1 /* 2 * QEMU AHCI Emulation 3 * 4 * Copyright (c) 2010 qiaochong@loongson.cn 5 * Copyright (c) 2010 Roland Elek <elek.roland@gmail.com> 6 * Copyright (c) 2010 Sebastian Herbszt <herbszt@gmx.de> 7 * Copyright (c) 2010 Alexander Graf <agraf@suse.de> 8 * 9 * This library is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Lesser General Public 11 * License as published by the Free Software Foundation; either 12 * version 2.1 of the License, or (at your option) any later version. 13 * 14 * This library is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Lesser General Public License for more details. 18 * 19 * You should have received a copy of the GNU Lesser General Public 20 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 21 * 22 */ 23 24 #include "qemu/osdep.h" 25 #include "hw/irq.h" 26 #include "hw/pci/msi.h" 27 #include "hw/pci/pci.h" 28 #include "hw/qdev-properties.h" 29 #include "migration/vmstate.h" 30 31 #include "qemu/error-report.h" 32 #include "qemu/log.h" 33 #include "qemu/main-loop.h" 34 #include "qemu/module.h" 35 #include "sysemu/block-backend.h" 36 #include "sysemu/dma.h" 37 #include "hw/ide/internal.h" 38 #include "hw/ide/pci.h" 39 #include "ahci_internal.h" 40 41 #include "trace.h" 42 43 static void check_cmd(AHCIState *s, int port); 44 static void handle_cmd(AHCIState *s, int port, uint8_t slot); 45 static void ahci_reset_port(AHCIState *s, int port); 46 static bool ahci_write_fis_d2h(AHCIDevice *ad, bool d2h_fis_i); 47 static void ahci_clear_cmd_issue(AHCIDevice *ad, uint8_t slot); 48 static void ahci_init_d2h(AHCIDevice *ad); 49 static int ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit); 50 static bool ahci_map_clb_address(AHCIDevice *ad); 51 static bool ahci_map_fis_address(AHCIDevice *ad); 52 static void ahci_unmap_clb_address(AHCIDevice *ad); 53 static void ahci_unmap_fis_address(AHCIDevice *ad); 54 55 static const char *AHCIHostReg_lookup[AHCI_HOST_REG__COUNT] = { 56 [AHCI_HOST_REG_CAP] = "CAP", 57 [AHCI_HOST_REG_CTL] = "GHC", 58 [AHCI_HOST_REG_IRQ_STAT] = "IS", 59 [AHCI_HOST_REG_PORTS_IMPL] = "PI", 60 [AHCI_HOST_REG_VERSION] = "VS", 61 [AHCI_HOST_REG_CCC_CTL] = "CCC_CTL", 62 [AHCI_HOST_REG_CCC_PORTS] = "CCC_PORTS", 63 [AHCI_HOST_REG_EM_LOC] = "EM_LOC", 64 [AHCI_HOST_REG_EM_CTL] = "EM_CTL", 65 [AHCI_HOST_REG_CAP2] = "CAP2", 66 [AHCI_HOST_REG_BOHC] = "BOHC", 67 }; 68 69 static const char *AHCIPortReg_lookup[AHCI_PORT_REG__COUNT] = { 70 [AHCI_PORT_REG_LST_ADDR] = "PxCLB", 71 [AHCI_PORT_REG_LST_ADDR_HI] = "PxCLBU", 72 [AHCI_PORT_REG_FIS_ADDR] = "PxFB", 73 [AHCI_PORT_REG_FIS_ADDR_HI] = "PxFBU", 74 [AHCI_PORT_REG_IRQ_STAT] = "PxIS", 75 [AHCI_PORT_REG_IRQ_MASK] = "PXIE", 76 [AHCI_PORT_REG_CMD] = "PxCMD", 77 [7] = "Reserved", 78 [AHCI_PORT_REG_TFDATA] = "PxTFD", 79 [AHCI_PORT_REG_SIG] = "PxSIG", 80 [AHCI_PORT_REG_SCR_STAT] = "PxSSTS", 81 [AHCI_PORT_REG_SCR_CTL] = "PxSCTL", 82 [AHCI_PORT_REG_SCR_ERR] = "PxSERR", 83 [AHCI_PORT_REG_SCR_ACT] = "PxSACT", 84 [AHCI_PORT_REG_CMD_ISSUE] = "PxCI", 85 [AHCI_PORT_REG_SCR_NOTIF] = "PxSNTF", 86 [AHCI_PORT_REG_FIS_CTL] = "PxFBS", 87 [AHCI_PORT_REG_DEV_SLEEP] = "PxDEVSLP", 88 [18 ... 27] = "Reserved", 89 [AHCI_PORT_REG_VENDOR_1 ... 90 AHCI_PORT_REG_VENDOR_4] = "PxVS", 91 }; 92 93 static const char *AHCIPortIRQ_lookup[AHCI_PORT_IRQ__COUNT] = { 94 [AHCI_PORT_IRQ_BIT_DHRS] = "DHRS", 95 [AHCI_PORT_IRQ_BIT_PSS] = "PSS", 96 [AHCI_PORT_IRQ_BIT_DSS] = "DSS", 97 [AHCI_PORT_IRQ_BIT_SDBS] = "SDBS", 98 [AHCI_PORT_IRQ_BIT_UFS] = "UFS", 99 [AHCI_PORT_IRQ_BIT_DPS] = "DPS", 100 [AHCI_PORT_IRQ_BIT_PCS] = "PCS", 101 [AHCI_PORT_IRQ_BIT_DMPS] = "DMPS", 102 [8 ... 21] = "RESERVED", 103 [AHCI_PORT_IRQ_BIT_PRCS] = "PRCS", 104 [AHCI_PORT_IRQ_BIT_IPMS] = "IPMS", 105 [AHCI_PORT_IRQ_BIT_OFS] = "OFS", 106 [25] = "RESERVED", 107 [AHCI_PORT_IRQ_BIT_INFS] = "INFS", 108 [AHCI_PORT_IRQ_BIT_IFS] = "IFS", 109 [AHCI_PORT_IRQ_BIT_HBDS] = "HBDS", 110 [AHCI_PORT_IRQ_BIT_HBFS] = "HBFS", 111 [AHCI_PORT_IRQ_BIT_TFES] = "TFES", 112 [AHCI_PORT_IRQ_BIT_CPDS] = "CPDS" 113 }; 114 115 static uint32_t ahci_port_read(AHCIState *s, int port, int offset) 116 { 117 uint32_t val; 118 AHCIPortRegs *pr = &s->dev[port].port_regs; 119 enum AHCIPortReg regnum = offset / sizeof(uint32_t); 120 assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); 121 122 switch (regnum) { 123 case AHCI_PORT_REG_LST_ADDR: 124 val = pr->lst_addr; 125 break; 126 case AHCI_PORT_REG_LST_ADDR_HI: 127 val = pr->lst_addr_hi; 128 break; 129 case AHCI_PORT_REG_FIS_ADDR: 130 val = pr->fis_addr; 131 break; 132 case AHCI_PORT_REG_FIS_ADDR_HI: 133 val = pr->fis_addr_hi; 134 break; 135 case AHCI_PORT_REG_IRQ_STAT: 136 val = pr->irq_stat; 137 break; 138 case AHCI_PORT_REG_IRQ_MASK: 139 val = pr->irq_mask; 140 break; 141 case AHCI_PORT_REG_CMD: 142 val = pr->cmd; 143 break; 144 case AHCI_PORT_REG_TFDATA: 145 val = pr->tfdata; 146 break; 147 case AHCI_PORT_REG_SIG: 148 val = pr->sig; 149 break; 150 case AHCI_PORT_REG_SCR_STAT: 151 if (s->dev[port].port.ifs[0].blk) { 152 val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP | 153 SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE; 154 } else { 155 val = SATA_SCR_SSTATUS_DET_NODEV; 156 } 157 break; 158 case AHCI_PORT_REG_SCR_CTL: 159 val = pr->scr_ctl; 160 break; 161 case AHCI_PORT_REG_SCR_ERR: 162 val = pr->scr_err; 163 break; 164 case AHCI_PORT_REG_SCR_ACT: 165 val = pr->scr_act; 166 break; 167 case AHCI_PORT_REG_CMD_ISSUE: 168 val = pr->cmd_issue; 169 break; 170 default: 171 trace_ahci_port_read_default(s, port, AHCIPortReg_lookup[regnum], 172 offset); 173 val = 0; 174 } 175 176 trace_ahci_port_read(s, port, AHCIPortReg_lookup[regnum], offset, val); 177 return val; 178 } 179 180 static void ahci_irq_raise(AHCIState *s) 181 { 182 DeviceState *dev_state = s->container; 183 PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), 184 TYPE_PCI_DEVICE); 185 186 trace_ahci_irq_raise(s); 187 188 if (pci_dev && msi_enabled(pci_dev)) { 189 msi_notify(pci_dev, 0); 190 } else { 191 qemu_irq_raise(s->irq); 192 } 193 } 194 195 static void ahci_irq_lower(AHCIState *s) 196 { 197 DeviceState *dev_state = s->container; 198 PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), 199 TYPE_PCI_DEVICE); 200 201 trace_ahci_irq_lower(s); 202 203 if (!pci_dev || !msi_enabled(pci_dev)) { 204 qemu_irq_lower(s->irq); 205 } 206 } 207 208 static void ahci_check_irq(AHCIState *s) 209 { 210 int i; 211 uint32_t old_irq = s->control_regs.irqstatus; 212 213 s->control_regs.irqstatus = 0; 214 for (i = 0; i < s->ports; i++) { 215 AHCIPortRegs *pr = &s->dev[i].port_regs; 216 if (pr->irq_stat & pr->irq_mask) { 217 s->control_regs.irqstatus |= (1 << i); 218 } 219 } 220 trace_ahci_check_irq(s, old_irq, s->control_regs.irqstatus); 221 if (s->control_regs.irqstatus && 222 (s->control_regs.ghc & HOST_CTL_IRQ_EN)) { 223 ahci_irq_raise(s); 224 } else { 225 ahci_irq_lower(s); 226 } 227 } 228 229 static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d, 230 enum AHCIPortIRQ irqbit) 231 { 232 g_assert((unsigned)irqbit < 32); 233 uint32_t irq = 1U << irqbit; 234 uint32_t irqstat = d->port_regs.irq_stat | irq; 235 236 trace_ahci_trigger_irq(s, d->port_no, 237 AHCIPortIRQ_lookup[irqbit], irq, 238 d->port_regs.irq_stat, irqstat, 239 irqstat & d->port_regs.irq_mask); 240 241 d->port_regs.irq_stat = irqstat; 242 ahci_check_irq(s); 243 } 244 245 static void map_page(AddressSpace *as, uint8_t **ptr, uint64_t addr, 246 uint32_t wanted) 247 { 248 hwaddr len = wanted; 249 250 if (*ptr) { 251 dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); 252 } 253 254 *ptr = dma_memory_map(as, addr, &len, DMA_DIRECTION_FROM_DEVICE, 255 MEMTXATTRS_UNSPECIFIED); 256 if (len < wanted && *ptr) { 257 dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); 258 *ptr = NULL; 259 } 260 } 261 262 /** 263 * Check the cmd register to see if we should start or stop 264 * the DMA or FIS RX engines. 