1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/pci/pci_host.h" 16 #include "hw/i386/pc.h" 17 #include "hw/i386/apic-msidef.h" 18 #include "hw/xen/xen_common.h" 19 #include "hw/xen/xen-legacy-backend.h" 20 #include "hw/xen/xen-bus.h" 21 #include "qapi/error.h" 22 #include "qapi/qapi-commands-misc.h" 23 #include "qemu/error-report.h" 24 #include "qemu/range.h" 25 #include "sysemu/xen-mapcache.h" 26 #include "trace.h" 27 #include "exec/address-spaces.h" 28 29 #include <xen/hvm/ioreq.h> 30 #include <xen/hvm/e820.h> 31 32 //#define DEBUG_XEN_HVM 33 34 #ifdef DEBUG_XEN_HVM 35 #define DPRINTF(fmt, ...) \ 36 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 37 #else 38 #define DPRINTF(fmt, ...) \ 39 do { } while (0) 40 #endif 41 42 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 43 static MemoryRegion *framebuffer; 44 static bool xen_in_migration; 45 46 /* Compatibility with older version */ 47 48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 49 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 50 * needs to be included before this block and hw/xen/xen_common.h needs to 51 * be included before xen/hvm/ioreq.h 52 */ 53 #ifndef IOREQ_TYPE_VMWARE_PORT 54 #define IOREQ_TYPE_VMWARE_PORT 3 55 struct vmware_regs { 56 uint32_t esi; 57 uint32_t edi; 58 uint32_t ebx; 59 uint32_t ecx; 60 uint32_t edx; 61 }; 62 typedef struct vmware_regs vmware_regs_t; 63 64 struct shared_vmport_iopage { 65 struct vmware_regs vcpu_vmport_regs[1]; 66 }; 67 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 68 #endif 69 70 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 71 { 72 return shared_page->vcpu_ioreq[i].vp_eport; 73 } 74 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 75 { 76 return &shared_page->vcpu_ioreq[vcpu]; 77 } 78 79 #define BUFFER_IO_MAX_DELAY 100 80 81 typedef struct XenPhysmap { 82 hwaddr start_addr; 83 ram_addr_t size; 84 const char *name; 85 hwaddr phys_offset; 86 87 QLIST_ENTRY(XenPhysmap) list; 88 } XenPhysmap; 89 90 static QLIST_HEAD(, XenPhysmap) xen_physmap; 91 92 typedef struct XenPciDevice { 93 PCIDevice *pci_dev; 94 uint32_t sbdf; 95 QLIST_ENTRY(XenPciDevice) entry; 96 } XenPciDevice; 97 98 typedef struct XenIOState { 99 ioservid_t ioservid; 100 shared_iopage_t *shared_page; 101 shared_vmport_iopage_t *shared_vmport_page; 102 buffered_iopage_t *buffered_io_page; 103 QEMUTimer *buffered_io_timer; 104 CPUState **cpu_by_vcpu_id; 105 /* the evtchn port for polling the notification, */ 106 evtchn_port_t *ioreq_local_port; 107 /* evtchn remote and local ports for buffered io */ 108 evtchn_port_t bufioreq_remote_port; 109 evtchn_port_t bufioreq_local_port; 110 /* the evtchn fd for polling */ 111 xenevtchn_handle *xce_handle; 112 /* which vcpu we are serving */ 113 int send_vcpu; 114 115 struct xs_handle *xenstore; 116 MemoryListener memory_listener; 117 MemoryListener io_listener; 118 QLIST_HEAD(, XenPciDevice) dev_list; 119 DeviceListener device_listener; 120 hwaddr free_phys_offset; 121 const XenPhysmap *log_for_dirtybit; 122 /* Buffer used by xen_sync_dirty_bitmap */ 123 unsigned long *dirty_bitmap; 124 125 Notifier exit; 126 Notifier suspend; 127 Notifier wakeup; 128 } XenIOState; 129 130 /* Xen specific function for piix pci */ 131 132 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 133 { 134 return irq_num + ((pci_dev->devfn >> 3) << 2); 135 } 136 137 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 138 { 139 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 140 irq_num & 3, level); 141 } 142 143 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 144 { 145 int i; 146 147 /* Scan for updates to PCI link routes (0x60-0x63). */ 148 for (i = 0; i < len; i++) { 149 uint8_t v = (val >> (8 * i)) & 0xff; 150 if (v & 0x80) { 151 v = 0; 152 } 153 v &= 0xf; 154 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 155 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 156 } 157 } 158 } 159 160 int xen_is_pirq_msi(uint32_t msi_data) 161 { 162 /* If vector is 0, the msi is remapped into a pirq, passed as 163 * dest_id. 164 */ 165 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 