs->cmdh, 1787 ncq_tfs->sector_count * BDRV_SECTOR_SIZE, 1788 0); 1789 if (ncq_tfs->sector_count != ncq_tfs->sglist.size >> 9) { 1790 return -1; 1791 } 1792 } 1793 1794 1795 /* 1796 * If an error is present, ad->busy_slot will be valid and not -1. 1797 * In this case, an operation is waiting to resume and will re-check 1798 * for additional AHCI commands to execute upon completion. 1799 * 1800 * In the case where no error was present, busy_slot will be -1, 1801 * and we should check to see if there are additional commands waiting. 1802 */ 1803 if (ad->busy_slot == -1) { 1804 check_cmd(s, i); 1805 } else { 1806 /* We are in the middle of a command, and may need to access 1807 * the command header in guest memory again. */ 1808 if (ad->busy_slot < 0 || ad->busy_slot >= AHCI_MAX_CMDS) { 1809 return -1; 1810 } 1811 ad->cur_cmd = get_cmd_header(s, i, ad->busy_slot); 1812 } 1813 } 1814 1815 return 0; 1816 } 1817 1818 const VMStateDescription vmstate_ahci = { 1819 .name = "ahci", 1820 .version_id = 1, 1821 .post_load = ahci_state_post_load, 1822 .fields = (const VMStateField[]) { 1823 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(dev, AHCIState, ports, 1824 vmstate_ahci_device, AHCIDevice), 1825 VMSTATE_UINT32(control_regs.cap, AHCIState), 1826 VMSTATE_UINT32(control_regs.ghc, AHCIState), 1827 VMSTATE_UINT32(control_regs.irqstatus, AHCIState), 1828 VMSTATE_UINT32(control_regs.impl, AHCIState), 1829 VMSTATE_UINT32(control_regs.version, AHCIState), 1830 VMSTATE_UINT32(idp_index, AHCIState), 1831 VMSTATE_UINT32_EQUAL(ports, AHCIState, NULL), 1832 VMSTATE_END_OF_LIST() 1833 }, 1834 }; 1835 1836 static const VMStateDescription vmstate_sysbus_ahci = { 1837 .name = "sysbus-ahci", 1838 .fields = (const VMStateField[]) { 1839 VMSTATE_AHCI(ahci, SysbusAHCIState), 1840 VMSTATE_END_OF_LIST() 1841 }, 1842 }; 1843 1844 static void sysbus_ahci_reset(DeviceState *dev) 1845 { 1846 SysbusAHCIState *s = SYSBUS_AHCI(dev); 1847 1848 ahci_reset(&s->ahci); 1849 } 1850 1851 static void sysbus_ahci_init(Object *obj) 1852 { 1853 SysbusAHCIState *s = SYSBUS_AHCI(obj); 1854 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1855 1856 ahci_init(&s->ahci, DEVICE(obj)); 1857 1858 sysbus_init_mmio(sbd, &s->ahci.mem); 1859 sysbus_init_irq(sbd, &s->ahci.irq); 1860 } 1861 1862 static void sysbus_ahci_realize(DeviceState *dev, Error **errp) 1863 { 1864 SysbusAHCIState *s = SYSBUS_AHCI(dev); 1865 1866 ahci_realize(&s->ahci, dev, &address_space_memory); 1867 } 1868 1869 static Property sysbus_ahci_properties[] = { 1870 DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, ahci.ports, 1), 1871 DEFINE_PROP_END_OF_LIST(), 1872 }; 1873 1874 static void sysbus_ahci_class_init(ObjectClass *klass, void *data) 1875 { 1876 DeviceClass *dc = DEVICE_CLASS(klass); 1877 1878 dc->realize = sysbus_ahci_realize; 1879 dc->vmsd = &vmstate_sysbus_ahci; 1880 device_class_set_props(dc, sysbus_ahci_properties); 1881 device_class_set_legacy_reset(dc, sysbus_ahci_reset); 1882 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 1883 } 1884 1885 static const TypeInfo sysbus_ahci_info = { 1886 .name = TYPE_SYSBUS_AHCI, 1887 .parent = TYPE_SYS_BUS_DEVICE, 1888 .instance_size = sizeof(SysbusAHCIState), 1889 .instance_init = sysbus_ahci_init, 1890 .class_init = sysbus_ahci_class_init, 1891 }; 1892 1893 static void sysbus_ahci_register_types(void) 1894 { 1895 type_register_static(&sysbus_ahci_info); 1896 } 1897 1898 type_init(sysbus_ahci_register_types) 1899 1900 void ahci_ide_create_devs(AHCIState *ahci, DriveInfo **hd) 1901 { 1902 int i; 1903 1904 for (i = 0; i < ahci->ports; i++) { 1905 if (hd[i] == NULL) { 1906 continue; 1907 } 1908 ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]); 1909 } 1910 } 1911