265 * 266 * @ad: Device to dis/engage. 267 * 268 * @return 0 on success, -1 on error. 269 */ 270 static int ahci_cond_start_engines(AHCIDevice *ad) 271 { 272 AHCIPortRegs *pr = &ad->port_regs; 273 bool cmd_start = pr->cmd & PORT_CMD_START; 274 bool cmd_on = pr->cmd & PORT_CMD_LIST_ON; 275 bool fis_start = pr->cmd & PORT_CMD_FIS_RX; 276 bool fis_on = pr->cmd & PORT_CMD_FIS_ON; 277 278 if (cmd_start && !cmd_on) { 279 if (!ahci_map_clb_address(ad)) { 280 pr->cmd &= ~PORT_CMD_START; 281 error_report("AHCI: Failed to start DMA engine: " 282 "bad command list buffer address"); 283 return -1; 284 } 285 } else if (!cmd_start && cmd_on) { 286 ahci_unmap_clb_address(ad); 287 } 288 289 if (fis_start && !fis_on) { 290 if (!ahci_map_fis_address(ad)) { 291 pr->cmd &= ~PORT_CMD_FIS_RX; 292 error_report("AHCI: Failed to start FIS receive engine: " 293 "bad FIS receive buffer address"); 294 return -1; 295 } 296 } else if (!fis_start && fis_on) { 297 ahci_unmap_fis_address(ad); 298 } 299 300 return 0; 301 } 302 303 static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val) 304 { 305 AHCIPortRegs *pr = &s->dev[port].port_regs; 306 enum AHCIPortReg regnum = offset / sizeof(uint32_t); 307 assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); 308 trace_ahci_port_write(s, port, AHCIPortReg_lookup[regnum], offset, val); 309 310 switch (regnum) { 311 case AHCI_PORT_REG_LST_ADDR: 312 pr->lst_addr = val; 313 break; 314 case AHCI_PORT_REG_LST_ADDR_HI: 315 pr->lst_addr_hi = val; 316 break; 317 case AHCI_PORT_REG_FIS_ADDR: 318 pr->fis_addr = val; 319 break; 320 case AHCI_PORT_REG_FIS_ADDR_HI: 321 pr->fis_addr_hi = val; 322 break; 323 case AHCI_PORT_REG_IRQ_STAT: 324 pr->irq_stat &= ~val; 325 ahci_check_irq(s); 326 break; 327 case AHCI_PORT_REG_IRQ_MASK: 328 pr->irq_mask = val & 0xfdc000ff; 329 ahci_check_irq(s); 330 break; 331 case AHCI_PORT_REG_CMD: 332 if ((pr->cmd & PORT_CMD_START) && !(val & PORT_CMD_START)) { 333 pr->scr_act = 0; 334 pr->cmd_issue = 0; 335 } 336 337 /* Block any Read-only fields from being set; 338 * including LIST_ON and FIS_ON. 339 * The spec requires to set ICC bits to zero after the ICC change 340 * is done. We don't support ICC state changes, therefore always 341 * force the ICC bits to zero. 342 */ 343 pr->cmd = (pr->cmd & PORT_CMD_RO_MASK) | 344 (val & ~(PORT_CMD_RO_MASK | PORT_CMD_ICC_MASK)); 345 346 /* Check FIS RX and CLB engines */ 347 ahci_cond_start_engines(&s->dev[port]); 348 349 /* XXX usually the FIS would be pending on the bus here and 350 issuing deferred until the OS enables FIS receival. 351 Instead, we only submit it once - which works in most 352 cases, but is a hack. */ 353 if ((pr->cmd & PORT_CMD_FIS_ON) && 354 !s->dev[port].init_d2h_sent) { 355 ahci_init_d2h(&s->dev[port]); 356 } 357 358 check_cmd(s, port); 359 break; 360 case AHCI_PORT_REG_TFDATA: 361 case AHCI_PORT_REG_SIG: 362 case AHCI_PORT_REG_SCR_STAT: 363 /* Read Only */ 364 break; 365 case AHCI_PORT_REG_SCR_CTL: 366 if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) && 367 ((val & AHCI_SCR_SCTL_DET) == 0)) { 368 ahci_reset_port(s, port); 369 } 370 pr->scr_ctl = val; 371 break; 372 case AHCI_PORT_REG_SCR_ERR: 373 pr->scr_err &= ~val; 374 break; 375 case AHCI_PORT_REG_SCR_ACT: 376 /* RW1 */ 377 pr->scr_act |= val; 378 break; 379 case AHCI_PORT_REG_CMD_ISSUE: 380 pr->cmd_issue |= val; 381 check_cmd(s, port); 382 break; 383 default: 384 trace_ahci_port_write_unimpl(s, port, AHCIPortReg_lookup[regnum], 385 offset, val); 386 qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " 387 "AHCI port %d register %s, offset 0x%x: 0x%"PRIx32, 388 port, AHCIPortReg_lookup[regnum], offset, val); 389 break; 390 } 391 } 392 393 static uint64_t ahci_mem_read_32(void *opaque, hwaddr addr) 394 { 395 AHCIState *s = opaque; 396 uint32_t val = 0; 397 398 if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { 399 enum AHCIHostReg regnum = addr / 4; 400 assert(regnum < AHCI_HOST_REG__COUNT); 401 402 switch (regnum) { 403 case AHCI_HOST_REG_CAP: 404 val = s->control_regs.cap; 405 break; 406 case AHCI_HOST_REG_CTL: 407 val = s->control_regs.ghc; 408 break; 409 case AHCI_HOST_REG_IRQ_STAT: 410 val = s->control_regs.irqstatus; 411 break; 412 case AHCI_HOST_REG_PORTS_IMPL: 413 val = s->control_regs.impl; 414 break; 415 case AHCI_HOST_REG_VERSION: 416 val = s->control_regs.version; 417 break; 418 default: 419 trace_ahci_mem_read_32_host_default(s, AHCIHostReg_lookup[regnum], 420 addr); 421 } 422 trace_ahci_mem_read_32_host(s, AHCIHostReg_lookup[regnum], addr, val); 423 } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && 424 (addr < (AHCI_PORT_REGS_START_ADDR + 425 (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { 426 val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, 427 addr & AHCI_PORT_ADDR_OFFSET_MASK); 428 } else { 429 trace_ahci_mem_read_32_default(s, addr, val); 430 } 431 432 trace_ahci_mem_read_32(s, addr, val); 433 return val; 434 } 435 436 437 /** 438 * AHCI 1.3 section 3 ("HBA Memory Registers") 439 * Support unaligned 8/16/32 bit reads, and 64 bit aligned reads. 440 * Caller is responsible for masking unwanted higher order bytes. 441 */ 442 static uint64_t ahci_mem_read(void *opaque, hwaddr addr, unsigned size) 443 { 444 hwaddr aligned = addr & ~0x3; 445 int ofst = addr - aligned; 446 uint64_t lo = ahci_mem_read_32(opaque, aligned); 447 uint64_t hi; 448 uint64_t val; 449 450 /* if < 8 byte read does not cross 4 byte boundary */ 451 if (ofst + size <= 4) { 452 val = lo >> (ofst * 8); 453 } else { 454 g_assert(size > 1); 455 456 /* If the 64bit read is unaligned, we will produce undefined 457 * results. AHCI does not support unaligned 64bit reads. */ 458 hi = ahci_mem_read_32(opaque, aligned + 4); 459 val = (hi << 32 | lo) >> (ofst * 8); 460 } 461 462 trace_ahci_mem_read(opaque, size, addr, val); 463 return val; 464 } 465 466 467 static void ahci_mem_write(void *opaque, hwaddr addr, 468 uint64_t val, unsigned size) 469 { 470 AHCIState *s = opaque; 471 472 trace_ahci_mem_write(s, size, addr, val); 473 474 /* Only aligned reads are allowed on AHCI */ 475 if (addr & 3) { 476 qemu_log_mask(LOG_GUEST_ERROR, 477 "ahci: Mis-aligned write to addr 0x%03" HWADDR_PRIX "\n", 478 addr); 479 return; 480 } 481 482 if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { 483 enum AHCIHostReg regnum = addr / 4; 484 assert(regnum < AHCI_HOST_REG__COUNT); 485 486 switch (regnum) { 487 case AHCI_HOST_REG_CAP: /* R/WO, RO */ 488 /* FIXME handle R/WO */ 489 break; 490 case AHCI_HOST_REG_CTL: /* R/W */ 491 if (val & HOST_CTL_RESET) { 492 ahci_reset(s); 493 } else { 494 s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN; 495 ahci_check_irq(s); 496 } 497 break; 498 case AHCI_HOST_REG_IRQ_STAT: /* R/WC, RO */ 499 s->control_regs.irqstatus &= ~val; 500 ahci_check_irq(s); 501 break; 502 case AHCI_HOST_REG_PORTS_IMPL: /* R/WO, RO */ 503 /* FIXME handle R/WO */ 504 break; 505 case AHCI_HOST_REG_VERSION: /* RO */ 506 /* FIXME report write? */ 507 break; 508 default: 509 qemu_log_mask(LOG_UNIMP, 510 "Attempted write to unimplemented register: " 511 "AHCI host register %s, " 512 "offset 0x%"PRIx64": 0x%"PRIx64, 513 AHCIHostReg_lookup[regnum], addr, val); 514 trace_ahci_mem_write_host_unimpl(s, size, 515 AHCIHostReg_lookup[regnum], addr); 516 } 517 trace_ahci_mem_write_host(s, size, AHCIHostReg_lookup[regnum], 518 addr, val); 519 } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && 520 (addr < (AHCI_PORT_REGS_START_ADDR + 521 (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { 522 ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, 523 addr & AHCI_PORT_ADDR_OFFSET_MASK, val); 524 } else { 525 qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " 526 "AHCI global register at offset 0x%"PRIx64": 0x%"PRIx64, 527 addr, val); 528 trace_ahci_mem_write_unimpl(s, size, addr, val); 529 } 530 } 531 532 static const MemoryRegionOps ahci_mem_ops = { 533 .read = ahci_mem_read, 534 .write = ahci_mem_write, 535 .endianness = DEVICE_LITTLE_ENDIAN, 536 }; 537 538 static uint64_t ahci_idp_read(void *opaque, hwaddr addr, 539 unsigned size) 540 { 541 AHCIState *s = opaque; 542 543 if (addr == s->idp_offset) { 544 /* index register */ 545 return s->idp_index; 546 } else if (addr == s->idp_offset + 4) { 547 /* data register - do memory read at location selected by index */ 548 return ahci_mem_read(opaque, s->idp_index, size); 549 } else { 550 return 0; 551 } 552 } 553 554 static void ahci_idp_write(void *opaque, hwaddr addr, 555 uint64_t val, unsigned size) 556 { 557 AHCIState *s = opaque; 558 559 if (addr == s->idp_offset) { 560 /* index register - mask off reserved bits */ 561 s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3); 562 } else if (addr == s->idp_offset + 4) { 563 /* data register - do memory write at location selected by index */ 564 ahci_mem_write(opaque, s->idp_index, val, size); 565 } 566 } 567 568 static const MemoryRegionOps ahci_idp_ops = { 569 .read = ahci_idp_read, 570 .write = ahci_idp_write, 571 .endianness = DEVICE_LITTLE_ENDIAN, 572 }; 573 574 575 static void ahci_reg_init(AHCIState *s) 576 { 577 int i; 578 579 s->control_regs.cap = (s->ports - 1) | 580 (AHCI_NUM_COMMAND_SLOTS << 8) | 581 (AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) | 582 HOST_CAP_NCQ | HOST_CAP_AHCI | HOST_CAP_64; 583 584 s->control_regs.impl = (1 << s->ports) - 1; 585 586 s->control_regs.version = AHCI_VERSION_1_0; 587 588 for (i = 0; i < s->ports; i++) { 589 s->dev[i].port_state = STATE_RUN; 590 } 591 } 592 593 static void check_cmd(AHCIState *s, int port) 594 { 595 AHCIPortRegs *pr = &s->dev[port].port_regs; 596 uint8_t slot; 597 598 if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) { 599 for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) { 600 if (pr->cmd_issue & (1U << slot)) { 601 handle_cmd(s, port, slot); 602 } 603 } 604 } 605 } 606 607 static void ahci_check_cmd_bh(void *opaque) 608 { 609 AHCIDevice *ad = opaque; 610 611 qemu_bh_delete(ad->check_bh); 612 ad->check_bh = NULL; 613 614 check_cmd(ad->hba, ad->port_no); 615 } 616 617 static void ahci_init_d2h(AHCIDevice *ad) 618 { 619 IDEState *ide_state = &ad->port.ifs[0]; 620 AHCIPortRegs *pr = &ad->port_regs; 621 622 if (ad->init_d2h_sent) { 623 return; 624 } 625 626 /* 627 * For simplicity, do not call ahci_clear_cmd_issue() for this 628 * ahci_write_fis_d2h(). (The reset value for PxCI is 0.) 629 */ 630 if (ahci_write_fis_d2h(ad, true)) { 631 ad->init_d2h_sent = true; 632 /* We're emulating receiving the first Reg D2H FIS from the device; 633 * Update the SIG register, but otherwise proceed as normal. */ 634 pr->sig = ((uint32_t)ide_state->hcyl << 24) | 635 (ide_state->lcyl << 16) | 636 (ide_state->sector << 8) | 637 (ide_state->nsector & 0xFF); 638 } 639 } 640 641 static void ahci_set_signature(AHCIDevice *ad, uint32_t sig) 642 { 643 IDEState *s = &ad->port.ifs[0]; 644 s->hcyl = sig >> 24 & 0xFF; 645 s->lcyl = sig >> 16 & 0xFF; 646 s->sector = sig >> 8 & 0xFF; 647 s->nsector = sig & 0xFF; 648 649 trace_ahci_set_signature(ad->hba, ad->port_no, s->nsector, s->sector, 650 s->lcyl, s->hcyl, sig); 651 } 652 653 static void ahci_reset_port(AHCIState *s, int port) 654 { 655 AHCIDevice *d = &s->dev[port]; 656 AHCIPortRegs *pr = &d->port_regs; 657 IDEState *ide_state = &d->port.ifs[0]; 658 int i; 659 660 trace_ahci_reset_port(s, port); 661 662 ide_bus_reset(&d->port); 663 ide_state->ncq_queues = AHCI_MAX_CMDS; 664 665 pr->scr_stat = 0; 666 pr->scr_err = 0; 667 pr->scr_act = 0; 668 pr->tfdata = 0x7F; 669 pr->sig = 0xFFFFFFFF; 670 pr->cmd_issue = 0; 671 d->busy_slot = -1; 672 d->init_d2h_sent = false; 673 674 ide_state = &s->dev[port].port.ifs[0]; 675 if (!ide_state->blk) { 676 return; 677 } 678 679 /* reset ncq queue */ 680 for (i = 0; i < AHCI_MAX_CMDS; i++) { 681 NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i]; 682 ncq_tfs->halt = false; 683 if (!ncq_tfs->used) { 684 continue; 685 } 686 687 if (ncq_tfs->aiocb) { 688 blk_aio_cancel(ncq_tfs->aiocb); 689 ncq_tfs->aiocb = NULL; 690 } 691 692 /* Maybe we just finished the request thanks to blk_aio_cancel() */ 693 if (!ncq_tfs->used) { 694 continue; 695 } 696 697 qemu_sglist_destroy(&ncq_tfs->sglist); 698 ncq_tfs->used = 0; 699 } 700 701 s->dev[port].port_state = STATE_RUN; 702 if (ide_state->drive_kind == IDE_CD) { 703 ahci_set_signature(d, SATA_SIGNATURE_CDROM); 704 ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT; 705 } else { 706 ahci_set_signature(d, SATA_SIGNATURE_DISK); 707 ide_state->status = SEEK_STAT | WRERR_STAT; 708 } 709 710 ide_state->error = 1; 711 ahci_init_d2h(d); 712 } 713 714 /* Buffer pretty output based on a raw FIS structure. */ 715 static char *ahci_pretty_buffer_fis(const uint8_t *fis, int cmd_len) 716 { 717 int i; 718 GString *s = g_string_new("FIS:"); 719 720 for (i = 0; i < cmd_len; i++) { 721 if ((i & 0xf) == 0) { 722 g_string_append_printf(s, "\n0x%02x: ", i); 723 } 724 g_string_append_printf(s, "%02x ", fis[i]); 725 } 726 g_string_append_c(s, '\n'); 727 728 return g_string_free(s, FALSE); 729 } 730 731 static bool ahci_map_fis_address(AHCIDevice *ad) 732 { 733 AHCIPortRegs *pr = &ad->port_regs; 734 map_page(ad->hba->as, &ad->res_fis, 735 ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); 736 if (ad->res_fis != NULL) { 737 pr->cmd |= PORT_CMD_FIS_ON; 738 return true; 739 } 740 741 pr->cmd &= ~PORT_CMD_FIS_ON; 742 return false; 743 } 744 745 static void ahci_unmap_fis_address(AHCIDevice *ad) 746 { 747 if (ad->res_fis == NULL) { 748 trace_ahci_unmap_fis_address_null(ad->hba, ad->port_no); 749 return; 750 } 751 ad->port_regs.cmd &= ~PORT_CMD_FIS_ON; 752 dma_memory_unmap(ad->hba->as, ad->res_fis, 256, 753 DMA_DIRECTION_FROM_DEVICE, 256); 754 ad->res_fis = NULL; 755 } 756 757 static bool ahci_map_clb_address(AHCIDevice *ad) 758 { 759 AHCIPortRegs *pr = &ad->port_regs; 760 ad->cur_cmd = NULL; 761 map_page(ad->hba->as, &ad->lst, 762 ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); 763 if (ad->lst != NULL) { 764 pr->cmd |= PORT_CMD_LIST_ON; 765 return true; 766 } 767 768 pr->cmd &= ~PORT_CMD_LIST_ON; 769 return false; 770 } 771 772 static void ahci_unmap_clb_address(AHCIDevice *ad) 773 { 774 if (ad->lst == NULL) { 775 trace_ahci_unmap_clb_address_null(ad->hba, ad->port_no); 776 return; 777 } 778 ad->port_regs.cmd &= ~PORT_CMD_LIST_ON; 779 dma_memory_unmap(ad->hba->as, ad->lst, 1024, 780 DMA_DIRECTION_FROM_DEVICE, 1024); 781 ad->lst = NULL; 782 } 783 784 static void ahci_write_fis_sdb(AHCIState *s, NCQTransferState *ncq_tfs) 785 { 786 AHCIDevice *ad = ncq_tfs->drive; 787 AHCIPortRegs *pr = &ad->port_regs; 788 IDEState *ide_state; 789 SDBFIS *sdb_fis; 790 791 if (!ad->res_fis || 792 !