166 } 167 168 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 169 { 170 xen_inject_msi(xen_domid, addr, data); 171 } 172 173 static void xen_suspend_notifier(Notifier *notifier, void *data) 174 { 175 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 176 } 177 178 /* Xen Interrupt Controller */ 179 180 static void xen_set_irq(void *opaque, int irq, int level) 181 { 182 xen_set_isa_irq_level(xen_domid, irq, level); 183 } 184 185 qemu_irq *xen_interrupt_controller_init(void) 186 { 187 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 188 } 189 190 /* Memory Ops */ 191 192 static void xen_ram_init(PCMachineState *pcms, 193 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 194 { 195 MemoryRegion *sysmem = get_system_memory(); 196 ram_addr_t block_len; 197 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), 198 PC_MACHINE_MAX_RAM_BELOW_4G, 199 &error_abort); 200 201 /* Handle the machine opt max-ram-below-4g. It is basically doing 202 * min(xen limit, user limit). 203 */ 204 if (!user_lowmem) { 205 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 206 } 207 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 208 user_lowmem = HVM_BELOW_4G_RAM_END; 209 } 210 211 if (ram_size >= user_lowmem) { 212 pcms->above_4g_mem_size = ram_size - user_lowmem; 213 pcms->below_4g_mem_size = user_lowmem; 214 } else { 215 pcms->above_4g_mem_size = 0; 216 pcms->below_4g_mem_size = ram_size; 217 } 218 if (!pcms->above_4g_mem_size) { 219 block_len = ram_size; 220 } else { 221 /* 222 * Xen does not allocate the memory continuously, it keeps a 223 * hole of the size computed above or passed in. 224 */ 225 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 226 } 227 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 228 &error_fatal); 229 *ram_memory_p = &ram_memory; 230 231 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 232 &ram_memory, 0, 0xa0000); 233 memory_region_add_subregion(sysmem, 0, &ram_640k); 234 /* Skip of the VGA IO memory space, it will be registered later by the VGA 235 * emulated device. 236 * 237 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 238 * the Options ROM, so it is registered here as RAM. 239 */ 240 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 241 &ram_memory, 0xc0000, 242 pcms->below_4g_mem_size - 0xc0000); 243 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 244 if (pcms->above_4g_mem_size > 0) { 245 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 246 &ram_memory, 0x100000000ULL, 247 pcms->above_4g_mem_size); 248 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 249 } 250 } 251 252 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 253 Error **errp) 254 { 255 unsigned long nr_pfn; 256 xen_pfn_t *pfn_list; 257 int i; 258 259 if (runstate_check(RUN_STATE_INMIGRATE)) { 260 /* RAM already populated in Xen */ 261 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 262 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 263 __func__, size, ram_addr); 264 return; 265 } 266 267 if (mr == &ram_memory) { 268 return; 269 } 270 271 trace_xen_ram_alloc(ram_addr, size); 272 273 nr_pfn = size >> TARGET_PAGE_BITS; 274 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 275 276 for (i = 0; i < nr_pfn; i++) { 277 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 278 } 279 280 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 281 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 282 ram_addr); 283 } 284 285 g_free(pfn_list); 286 } 287 288 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size) 289 { 290 XenPhysmap *physmap = NULL; 291 292 start_addr &= TARGET_PAGE_MASK; 293 294 QLIST_FOREACH(physmap, &xen_physmap, list) { 295 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 296 return physmap; 297 } 298 } 299 return NULL; 300 } 301 302 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size) 303 { 304 hwaddr addr = phys_offset & TARGET_PAGE_MASK; 305 XenPhysmap *physmap = NULL; 306 307 QLIST_FOREACH(physmap, &xen_physmap, list) { 308 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 309 return physmap->start_addr + (phys_offset - physmap->phys_offset); 310 } 311 } 312 313 return phys_offset; 314 } 315 316 #ifdef XEN_COMPAT_PHYSMAP 317 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 318 { 319 char path[80], value[17]; 320 321 snprintf(path, sizeof(path), 322 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 323 xen_domid, (uint64_t)physmap->phys_offset); 324 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 325 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 326 return -1; 327 } 328 snprintf(path, sizeof(path), 329 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 330 xen_domid, (uint64_t)physmap->phys_offset); 331 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 332 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 333 return -1; 334 } 335 if (physmap->name) { 336 snprintf(path, sizeof(path), 337 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 338 xen_domid, (uint64_t)physmap->phys_offset); 339 if (!xs_write(state->xenstore, 0, path, 340 physmap->name, strlen(physmap->name))) { 341 return -1; 342 } 343 } 344 return 0; 345 } 346 #else 347 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 348 { 349 return 0; 350 } 351 #endif 352 353 static int xen_add_to_physmap(XenIOState *state, 354 hwaddr start_addr, 355 ram_addr_t size, 356 MemoryRegion *mr, 357 hwaddr offset_within_region) 358 { 359 unsigned long nr_pages; 360 int rc = 0; 361 XenPhysmap *physmap = NULL; 362 hwaddr pfn, start_gpfn; 363 hwaddr phys_offset = memory_region_get_ram_addr(mr); 364 const char *mr_name; 365 366 if (get_physmapping(start_addr, size)) { 367 return 0; 368 } 369 if (size <= 0) { 370 return -1; 371 } 372 373 /* Xen can only handle a single dirty log region for now and we want 374 * the linear framebuffer to be that region. 375 * Avoid tracking any regions that is not videoram and avoid tracking 376 * the legacy vga region. */ 377 if (mr == framebuffer && start_addr > 0xbffff) { 378 goto go_physmap; 379 } 380 return -1; 381 382 go_physmap: 383 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 384 start_addr, start_addr + size); 385 386 mr_name = memory_region_name(mr); 387 388 physmap = g_malloc(sizeof(XenPhysmap)); 389 390 physmap->start_addr = start_addr; 391 physmap->size = size; 392 physmap->name = mr_name; 393 physmap->phys_offset = phys_offset; 394 395 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 396 397 if (runstate_check(RUN_STATE_INMIGRATE)) { 398 /* Now when we have a physmap entry we can replace a dummy mapping with 399 * a real one of guest foreign memory. */ 400 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); 401 assert(p && p == memory_region_get_ram_ptr(mr)); 402 403 return 0; 404 } 405 406 pfn = phys_offset >> TARGET_PAGE_BITS; 407 start_gpfn = start_addr >> TARGET_PAGE_BITS; 408 nr_pages = size >> TARGET_PAGE_BITS; 409 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn, 410 start_gpfn); 411 if (rc) { 412 int saved_errno = errno; 413 414 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx 415 " to GFN %"HWADDR_PRIx" failed: %s", 416 nr_pages, pfn, start_gpfn, strerror(saved_errno)); 417 errno = saved_errno; 418 return -1; 419 } 420 421 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid, 422 start_addr >> TARGET_PAGE_BITS, 423 (start_addr + size - 1) >> TARGET_PAGE_BITS, 424 XEN_DOMCTL_MEM_CACHEATTR_WB); 425 if (rc) { 426 error_report("pin_memory_cacheattr failed: %s", strerror(errno)); 427 } 428 return xen_save_physmap(state, physmap); 429 } 430 431 static int xen_remove_from_physmap(XenIOState *state, 432 hwaddr start_addr, 433 ram_addr_t size) 434 { 435 int rc = 0; 436 XenPhysmap *physmap = NULL; 437 hwaddr phys_offset = 0; 438 439 physmap = get_physmapping(start_addr, size); 440 if (physmap == NULL) { 441 return -1; 442 } 443 444 phys_offset = physmap->phys_offset; 445 size = physmap->size; 446 447 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 448 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 449 450 size >>= TARGET_PAGE_BITS; 451 start_addr >>= TARGET_PAGE_BITS; 452 phys_offset >>= TARGET_PAGE_BITS; 453 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr, 