(pr->cmd & PORT_CMD_FIS_RX)) { 793 return; 794 } 795 796 sdb_fis = (SDBFIS *)&ad->res_fis[RES_FIS_SDBFIS]; 797 ide_state = &ad->port.ifs[0]; 798 799 sdb_fis->type = SATA_FIS_TYPE_SDB; 800 /* Interrupt pending & Notification bit */ 801 sdb_fis->flags = 0x40; /* Interrupt bit, always 1 for NCQ */ 802 sdb_fis->status = ide_state->status & 0x77; 803 sdb_fis->error = ide_state->error; 804 /* update SAct field in SDB_FIS */ 805 sdb_fis->payload = cpu_to_le32(ad->finished); 806 807 /* Update shadow registers (except BSY 0x80 and DRQ 0x08) */ 808 pr->tfdata = (ad->port.ifs[0].error << 8) | 809 (ad->port.ifs[0].status & 0x77) | 810 (pr->tfdata & 0x88); 811 pr->scr_act &= ~ad->finished; 812 ad->finished = 0; 813 814 /* 815 * TFES IRQ is always raised if ERR_STAT is set, regardless of I bit. 816 * If ERR_STAT is not set, trigger SDBS IRQ if interrupt bit is set 817 * (which currently, it always is). 818 */ 819 if (sdb_fis->status & ERR_STAT) { 820 ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_TFES); 821 } else if (sdb_fis->flags & 0x40) { 822 ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_SDBS); 823 } 824 } 825 826 static void ahci_write_fis_pio(AHCIDevice *ad, uint16_t len, bool pio_fis_i) 827 { 828 AHCIPortRegs *pr = &ad->port_regs; 829 uint8_t *pio_fis; 830 IDEState *s = &ad->port.ifs[0]; 831 832 if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { 833 return; 834 } 835 836 pio_fis = &ad->res_fis[RES_FIS_PSFIS]; 837 838 pio_fis[0] = SATA_FIS_TYPE_PIO_SETUP; 839 pio_fis[1] = (pio_fis_i ? (1 << 6) : 0); 840 pio_fis[2] = s->status; 841 pio_fis[3] = s->error; 842 843 pio_fis[4] = s->sector; 844 pio_fis[5] = s->lcyl; 845 pio_fis[6] = s->hcyl; 846 pio_fis[7] = s->select; 847 pio_fis[8] = s->hob_sector; 848 pio_fis[9] = s->hob_lcyl; 849 pio_fis[10] = s->hob_hcyl; 850 pio_fis[11] = 0; 851 pio_fis[12] = s->nsector & 0xFF; 852 pio_fis[13] = (s->nsector >> 8) & 0xFF; 853 pio_fis[14] = 0; 854 pio_fis[15] = s->status; 855 pio_fis[16] = len & 255; 856 pio_fis[17] = len >> 8; 857 pio_fis[18] = 0; 858 pio_fis[19] = 0; 859 860 /* Update shadow registers: */ 861 pr->tfdata = (ad->port.ifs[0].error << 8) | 862 ad->port.ifs[0].status; 863 864 if (pio_fis[2] & ERR_STAT) { 865 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); 866 } 867 } 868 869 static bool ahci_write_fis_d2h(AHCIDevice *ad, bool d2h_fis_i) 870 { 871 AHCIPortRegs *pr = &ad->port_regs; 872 uint8_t *d2h_fis; 873 int i; 874 IDEState *s = &ad->port.ifs[0]; 875 876 if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { 877 return false; 878 } 879 880 d2h_fis = &ad->res_fis[RES_FIS_RFIS]; 881 882 d2h_fis[0] = SATA_FIS_TYPE_REGISTER_D2H; 883 d2h_fis[1] = d2h_fis_i ? (1 << 6) : 0; /* interrupt bit */ 884 d2h_fis[2] = s->status; 885 d2h_fis[3] = s->error; 886 887 d2h_fis[4] = s->sector; 888 d2h_fis[5] = s->lcyl; 889 d2h_fis[6] = s->hcyl; 890 d2h_fis[7] = s->select; 891 d2h_fis[8] = s->hob_sector; 892 d2h_fis[9] = s->hob_lcyl; 893 d2h_fis[10] = s->hob_hcyl; 894 d2h_fis[11] = 0; 895 d2h_fis[12] = s->nsector & 0xFF; 896 d2h_fis[13] = (s->nsector >> 8) & 0xFF; 897 for (i = 14; i < 20; i++) { 898 d2h_fis[i] = 0; 899 } 900 901 /* Update shadow registers: */ 902 pr->tfdata = (ad->port.ifs[0].error << 8) | 903 ad->port.ifs[0].status; 904 905 /* TFES IRQ is always raised if ERR_STAT is set, regardless of I bit. */ 906 if (d2h_fis[2] & ERR_STAT) { 907 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); 908 } else if (d2h_fis_i) { 909 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_DHRS); 910 } 911 912 return true; 913 } 914 915 static int prdt_tbl_entry_size(const AHCI_SG *tbl) 916 { 917 /* flags_size is zero-based */ 918 return (le32_to_cpu(tbl->flags_size) & AHCI_PRDT_SIZE_MASK) + 1; 919 } 920 921 /** 922 * Fetch entries in a guest-provided PRDT and convert it into a QEMU SGlist. 923 * @ad: The AHCIDevice for whom we are building the SGList. 924 * @sglist: The SGList target to add PRD entries to. 925 * @cmd: The AHCI Command Header that describes where the PRDT is. 926 * @limit: The remaining size of the S/ATA transaction, in bytes. 927 * @offset: The number of bytes already transferred, in bytes. 928 * 929 * The AHCI PRDT can describe up to 256GiB. S/ATA only support transactions of 930 * up to 32MiB as of ATA8-ACS3 rev 1b, assuming a 512 byte sector size. We stop 931 * building the sglist from the PRDT as soon as we hit @limit bytes, 932 * which is <= INT32_MAX/2GiB. 933 */ 934 static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist, 935 AHCICmdHdr *cmd, int64_t limit, uint64_t offset) 936 { 937 uint16_t opts = le16_to_cpu(cmd->opts); 938 uint16_t prdtl = le16_to_cpu(cmd->prdtl); 939 uint64_t cfis_addr = le64_to_cpu(cmd->tbl_addr); 940 uint64_t prdt_addr = cfis_addr + 0x80; 941 dma_addr_t prdt_len = (prdtl * sizeof(AHCI_SG)); 942 dma_addr_t real_prdt_len = prdt_len; 943 uint8_t *prdt; 944 int i; 945 int r = 0; 946 uint64_t sum = 0; 947 int off_idx = -1; 948 int64_t off_pos = -1; 949 int tbl_entry_size; 950 IDEBus *bus = &ad->port; 951 BusState *qbus = BUS(bus); 952 953 trace_ahci_populate_sglist(ad->hba, ad->port_no); 954 955 if (!prdtl) { 956 trace_ahci_populate_sglist_no_prdtl(ad->hba, ad->port_no, opts); 957 return -1; 958 } 959 960 /* map PRDT */ 961 if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len, 962 DMA_DIRECTION_TO_DEVICE, 963 MEMTXATTRS_UNSPECIFIED))){ 964 trace_ahci_populate_sglist_no_map(ad->hba, ad->port_no); 965 return -1; 966 } 967 968 if (prdt_len < real_prdt_len) { 969 trace_ahci_populate_sglist_short_map(ad->hba, ad->port_no); 970 r = -1; 971 goto out; 972 } 973 974 /* Get entries in the PRDT, init a qemu sglist accordingly */ 975 if (prdtl > 0) { 976 AHCI_SG *tbl = (AHCI_SG *)prdt; 977 sum = 0; 978 for (i = 0; i < prdtl; i++) { 979 tbl_entry_size = prdt_tbl_entry_size(&tbl[i]); 980 if (offset < (sum + tbl_entry_size)) { 981 off_idx = i; 982 off_pos = offset - sum; 983 break; 984 } 985 sum += tbl_entry_size; 986 } 987 if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) { 988 trace_ahci_populate_sglist_bad_offset(ad->hba, ad->port_no, 989 off_idx, off_pos); 990 r = -1; 991 goto out; 992 } 993 994 qemu_sglist_init(sglist, qbus->parent, (prdtl - off_idx), 995 ad->hba->as); 996 qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr) + off_pos, 997 MIN(prdt_tbl_entry_size(&tbl[off_idx]) - off_pos, 998 limit)); 999 1000 for (i = off_idx + 1; i < prdtl && sglist->size < limit; i++) { 1001 qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr), 1002 MIN(prdt_tbl_entry_size(&tbl[i]), 1003 limit - sglist->size)); 1004 } 1005 } 1006 1007 out: 1008 dma_memory_unmap(ad->hba->as, prdt, prdt_len, 1009 DMA_DIRECTION_TO_DEVICE, prdt_len); 1010 return r; 1011 } 1012 1013 static void ncq_err(NCQTransferState *ncq_tfs) 1014 { 1015 IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; 1016 1017 ide_state->error = ABRT_ERR; 1018 ide_state->status = READY_STAT | ERR_STAT; 1019 qemu_sglist_destroy(&ncq_tfs->sglist); 1020 ncq_tfs->used = 0; 1021 } 1022 1023 static void ncq_finish(NCQTransferState *ncq_tfs) 1024 { 1025 /* If we didn't error out, set our finished bit. Errored commands 1026 * do not get a bit set for the SDB FIS ACT register, nor do they 1027 * clear the outstanding bit in scr_act (PxSACT). */ 1028 if (ncq_tfs->used) { 1029 ncq_tfs->drive->finished |= (1 << ncq_tfs->tag); 1030 } 1031 1032 ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs); 1033 1034 trace_ncq_finish(ncq_tfs->drive->hba, ncq_tfs->drive->port_no, 1035 ncq_tfs->tag); 1036 1037 block_acct_done(blk_get_stats(ncq_tfs->drive->port.ifs[0].blk), 1038 &ncq_tfs->acct); 1039 qemu_sglist_destroy(&ncq_tfs->sglist); 1040 ncq_tfs->used = 0; 1041 } 1042 1043 static void ncq_cb(void *opaque, int ret) 1044 { 1045 NCQTransferState *ncq_tfs = (NCQTransferState *)opaque; 1046 IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; 1047 1048 ncq_tfs->aiocb = NULL; 1049 1050 if (ret < 0) { 1051 bool is_read = ncq_tfs->cmd == READ_FPDMA_QUEUED; 1052 BlockErrorAction action = blk_get_error_action(ide_state->blk, 1053 is_read, -ret); 1054 if (action == BLOCK_ERROR_ACTION_STOP) { 1055 ncq_tfs->halt = true; 1056 ide_state->bus->error_status = IDE_RETRY_HBA; 1057 } else if (action == BLOCK_ERROR_ACTION_REPORT) { 1058 ncq_err(ncq_tfs); 1059 } 1060 blk_error_action(ide_state->blk, action, is_read, -ret); 1061 } else { 1062 ide_state->status = READY_STAT | SEEK_STAT; 1063 } 1064 1065 if (!ncq_tfs->halt) { 1066 ncq_finish(ncq_tfs); 1067 } 1068 } 1069 1070 static int is_ncq(uint8_t ata_cmd) 1071 { 1072 /* Based on SATA 3.2 section 13.6.3.2 */ 1073 switch (ata_cmd) { 1074 case READ_FPDMA_QUEUED: 1075 case WRITE_FPDMA_QUEUED: 1076 case NCQ_NON_DATA: 1077 case RECEIVE_FPDMA_QUEUED: 1078 case SEND_FPDMA_QUEUED: 1079 return 1; 1080 default: 1081 return 0; 1082 } 1083 } 1084 1085 static void execute_ncq_command(NCQTransferState *ncq_tfs) 1086 { 1087 AHCIDevice *ad = ncq_tfs->drive; 1088 IDEState *ide_state = &ad->port.ifs[0]; 1089 int port = ad->port_no; 1090 1091 g_assert(is_ncq(ncq_tfs->cmd)); 1092 ncq_tfs->halt = false; 1093 1094 switch (ncq_tfs->cmd) { 1095 case READ_FPDMA_QUEUED: 1096 trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag, 1097 ncq_tfs->sector_count, ncq_tfs->lba); 1098 dma_acct_start(ide_state->blk, &ncq_tfs->acct, 1099 &ncq_tfs->sglist, BLOCK_ACCT_READ); 1100 ncq_tfs->aiocb = dma_blk_read(ide_state->blk, &ncq_tfs->sglist, 1101 ncq_tfs->lba << BDRV_SECTOR_BITS, 1102 BDRV_SECTOR_SIZE, 1103 ncq_cb, ncq_tfs); 1104 break; 1105 case WRITE_FPDMA_QUEUED: 1106 trace_execute_ncq_command_write(ad->hba, port, ncq_tfs->tag, 1107 ncq_tfs->sector_count, ncq_tfs->lba); 1108 dma_acct_start(ide_state->blk, &ncq_tfs->acct, 1109 &ncq_tfs->sglist, BLOCK_ACCT_WRITE); 1110 ncq_tfs->aiocb = dma_blk_write(ide_state->blk, &ncq_tfs->sglist, 1111 ncq_tfs->lba << BDRV_SECTOR_BITS, 1112 BDRV_SECTOR_SIZE, 1113 ncq_cb, ncq_tfs); 1114 break; 1115 default: 1116 trace_execute_ncq_command_unsup(ad->hba, port, 1117 ncq_tfs->tag, ncq_tfs->cmd); 1118 ncq_err(ncq_tfs); 1119 } 1120 } 1121 1122 1123 static void process_ncq_command(AHCIState *s, int port, const uint8_t *cmd_fis, 1124 uint8_t slot) 1125 { 1126 AHCIDevice *ad = &s->dev[port]; 1127 const NCQFrame *ncq_fis = (NCQFrame *)cmd_fis; 1128 uint8_t tag = ncq_fis->tag >> 3; 1129 NCQTransferState *ncq_tfs = &ad->ncq_tfs[tag]; 1130 size_t size; 1131 1132 g_assert(is_ncq(ncq_fis->command)); 1133 if (ncq_tfs->used) { 1134 /* error - already in use */ 1135 qemu_log_mask(LOG_GUEST_ERROR, "%s: tag %d already used\n", 1136 __func__, tag); 1137 return; 1138 } 1139 1140 /* 1141 * A NCQ command clears the bit in PxCI after the command has been QUEUED 1142 * successfully (ERROR not set, BUSY and DRQ cleared). 1143 * 1144 * For NCQ commands, PxCI will always be cleared here. 1145 * 1146 * (Once the NCQ command is COMPLETED, the device will send a SDB FIS with 1147 * the interrupt bit set, which will clear PxSACT and raise an interrupt.) 1148 */ 1149 ahci_clear_cmd_issue(ad, slot); 1150 1151 /* 1152 * In reality, for NCQ commands, PxCI is cleared after receiving a D2H FIS 1153 * without the interrupt bit set, but since ahci_write_fis_d2h() can raise 1154 * an IRQ on error, we need to call them in reverse order. 1155 */ 1156 ahci_write_fis_d2h(ad, false); 1157 1158 ncq_tfs->used = 1; 1159 ncq_tfs->drive = ad; 1160 ncq_tfs->slot = slot; 1161 ncq_tfs->cmdh = &((AHCICmdHdr *)ad->lst)[slot]; 1162 ncq_tfs->cmd = ncq_fis->command; 1163 ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) | 1164 ((uint64_t)ncq_fis->lba4 << 32) | 1165 ((uint64_t)ncq_fis->lba3 << 24) | 1166 ((uint64_t)ncq_fis->lba2 << 16) | 1167 ((uint64_t)ncq_fis->lba1 << 8) | 1168 (uint64_t)ncq_fis->lba0; 1169 ncq_tfs->tag = tag; 1170 1171 /* Sanity-check the NCQ packet */ 1172 if (tag != slot) { 1173 trace_process_ncq_command_mismatch(s, port, tag, slot); 1174 } 1175 1176 if (ncq_fis->aux0 || ncq_fis->aux1 || ncq_fis->aux2 || ncq_fis->aux3) { 1177 trace_process_ncq_command_aux(s, port, tag); 1178 } 1179 if (ncq_fis->prio || ncq_fis->icc) { 1180 trace_process_ncq_command_prioicc(s, port, tag); 1181 } 1182 if (ncq_fis->fua & NCQ_FIS_FUA_MASK) { 1183 trace_process_ncq_command_fua(s, port, tag); 1184 } 1185 if (ncq_fis->tag & NCQ_FIS_RARC_MASK) { 1186 trace_process_ncq_command_rarc(s, port, tag); 1187 } 1188 1189 ncq_tfs->sector_count = ((ncq_fis->sector_count_high << 8) | 1190 ncq_fis->sector_count_low); 1191 if (!ncq_tfs->sector_count) { 1192 ncq_tfs->sector_count = 0x10000; 1193 } 1194 size = ncq_tfs->sector_count * BDRV_SECTOR_SIZE; 1195 ahci_populate_sglist(ad, &ncq_tfs->sglist, ncq_tfs->cmdh, size, 0); 1196 1197 if (ncq_tfs->sglist.size < size) { 1198 error_report("ahci: PRDT length for NCQ command (0x" DMA_ADDR_FMT ") " 1199 "is smaller than the requested size (0x%zx)", 1200 ncq_tfs->sglist.size, size); 1201 ncq_err(ncq_tfs); 1202 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_OFS); 1203 return; 1204 } else if (ncq_tfs->sglist.size != size) { 1205 trace_process_ncq_command_large(s, port, tag, 1206 ncq_tfs->sglist.size, size); 1207 } 1208 1209 trace_process_ncq_command(s, port, tag, 1210 ncq_fis->command, 1211 ncq_tfs->lba, 1212 ncq_tfs->lba + ncq_tfs->sector_count - 1); 1213 execute_ncq_command(ncq_tfs); 1214 } 1215 1216 static AHCICmdHdr *get_cmd_header(AHCIState *s, uint8_t port, uint8_t slot) 1217 { 1218 if (port >= s->ports || slot >= AHCI_MAX_CMDS) { 1219 return NULL; 1220 } 1221 1222 return s->dev[port].lst ? &((AHCICmdHdr *)s->dev[port].lst)[slot] : NULL; 1223 } 1224 1225 static void handle_reg_h2d_fis(AHCIState *s, int port, 1226 uint8_t slot, const uint8_t *cmd_fis) 1227 { 1228 IDEState *ide_state = &s->dev[port].port.ifs[0]; 1229 AHCICmdHdr *cmd = get_cmd_header(s, port, slot); 1230 AHCIDevice *ad = &s->dev[port]; 1231 uint16_t opts = le16_to_cpu(cmd->opts); 1232 1233 if (cmd_fis[1] & 0x0F) { 1234 trace_handle_reg_h2d_fis_pmp(s, port, cmd_fis[1], 1235 cmd_fis[2], cmd_fis[3]); 1236 return; 1237 } 1238 1239 if (cmd_fis[1] & 0x70) { 1240 trace_handle_reg_h2d_fis_res(s, port, cmd_fis[1], 1241 cmd_fis[2], cmd_fis[3]); 1242 return; 1243 } 1244 1245 if (!