454 phys_offset); 455 if (rc) { 456 int saved_errno = errno; 457 458 error_report("relocate_memory "RAM_ADDR_FMT" pages" 459 " from GFN %"HWADDR_PRIx 460 " to GFN %"HWADDR_PRIx" failed: %s", 461 size, start_addr, phys_offset, strerror(saved_errno)); 462 errno = saved_errno; 463 return -1; 464 } 465 466 QLIST_REMOVE(physmap, list); 467 if (state->log_for_dirtybit == physmap) { 468 state->log_for_dirtybit = NULL; 469 g_free(state->dirty_bitmap); 470 state->dirty_bitmap = NULL; 471 } 472 g_free(physmap); 473 474 return 0; 475 } 476 477 static void xen_set_memory(struct MemoryListener *listener, 478 MemoryRegionSection *section, 479 bool add) 480 { 481 XenIOState *state = container_of(listener, XenIOState, memory_listener); 482 hwaddr start_addr = section->offset_within_address_space; 483 ram_addr_t size = int128_get64(section->size); 484 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 485 hvmmem_type_t mem_type; 486 487 if (section->mr == &ram_memory) { 488 return; 489 } else { 490 if (add) { 491 xen_map_memory_section(xen_domid, state->ioservid, 492 section); 493 } else { 494 xen_unmap_memory_section(xen_domid, state->ioservid, 495 section); 496 } 497 } 498 499 if (!memory_region_is_ram(section->mr)) { 500 return; 501 } 502 503 if (log_dirty != add) { 504 return; 505 } 506 507 trace_xen_client_set_memory(start_addr, size, log_dirty); 508 509 start_addr &= TARGET_PAGE_MASK; 510 size = TARGET_PAGE_ALIGN(size); 511 512 if (add) { 513 if (!memory_region_is_rom(section->mr)) { 514 xen_add_to_physmap(state, start_addr, size, 515 section->mr, section->offset_within_region); 516 } else { 517 mem_type = HVMMEM_ram_ro; 518 if (xen_set_mem_type(xen_domid, mem_type, 519 start_addr >> TARGET_PAGE_BITS, 520 size >> TARGET_PAGE_BITS)) { 521 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 522 start_addr); 523 } 524 } 525 } else { 526 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 527 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 528 } 529 } 530 } 531 532 static void xen_region_add(MemoryListener *listener, 533 MemoryRegionSection *section) 534 { 535 memory_region_ref(section->mr); 536 xen_set_memory(listener, section, true); 537 } 538 539 static void xen_region_del(MemoryListener *listener, 540 MemoryRegionSection *section) 541 { 542 xen_set_memory(listener, section, false); 543 memory_region_unref(section->mr); 544 } 545 546 static void xen_io_add(MemoryListener *listener, 547 MemoryRegionSection *section) 548 { 549 XenIOState *state = container_of(listener, XenIOState, io_listener); 550 MemoryRegion *mr = section->mr; 551 552 if (mr->ops == &unassigned_io_ops) { 553 return; 554 } 555 556 memory_region_ref(mr); 557 558 xen_map_io_section(xen_domid, state->ioservid, section); 559 } 560 561 static void xen_io_del(MemoryListener *listener, 562 MemoryRegionSection *section) 563 { 564 XenIOState *state = container_of(listener, XenIOState, io_listener); 565 MemoryRegion *mr = section->mr; 566 567 if (mr->ops == &unassigned_io_ops) { 568 return; 569 } 570 571 xen_unmap_io_section(xen_domid, state->ioservid, section); 572 573 memory_region_unref(mr); 574 } 575 576 static void xen_device_realize(DeviceListener *listener, 577 DeviceState *dev) 578 { 579 XenIOState *state = container_of(listener, XenIOState, device_listener); 580 581 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 582 PCIDevice *pci_dev = PCI_DEVICE(dev); 583 XenPciDevice *xendev = g_new(XenPciDevice, 1); 584 585 xendev->pci_dev = pci_dev; 586 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev), 587 pci_dev->devfn); 588 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry); 589 590 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 591 } 592 } 593 594 static void xen_device_unrealize(DeviceListener *listener, 595 DeviceState *dev) 596 { 597 XenIOState *state = container_of(listener, XenIOState, device_listener); 598 599 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 600 PCIDevice *pci_dev = PCI_DEVICE(dev); 601 XenPciDevice *xendev, *next; 602 603 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 