(cmd_fis[1] & SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER)) { 1246 switch (s->dev[port].port_state) { 1247 case STATE_RUN: 1248 if (cmd_fis[15] & ATA_SRST) { 1249 s->dev[port].port_state = STATE_RESET; 1250 /* 1251 * When setting SRST in the first H2D FIS in the reset sequence, 1252 * the device does not send a D2H FIS. Host software thus has to 1253 * set the "Clear Busy upon R_OK" bit such that PxCI (and BUSY) 1254 * gets cleared. See AHCI 1.3.1, section 10.4.1 Software Reset. 1255 */ 1256 if (opts & AHCI_CMD_CLR_BUSY) { 1257 ahci_clear_cmd_issue(ad, slot); 1258 } 1259 } 1260 break; 1261 case STATE_RESET: 1262 if (!(cmd_fis[15] & ATA_SRST)) { 1263 /* 1264 * When clearing SRST in the second H2D FIS in the reset 1265 * sequence, the device will execute diagnostics. When this is 1266 * done, the device will send a D2H FIS with the good status. 1267 * See SATA 3.5a Gold, section 11.4 Software reset protocol. 1268 * 1269 * This D2H FIS is the first D2H FIS received from the device, 1270 * and is received regardless if the reset was performed by a 1271 * COMRESET or by setting and clearing the SRST bit. Therefore, 1272 * the logic for this is found in ahci_init_d2h() and not here. 1273 */ 1274 ahci_reset_port(s, port); 1275 } 1276 break; 1277 } 1278 return; 1279 } 1280 1281 /* Check for NCQ command */ 1282 if (is_ncq(cmd_fis[2])) { 1283 process_ncq_command(s, port, cmd_fis, slot); 1284 return; 1285 } 1286 1287 /* Decompose the FIS: 1288 * AHCI does not interpret FIS packets, it only forwards them. 1289 * SATA 1.0 describes how to decode LBA28 and CHS FIS packets. 1290 * Later specifications, e.g, SATA 3.2, describe LBA48 FIS packets. 1291 * 1292 * ATA4 describes sector number for LBA28/CHS commands. 1293 * ATA6 describes sector number for LBA48 commands. 1294 * ATA8 deprecates CHS fully, describing only LBA28/48. 1295 * 1296 * We dutifully convert the FIS into IDE registers, and allow the 1297 * core layer to interpret them as needed. */ 1298 ide_state->feature = cmd_fis[3]; 1299 ide_state->sector = cmd_fis[4]; /* LBA 7:0 */ 1300 ide_state->lcyl = cmd_fis[5]; /* LBA 15:8 */ 1301 ide_state->hcyl = cmd_fis[6]; /* LBA 23:16 */ 1302 ide_state->select = cmd_fis[7]; /* LBA 27:24 (LBA28) */ 1303 ide_state->hob_sector = cmd_fis[8]; /* LBA 31:24 */ 1304 ide_state->hob_lcyl = cmd_fis[9]; /* LBA 39:32 */ 1305 ide_state->hob_hcyl = cmd_fis[10]; /* LBA 47:40 */ 1306 ide_state->hob_feature = cmd_fis[11]; 1307 ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]); 1308 /* 14, 16, 17, 18, 19: Reserved (SATA 1.0) */ 1309 /* 15: Only valid when UPDATE_COMMAND not set. */ 1310 1311 /* Copy the ACMD field (ATAPI packet, if any) from the AHCI command 1312 * table to ide_state->io_buffer */ 1313 if (opts & AHCI_CMD_ATAPI) { 1314 memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10); 1315 if (trace_event_get_state_backends(TRACE_HANDLE_REG_H2D_FIS_DUMP)) { 1316 char *pretty_fis = ahci_pretty_buffer_fis(ide_state->io_buffer, 0x10); 1317 trace_handle_reg_h2d_fis_dump(s, port, pretty_fis); 1318 g_free(pretty_fis); 1319 } 1320 } 1321 1322 ide_state->error = 0; 1323 s->dev[port].done_first_drq = false; 1324 /* Reset transferred byte counter */ 1325 cmd->status = 0; 1326 1327 /* 1328 * A non-NCQ command clears the bit in PxCI after the command has COMPLETED 1329 * successfully (ERROR not set, BUSY and DRQ cleared). 1330 * 1331 * For non-NCQ commands, PxCI will always be cleared by ahci_cmd_done(). 1332 */ 1333 ad->busy_slot = slot; 1334 1335 /* We're ready to process the command in FIS byte 2. */ 1336 ide_bus_exec_cmd(&s->dev[port].port, cmd_fis[2]); 1337 } 1338 1339 static void handle_cmd(AHCIState *s, int port, uint8_t slot) 1340 { 1341 IDEState *ide_state; 1342 uint64_t tbl_addr; 1343 AHCICmdHdr *cmd; 1344 uint8_t *cmd_fis; 1345 dma_addr_t cmd_len; 1346 1347 if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { 1348 /* Engine currently busy, try again later */ 1349 trace_handle_cmd_busy(s, port); 1350 return; 1351 } 1352 1353 if (!s->dev[port].lst) { 1354 trace_handle_cmd_nolist(s, port); 1355 return; 1356 } 1357 cmd = get_cmd_header(s, port, slot); 1358 /* remember current slot handle for later */ 1359 s->dev[port].cur_cmd = cmd; 1360 1361 /* The device we are working for */ 1362 ide_state = &s->dev[port].port.ifs[0]; 1363 if (!ide_state->blk) { 1364 trace_handle_cmd_badport(s, port); 1365 return; 1366 } 1367 1368 tbl_addr = le64_to_cpu(cmd->tbl_addr); 1369 cmd_len = 0x80; 1370 cmd_fis = dma_memory_map(s->as, tbl_addr, &cmd_len, 1371 DMA_DIRECTION_TO_DEVICE, MEMTXATTRS_UNSPECIFIED); 1372 if (!cmd_fis) { 1373 trace_handle_cmd_badfis(s, port); 1374 return; 1375 } else if (cmd_len != 0x80) { 1376 ahci_trigger_irq(s, &s->dev[port], AHCI_PORT_IRQ_BIT_HBFS); 1377 trace_handle_cmd_badmap(s, port, cmd_len); 1378 goto out; 1379 } 1380 if (trace_event_get_state_backends(TRACE_HANDLE_CMD_FIS_DUMP)) { 1381 char *pretty_fis = ahci_pretty_buffer_fis(cmd_fis, 0x80); 1382 trace_handle_cmd_fis_dump(s, port, pretty_fis); 1383 g_free(pretty_fis); 1384 } 1385 switch (cmd_fis[0]) { 1386 case SATA_FIS_TYPE_REGISTER_H2D: 1387 handle_reg_h2d_fis(s, port, slot, cmd_fis); 1388 break; 1389 default: 1390 trace_handle_cmd_unhandled_fis(s, port, 1391 cmd_fis[0], cmd_fis[1], cmd_fis[2]); 1392 break; 1393 } 1394 1395 out: 1396 dma_memory_unmap(s->as, cmd_fis, cmd_len, DMA_DIRECTION_TO_DEVICE, 1397 cmd_len); 1398 } 1399 1400 /* Transfer PIO data between RAM and device */ 1401 static void ahci_pio_transfer(const IDEDMA *dma) 1402 { 1403 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1404 IDEState *s = &ad->port.ifs[0]; 1405 uint32_t size = (uint32_t)(s->data_end - s->data_ptr); 1406 /* write == ram -> device */ 1407 uint16_t opts = le16_to_cpu(ad->cur_cmd->opts); 1408 int is_write = opts & AHCI_CMD_WRITE; 1409 int is_atapi = opts & AHCI_CMD_ATAPI; 1410 int has_sglist = 0; 1411 bool pio_fis_i; 1412 1413 /* The PIO Setup FIS is received prior to transfer, but the interrupt 1414 * is only triggered after data is received. 1415 * 1416 * The device only sets the 'I' bit in the PIO Setup FIS for device->host 1417 * requests (see "DPIOI1" in the SATA spec), or for host->device DRQs after 1418 * the first (see "DPIOO1"). The latter is consistent with the spec's 1419 * description of the PACKET protocol, where the command part of ATAPI requests 1420 * ("DPKT0") has the 'I' bit clear, while the data part of PIO ATAPI requests 1421 * ("DPKT4a" and "DPKT7") has the 'I' bit set for both directions for all DRQs. 1422 */ 1423 pio_fis_i = ad->done_first_drq || (!is_atapi && !is_write); 1424 ahci_write_fis_pio(ad, size, pio_fis_i); 1425 1426 if (is_atapi && !ad->done_first_drq) { 1427 /* already prepopulated iobuffer */ 1428 goto out; 1429 } 1430 1431 if (ahci_dma_prepare_buf(dma, size)) { 1432 has_sglist = 1; 1433 } 1434 1435 trace_ahci_pio_transfer(ad->hba, ad->port_no, is_write ? "writ" : "read", 1436 size, is_atapi ? "atapi" : "ata", 1437 has_sglist ? "" : "o"); 1438 1439 if (has_sglist && size) { 1440 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 1441 1442 if (is_write) { 1443 dma_buf_write(s->data_ptr, size, NULL, &s->sg, attrs); 1444 } else { 1445 dma_buf_read(s->data_ptr, size, NULL, &s->sg, attrs); 1446 } 1447 } 1448 1449 /* Update number of transferred bytes, destroy sglist */ 1450 dma_buf_commit(s, size); 1451 1452 out: 1453 /* declare that we processed everything */ 1454 s->data_ptr = s->data_end; 1455 1456 ad->done_first_drq = true; 1457 if (pio_fis_i) { 1458 ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_PSS); 1459 } 1460 } 1461 1462 static void ahci_start_dma(const IDEDMA *dma, IDEState *s, 1463 BlockCompletionFunc *dma_cb) 1464 { 1465 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1466 trace_ahci_start_dma(ad->hba, ad->port_no); 1467 s->io_buffer_offset = 0; 1468 dma_cb(s, 0); 1469 } 1470 1471 static void ahci_restart_dma(const IDEDMA *dma) 1472 { 1473 /* Nothing to do, ahci_start_dma already resets s->io_buffer_offset. */ 1474 } 1475 1476 /** 1477 * IDE/PIO restarts are handled by the core layer, but NCQ commands 1478 * need an extra kick from the AHCI HBA. 1479 */ 1480 static void ahci_restart(const IDEDMA *dma) 1481 { 1482 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1483 int i; 1484 1485 for (i = 0; i < AHCI_MAX_CMDS; i++) { 1486 NCQTransferState *ncq_tfs = &ad->ncq_tfs[i]; 1487 if (ncq_tfs->halt) { 1488 execute_ncq_command(ncq_tfs); 1489 } 1490 } 1491 } 1492 1493 /** 1494 * Called in DMA and PIO R/W chains to read the PRDT. 1495 * Not shared with NCQ pathways. 1496 */ 1497 static int32_t ahci_dma_prepare_buf(const IDEDMA *dma, int32_t limit) 1498 { 1499 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1500 IDEState *s = &ad->port.ifs[0]; 1501 1502 if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, 1503 limit, s->io_buffer_offset) == -1) { 1504 trace_ahci_dma_prepare_buf_fail(ad->hba, ad->port_no); 1505 return -1; 1506 } 1507 s->io_buffer_size = s->sg.size; 1508 1509 trace_ahci_dma_prepare_buf(ad->hba, ad->port_no, limit, s->io_buffer_size); 1510 return s->io_buffer_size; 1511 } 1512 1513 /** 1514 * Updates the command header with a bytes-read value. 1515 * Called via dma_buf_commit, for both DMA and PIO paths. 1516 * sglist destruction is handled within dma_buf_commit. 1517 */ 1518 static void ahci_commit_buf(const IDEDMA *dma, uint32_t tx_bytes) 1519 { 1520 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1521 1522 tx_bytes += le32_to_cpu(ad->cur_cmd->status); 1523 ad->cur_cmd->status = cpu_to_le32(tx_bytes); 1524 } 1525 1526 static int ahci_dma_rw_buf(const IDEDMA *dma, bool is_write) 1527 { 1528 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1529 IDEState *s = &ad->port.ifs[0]; 1530 uint8_t *p = s->io_buffer + s->io_buffer_index; 1531 int l = s->io_buffer_size - s->io_buffer_index; 1532 1533 if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, l, s->io_buffer_offset)) { 1534 return 0; 1535 } 1536 1537 if (is_write) { 1538 dma_buf_read(p, l, NULL, &s->sg, MEMTXATTRS_UNSPECIFIED); 1539 } else { 1540 dma_buf_write(p, l, NULL, &s->sg, MEMTXATTRS_UNSPECIFIED); 1541 } 1542 1543 /* free sglist, update byte count */ 1544 dma_buf_commit(s, l); 1545 s->io_buffer_index += l; 1546 1547 trace_ahci_dma_rw_buf(ad->hba, ad->port_no, l); 1548 return 1; 1549 } 1550 1551 static void ahci_clear_cmd_issue(AHCIDevice *ad, uint8_t slot) 1552 { 1553 IDEState *ide_state = &ad->port.ifs[0]; 1554 1555 if (!(ide_state->status & ERR_STAT) && 1556 !(ide_state->status & (BUSY_STAT | DRQ_STAT))) { 1557 ad->port_regs.cmd_issue &= ~(1 << slot); 1558 } 1559 } 1560 1561 /* Non-NCQ command is done - This function is never called for NCQ commands. */ 1562 static void ahci_cmd_done(const IDEDMA *dma) 1563 { 1564 AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); 1565 IDEState *ide_state = &ad->port.ifs[0]; 1566 1567 trace_ahci_cmd_done(ad->hba, ad->port_no); 1568 1569 /* no longer busy */ 1570 if (ad->busy_slot != -1) { 1571 ahci_clear_cmd_issue(ad, ad->busy_slot); 1572 ad->busy_slot = -1; 1573 } 1574 1575 /* 1576 * In reality, for non-NCQ commands, PxCI is cleared after receiving a D2H 1577 * FIS with the interrupt bit set, but since ahci_write_fis_d2h() will raise 1578 * an IRQ, we need to call them in reverse order. 1579 */ 1580 ahci_write_fis_d2h(ad, true); 1581 1582 if (!(ide_state->status & ERR_STAT) && 1583 ad->port_regs.cmd_issue && !ad->check_bh) { 1584 ad->check_bh = qemu_bh_new_guarded(ahci_check_cmd_bh, ad, 1585 &ad->mem_reentrancy_guard); 1586 qemu_bh_schedule(ad->check_bh); 1587 } 1588 } 1589 1590 static void ahci_irq_set(void *opaque, int n, int level) 1591 { 1592 qemu_log_mask(LOG_UNIMP, "ahci: IRQ#%d level:%d\n", n, level); 1593 } 1594 1595 static const IDEDMAOps ahci_dma_ops = { 1596 .start_dma = ahci_start_dma, 1597 .restart = ahci_restart, 1598 .restart_dma = ahci_restart_dma, 1599 .pio_transfer = ahci_pio_transfer, 1600 .prepare_buf = ahci_dma_prepare_buf, 1601 .commit_buf = ahci_commit_buf, 1602 .rw_buf = ahci_dma_rw_buf, 1603 .cmd_done = ahci_cmd_done, 1604 }; 1605 1606 void ahci_init(AHCIState *s, DeviceState *qdev) 1607 { 1608 s->container = qdev; 1609 /* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */ 1610 memory_region_init_io(&s->mem, OBJECT(qdev), &ahci_mem_ops, s, 1611 "ahci", AHCI_MEM_BAR_SIZE); 1612 memory_region_init_io(&s->idp, OBJECT(qdev), &ahci_idp_ops, s, 1613 "ahci-idp", 32); 1614 } 1615 1616 void ahci_realize(AHCIState *s, DeviceState *qdev, AddressSpace *as, int ports) 1617 { 1618 qemu_irq *irqs; 1619 int i; 1620 1621 s->as = as; 1622 s->ports = ports; 1623 s->dev = g_new0(AHCIDevice, ports); 1624 ahci_reg_init(s); 1625 irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports); 1626 for (i = 0; i < s->ports; i++) { 1627 AHCIDevice *ad = &s->dev[i]; 1628 1629 ide_bus_init(&ad->port, sizeof(ad->port), qdev, i, 1); 1630 ide_bus_init_output_irq(&ad->port, irqs[i]); 1631 1632 ad->hba = s; 1633 ad->port_no = i; 1634 ad->port.dma = &ad->dma; 1635 ad->port.dma->ops = &ahci_dma_ops; 1636 ide_bus_register_restart_cb(&ad->port); 1637 } 1638 g_free(irqs); 1639 } 1640 1641 void ahci_uninit(AHCIState *s) 1642 { 1643 int i, j; 1644 1645 for (i = 0; i < s->ports; i++) { 1646 AHCIDevice *ad = &s->dev[i]; 1647 1648 for (j = 0; j < 2; j++) { 1649 ide_exit(&ad->port.ifs[j]); 1650 } 1651 object_unparent(OBJECT(&ad->port)); 1652 } 1653 1654 g_free(s->dev); 1655 } 1656 1657 void ahci_reset(AHCIState *s) 1658 { 1659 AHCIPortRegs *pr; 1660 int i; 1661 1662 trace_ahci_reset(s); 1663 1664 s->control_regs.irqstatus = 0; 1665 /* AHCI Enable (AE) 1666 * The implementation of this bit is dependent upon the value of the 1667 * CAP.SAM bit. If CAP.SAM is '0', then GHC.AE shall be read-write and 1668 * shall have a reset value of '0'. If CAP.SAM is '1', then AE shall be 1669 * read-only and shall have a reset value of '1'. 1670 * 1671 * We set HOST_CAP_AHCI so we must enable AHCI at reset. 