604 605 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) { 606 if (xendev->pci_dev == pci_dev) { 607 QLIST_REMOVE(xendev, entry); 608 g_free(xendev); 609 break; 610 } 611 } 612 } 613 } 614 615 static void xen_sync_dirty_bitmap(XenIOState *state, 616 hwaddr start_addr, 617 ram_addr_t size) 618 { 619 hwaddr npages = size >> TARGET_PAGE_BITS; 620 const int width = sizeof(unsigned long) * 8; 621 size_t bitmap_size = DIV_ROUND_UP(npages, width); 622 int rc, i, j; 623 const XenPhysmap *physmap = NULL; 624 625 physmap = get_physmapping(start_addr, size); 626 if (physmap == NULL) { 627 /* not handled */ 628 return; 629 } 630 631 if (state->log_for_dirtybit == NULL) { 632 state->log_for_dirtybit = physmap; 633 state->dirty_bitmap = g_new(unsigned long, bitmap_size); 634 } else if (state->log_for_dirtybit != physmap) { 635 /* Only one range for dirty bitmap can be tracked. */ 636 return; 637 } 638 639 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 640 npages, state->dirty_bitmap); 641 if (rc < 0) { 642 #ifndef ENODATA 643 #define ENODATA ENOENT 644 #endif 645 if (errno == ENODATA) { 646 memory_region_set_dirty(framebuffer, 0, size); 647 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 648 ", 0x" TARGET_FMT_plx "): %s\n", 649 start_addr, start_addr + size, strerror(errno)); 650 } 651 return; 652 } 653 654 for (i = 0; i < bitmap_size; i++) { 655 unsigned long map = state->dirty_bitmap[i]; 656 while (map != 0) { 657 j = ctzl(map); 658 map &= ~(1ul << j); 659 memory_region_set_dirty(framebuffer, 660 (i * width + j) * TARGET_PAGE_SIZE, 661 TARGET_PAGE_SIZE); 662 }; 663 } 664 } 665 666 static void xen_log_start(MemoryListener *listener, 667 MemoryRegionSection *section, 668 int old, int new) 669 { 670 XenIOState *state = container_of(listener, XenIOState, memory_listener); 671 672 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 673 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 674 int128_get64(section->size)); 675 } 676 } 677 678 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 679 int old, int new) 680 { 681 XenIOState *state = container_of(listener, XenIOState, memory_listener); 682 683 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 684 state->log_for_dirtybit = NULL; 685 g_free(state->dirty_bitmap); 686 state->dirty_bitmap = NULL; 687 /* Disable dirty bit tracking */ 688 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 689 } 690 } 691 692 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 693 { 694 XenIOState *state = container_of(listener, XenIOState, memory_listener); 695 696 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 697 int128_get64(section->size)); 698 } 699 700 static void xen_log_global_start(MemoryListener *listener) 701 { 702 if (xen_enabled()) { 703 xen_in_migration = true; 704 } 705 } 706 707 static void xen_log_global_stop(MemoryListener *listener) 708 { 709 xen_in_migration = false; 710 } 711 712 static MemoryListener xen_memory_listener = { 713 .region_add = xen_region_add, 714 .region_del = xen_region_del, 715 .log_start = xen_log_start, 716 .log_stop = xen_log_stop, 717 .log_sync = xen_log_sync, 718 .log_global_start = xen_log_global_start, 719 .log_global_stop = xen_log_global_stop, 720 .priority = 10, 721 }; 722 723 static MemoryListener xen_io_listener = { 724 .region_add = xen_io_add, 725 .region_del = xen_io_del, 726 .priority = 10, 727 }; 728 729 static DeviceListener xen_device_listener = { 730 .realize = xen_device_realize, 731 .unrealize = xen_device_unrealize, 732 }; 733 734 /* get the ioreq packets from share mem */ 735 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 736 { 737 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 738 739 if (req->state != STATE_IOREQ_READY) { 740 DPRINTF("I/O request not ready: " 741 "%x, ptr: %x, port: %"PRIx64", " 742 "data: %"PRIx64", count: %u, size: %u\n", 743 req->state, req->data_is_ptr, req->addr, 744 req->data, req->count, req->size); 745 return NULL; 746 } 747 748 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 749 750 req->state = STATE_IOREQ_INPROCESS; 751 return req; 