1672 */ 1673 s->control_regs.ghc = HOST_CTL_AHCI_EN; 1674 1675 for (i = 0; i < s->ports; i++) { 1676 pr = &s->dev[i].port_regs; 1677 pr->irq_stat = 0; 1678 pr->irq_mask = 0; 1679 pr->scr_ctl = 0; 1680 pr->cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON; 1681 ahci_reset_port(s, i); 1682 } 1683 } 1684 1685 static const VMStateDescription vmstate_ncq_tfs = { 1686 .name = "ncq state", 1687 .version_id = 1, 1688 .fields = (const VMStateField[]) { 1689 VMSTATE_UINT32(sector_count, NCQTransferState), 1690 VMSTATE_UINT64(lba, NCQTransferState), 1691 VMSTATE_UINT8(tag, NCQTransferState), 1692 VMSTATE_UINT8(cmd, NCQTransferState), 1693 VMSTATE_UINT8(slot, NCQTransferState), 1694 VMSTATE_BOOL(used, NCQTransferState), 1695 VMSTATE_BOOL(halt, NCQTransferState), 1696 VMSTATE_END_OF_LIST() 1697 }, 1698 }; 1699 1700 static const VMStateDescription vmstate_ahci_device = { 1701 .name = "ahci port", 1702 .version_id = 1, 1703 .fields = (const VMStateField[]) { 1704 VMSTATE_IDE_BUS(port, AHCIDevice), 1705 VMSTATE_IDE_DRIVE(port.ifs[0], AHCIDevice), 1706 VMSTATE_UINT32(port_state, AHCIDevice), 1707 VMSTATE_UINT32(finished, AHCIDevice), 1708 VMSTATE_UINT32(port_regs.lst_addr, AHCIDevice), 1709 VMSTATE_UINT32(port_regs.lst_addr_hi, AHCIDevice), 1710 VMSTATE_UINT32(port_regs.fis_addr, AHCIDevice), 1711 VMSTATE_UINT32(port_regs.fis_addr_hi, AHCIDevice), 1712 VMSTATE_UINT32(port_regs.irq_stat, AHCIDevice), 1713 VMSTATE_UINT32(port_regs.irq_mask, AHCIDevice), 1714 VMSTATE_UINT32(port_regs.cmd, AHCIDevice), 1715 VMSTATE_UINT32(port_regs.tfdata, AHCIDevice), 1716 VMSTATE_UINT32(port_regs.sig, AHCIDevice), 1717 VMSTATE_UINT32(port_regs.scr_stat, AHCIDevice), 1718 VMSTATE_UINT32(port_regs.scr_ctl, AHCIDevice), 1719 VMSTATE_UINT32(port_regs.scr_err, AHCIDevice), 1720 VMSTATE_UINT32(port_regs.scr_act, AHCIDevice), 1721 VMSTATE_UINT32(port_regs.cmd_issue, AHCIDevice), 1722 VMSTATE_BOOL(done_first_drq, AHCIDevice), 1723 VMSTATE_INT32(busy_slot, AHCIDevice), 1724 VMSTATE_BOOL(init_d2h_sent, AHCIDevice), 1725 VMSTATE_STRUCT_ARRAY(ncq_tfs, AHCIDevice, AHCI_MAX_CMDS, 1726 1, vmstate_ncq_tfs, NCQTransferState), 1727 VMSTATE_END_OF_LIST() 1728 }, 1729 }; 1730 1731 static int ahci_state_post_load(void *opaque, int version_id) 1732 { 1733 int i, j; 1734 struct AHCIDevice *ad; 1735 NCQTransferState *ncq_tfs; 1736 AHCIPortRegs *pr; 1737 AHCIState *s = opaque; 1738 1739 for (i = 0; i < s->ports; i++) { 1740 ad = &s->dev[i]; 1741 pr = &ad->port_regs; 1742 1743 if (!(pr->cmd & PORT_CMD_START) && (pr->cmd & PORT_CMD_LIST_ON)) { 1744 error_report("AHCI: DMA engine should be off, but status bit " 1745 "indicates it is still running."); 1746 return -1; 1747 } 1748 if (!(pr->cmd & PORT_CMD_FIS_RX) && (pr->cmd & PORT_CMD_FIS_ON)) { 1749 error_report("AHCI: FIS RX engine should be off, but status bit " 1750 "indicates it is still running."); 1751 return -1; 1752 } 1753 1754 /* After a migrate, the DMA/FIS engines are "off" and 1755 * need to be conditionally restarted */ 1756 pr->cmd &= ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON); 1757 if (ahci_cond_start_engines(ad) != 0) { 1758 return -1; 1759 } 1760 1761 for (j = 0; j < AHCI_MAX_CMDS; j++) { 1762 ncq_tfs = &ad->ncq_tfs[j]; 1763 ncq_tfs->drive = ad; 1764 1765 if (ncq_tfs->used != ncq_tfs->halt) { 1766 return -1; 1767 } 1768 if (!ncq_tfs->halt) { 1769 continue; 1770 } 1771 if (!is_ncq(ncq_tfs->cmd)) { 1772 return -1; 1773 } 1774 if (ncq_tfs->slot != ncq_tfs->tag) { 1775 return -1; 1776 } 1777 /* If ncq_tfs->halt is justly set, the engine should be engaged, 1778 * and the command list buffer should be mapped. */ 1779 ncq_tfs->cmdh = get_cmd_header(s, i, ncq_tfs->slot); 1780 if (!ncq_tfs->cmdh) { 1781 return -1; 1782 } 1783 ahci_populate_sglist(ncq_tfs->drive, &ncq_tfs->sglist, 1784 ncq_tfs->cmdh, 1785 ncq_tfs->sector_count * BDRV_SECTOR_SIZE, 1786 0); 1787 if (ncq_tfs->sector_count != ncq_tfs->sglist.size >> 9) { 1788 return -1; 1789 } 1790 } 1791 1792 1793 /* 1794 * If an error is present, ad->busy_slot will be valid and not -1. 1795 * In this case, an operation is waiting to resume and will re-check 1796 * for additional AHCI commands to execute upon completion. 1797 * 1798 * In the case where no error was present, busy_slot will be -1, 1799 * and we should check to see if there are additional commands waiting. 1800 */ 1801 if (ad->busy_slot == -1) { 1802 check_cmd(s, i); 1803 } else { 1804 /* We are in the middle of a command, and may need to access 1805 * the command header in guest memory again. */ 1806 if (ad->busy_slot < 0 || ad->busy_slot >= AHCI_MAX_CMDS) { 1807 return -1; 1808 } 1809 ad->cur_cmd = get_cmd_header(s, i, ad->busy_slot); 1810 } 1811 } 1812 1813 return 0; 1814 } 1815 1816 const VMStateDescription vmstate_ahci = { 1817 .name = "ahci", 1818 .version_id = 1, 1819 .post_load = ahci_state_post_load, 1820 .fields = (const VMStateField[]) { 1821 VMSTATE_STRUCT_VARRAY_POINTER_INT32(dev, AHCIState, ports, 1822 vmstate_ahci_device, AHCIDevice), 1823 VMSTATE_UINT32(control_regs.cap, AHCIState), 1824 VMSTATE_UINT32(control_regs.ghc, AHCIState), 1825 VMSTATE_UINT32(control_regs.irqstatus, AHCIState), 1826 VMSTATE_UINT32(control_regs.impl, AHCIState), 1827 VMSTATE_UINT32(control_regs.version, AHCIState), 1828 VMSTATE_UINT32(idp_index, AHCIState), 1829 VMSTATE_INT32_EQUAL(ports, AHCIState, NULL), 1830 VMSTATE_END_OF_LIST() 1831 }, 1832 }; 1833 1834 static const VMStateDescription vmstate_sysbus_ahci = { 1835 .name = "sysbus-ahci", 1836 .fields = (const VMStateField[]) { 1837 VMSTATE_AHCI(ahci, SysbusAHCIState), 1838 VMSTATE_END_OF_LIST() 1839 }, 1840 }; 1841 1842 static void sysbus_ahci_reset(DeviceState *dev) 1843 { 1844 SysbusAHCIState *s = SYSBUS_AHCI(dev); 1845 1846 ahci_reset(&s->ahci); 1847 } 1848 1849 static void sysbus_ahci_init(Object *obj) 1850 { 1851 SysbusAHCIState *s = SYSBUS_AHCI(obj); 1852 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1853 1854 ahci_init(&s->ahci, DEVICE(obj)); 1855 1856 sysbus_init_mmio(sbd, &s->ahci.mem); 1857 sysbus_init_irq(sbd, &s->ahci.irq); 1858 } 1859 1860 static void sysbus_ahci_realize(DeviceState *dev, Error **errp) 1861 { 1862 SysbusAHCIState *s = SYSBUS_AHCI(dev); 1863 1864 ahci_realize(&s->ahci, dev, &address_space_memory, s->num_ports); 1865 } 1866 1867 static Property sysbus_ahci_properties[] = { 1868 DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, num_ports, 1), 1869 DEFINE_PROP_END_OF_LIST(), 1870 }; 1871 1872 static void sysbus_ahci_class_init(ObjectClass *klass, void *data) 1873 { 1874 DeviceClass *dc = DEVICE_CLASS(klass); 1875 1876 dc->realize = sysbus_ahci_realize; 1877 dc->vmsd = &vmstate_sysbus_ahci; 1878 device_class_set_props(dc, sysbus_ahci_properties); 1879 dc->reset = sysbus_ahci_reset; 1880 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 1881 } 1882 1883 static const TypeInfo sysbus_ahci_info = { 1884 .name = TYPE_SYSBUS_AHCI, 1885 .parent = TYPE_SYS_BUS_DEVICE, 1886 .instance_size = sizeof(SysbusAHCIState), 1887 .instance_init = sysbus_ahci_init, 1888 .class_init = sysbus_ahci_class_init, 1889 }; 1890 1891 static void sysbus_ahci_register_types(void) 1892 { 1893 type_register_static(&sysbus_ahci_info); 1894 } 1895 1896 type_init(sysbus_ahci_register_types) 1897 1898 int32_t ahci_get_num_ports(PCIDevice *dev) 1899 { 1900 AHCIPCIState *d = ICH9_AHCI(dev); 1901 AHCIState *ahci = &d->ahci; 1902 1903 return ahci->ports; 1904 } 1905 1906 void ahci_ide_create_devs(PCIDevice *dev, DriveInfo **hd) 1907 { 1908 AHCIPCIState *d = ICH9_AHCI(dev); 1909 AHCIState *ahci = &d->ahci; 1910 int i; 1911 1912 for (i = 0; i < ahci->ports; i++) { 1913 if (hd[i] == NULL) { 1914 continue; 1915 } 1916 ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]); 1917 } 1918 1919 } 1920