752 } 753 754 /* use poll to get the port notification */ 755 /* ioreq_vec--out,the */ 756 /* retval--the number of ioreq packet */ 757 static ioreq_t *cpu_get_ioreq(XenIOState *state) 758 { 759 MachineState *ms = MACHINE(qdev_get_machine()); 760 unsigned int max_cpus = ms->smp.max_cpus; 761 int i; 762 evtchn_port_t port; 763 764 port = xenevtchn_pending(state->xce_handle); 765 if (port == state->bufioreq_local_port) { 766 timer_mod(state->buffered_io_timer, 767 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 768 return NULL; 769 } 770 771 if (port != -1) { 772 for (i = 0; i < max_cpus; i++) { 773 if (state->ioreq_local_port[i] == port) { 774 break; 775 } 776 } 777 778 if (i == max_cpus) { 779 hw_error("Fatal error while trying to get io event!\n"); 780 } 781 782 /* unmask the wanted port again */ 783 xenevtchn_unmask(state->xce_handle, port); 784 785 /* get the io packet from shared memory */ 786 state->send_vcpu = i; 787 return cpu_get_ioreq_from_shared_memory(state, i); 788 } 789 790 /* read error or read nothing */ 791 return NULL; 792 } 793 794 static uint32_t do_inp(uint32_t addr, unsigned long size) 795 { 796 switch (size) { 797 case 1: 798 return cpu_inb(addr); 799 case 2: 800 return cpu_inw(addr); 801 case 4: 802 return cpu_inl(addr); 803 default: 804 hw_error("inp: bad size: %04x %lx", addr, size); 805 } 806 } 807 808 static void do_outp(uint32_t addr, 809 unsigned long size, uint32_t val) 810 { 811 switch (size) { 812 case 1: 813 return cpu_outb(addr, val); 814 case 2: 815 return cpu_outw(addr, val); 816 case 4: 817 return cpu_outl(addr, val); 818 default: 819 hw_error("outp: bad size: %04x %lx", addr, size); 820 } 821 } 822 823 /* 824 * Helper functions which read/write an object from/to physical guest 825 * memory, as part of the implementation of an ioreq. 826 * 827 * Equivalent to 828 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 829 * val, req->size, 0/1) 830 * except without the integer overflow problems. 831 */ 832 static void rw_phys_req_item(hwaddr addr, 833 ioreq_t *req, uint32_t i, void *val, int rw) 834 { 835 /* Do everything unsigned so overflow just results in a truncated result 836 * and accesses to undesired parts of guest memory, which is up 837 * to the guest */ 838 hwaddr offset = (hwaddr)req->size * i; 839 if (req->df) { 840 addr -= offset; 841 } else { 842 addr += offset; 843 } 844 cpu_physical_memory_rw(addr, val, req->size, rw); 845 } 846 847 static inline void read_phys_req_item(hwaddr addr, 848 ioreq_t *req, uint32_t i, void *val) 849 { 850 rw_phys_req_item(addr, req, i, val, 0); 851 } 852 static inline void write_phys_req_item(hwaddr addr, 853 ioreq_t *req, uint32_t i, void *val) 854 { 855 rw_phys_req_item(addr, req, i, val, 1); 856 } 857 858 859 static void cpu_ioreq_pio(ioreq_t *req) 860 { 861 uint32_t i; 862 863 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 864 req->data, req->count, req->size); 865 866 if (req->size > sizeof(uint32_t)) { 867 hw_error("PIO: bad size (%u)", req->size); 868 } 869 870 if (req->dir == IOREQ_READ) { 871 if (!req->data_is_ptr) { 872 req->data = do_inp(req->addr, req->size); 873 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 874 req->size); 875 } else { 876 uint32_t tmp; 877 878 for (i = 0; i < req->count; i++) { 879 tmp = do_inp(req->addr, req->size); 880 write_phys_req_item(req->data, req, i, &tmp); 881 } 882 } 883 } else if (req->dir == IOREQ_WRITE) { 884 if (!req->data_is_ptr) { 885 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 886 req->size); 887 do_outp(req->addr, req->size, req->data); 888 } else { 889 for (i = 0; i < req->count; i++) { 890 uint32_t tmp = 0; 891 892 read_phys_req_item(req->data, req, i, &tmp); 893 do_outp(req->addr, req->size, tmp); 894 } 895 } 896 } 897 } 898 899 static void cpu_ioreq_move(ioreq_t *req) 900 { 901 uint32_t i; 902 903 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 904 req->data, req->count, req->size); 905 906 if (req->size > sizeof(req->data)) { 907 hw_error("MMIO: bad size (%u)", req->size); 908 } 909 910 if (!req->data_is_ptr) { 911 if (req->dir == IOREQ_READ) { 912 for (i = 0; i < req->count; i++) { 913 read_phys_req_item(req->addr, req, i, &req->data); 914 } 915 } else if (req->dir == IOREQ_WRITE) { 916 for (i = 0; i < req->count; i++) { 917 write_phys_req_item(req->addr, req, i, &req->data); 918 } 919 } 920 } else { 921 uint64_t tmp; 922 923 if (req->dir == IOREQ_READ) { 924 for (i = 0; i < req->count; i++) { 925 read_phys_req_item(req->addr, req, i, &tmp); 926 write_phys_req_item(req->data, req, i, &tmp); 927 } 928 } else if (req->dir == IOREQ_WRITE) { 929 for (i = 0; i < req->count; i++) { 930 read_phys_req_item(req->data, req, i, &tmp); 931 write_phys_req_item(req->addr, req, i, &tmp); 932 } 933 } 934 } 935 } 936 937 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req) 938 { 939 uint32_t sbdf = req->addr >> 32; 940 uint32_t reg = req->addr; 941 XenPciDevice *xendev; 942 943 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) && 944 req->size != sizeof(uint32_t)) { 945 hw_error("PCI config access: bad size (%u)", req->size); 946 } 947 948 if (req->count != 1) { 949 hw_error("PCI config access: bad count (%u)", req->count); 950 } 951 952 QLIST_FOREACH(xendev, &state->dev_list, entry) { 953 if (xendev->sbdf != sbdf) { 954 continue; 955 } 956 957 if (!req->data_is_ptr) { 958 if (req->dir == IOREQ_READ) { 959 req->data = pci_host_config_read_common( 960 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 961 req->size); 962 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 963 req->size, req->data); 964 } else if (req->dir == IOREQ_WRITE) { 965 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 966 req->size, req->data); 967 pci_host_config_write_common( 968 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 969 req->data, req->size); 970 } 971 } else { 972 uint32_t tmp; 973 974 if (req->dir == IOREQ_READ) { 975 tmp = pci_host_config_read_common( 976 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 977 req->size); 978 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, 979 req->size, tmp); 980 write_phys_req_item(req->data, req, 0, &tmp); 981 } else if (req->dir == IOREQ_WRITE) { 982 read_phys_req_item(req->data, req, 0, &tmp); 983 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, 984 req->size, tmp); 985 pci_host_config_write_common( 986 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, 987 tmp, req->size); 988 } 989 } 990 } 991 } 992 993 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 994 { 995 X86CPU *cpu; 996 CPUX86State *env; 997 998 cpu = X86_CPU(current_cpu); 999 env = &cpu->env; 1000 env->regs[R_EAX] = req->data; 1001 env->regs[R_EBX] = vmport_regs->ebx; 1002 env->regs[R_ECX] = vmport_regs->ecx; 1003 env->regs[R_EDX] = vmport_regs->edx; 1004 env->regs[R_ESI] = vmport_regs->esi; 1005 env->regs[R_EDI] = vmport_regs->edi; 1006 } 1007 1008 static void regs_from_cpu(vmware_regs_t *vmport_regs) 1009 { 1010 X86CPU *cpu = X86_CPU(current_cpu); 1011 CPUX86State *env = &cpu->env; 1012 1013 vmport_regs->ebx = env->regs[R_EBX]; 1014 vmport_regs->ecx = env->regs[R_ECX]; 1015 vmport_regs->edx = env->regs[R_EDX]; 1016 vmport_regs->esi = env->regs[R_ESI]; 1017 vmport_regs->edi = env->regs[R_EDI]; 1018 } 1019 1020 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 1021 { 1022 vmware_regs_t *vmport_regs; 1023 1024 assert(state->shared_vmport_page); 1025 vmport_regs = 1026 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 1027 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 1028 1029 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 1030 regs_to_cpu(vmport_regs, req); 1031 cpu_ioreq_pio(req); 1032 regs_from_cpu(vmport_regs); 1033 current_cpu = NULL; 1034 } 1035 1036 static void handle_ioreq(XenIOState *state, ioreq_t *req) 1037 { 1038 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 1039 req->addr, req->data, req->count, req->size); 1040 1041 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 1042 (req->size < sizeof (target_ulong))) { 1043 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 1044 } 1045 1046 if (req->dir == IOREQ_WRITE) 1047 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 1048 req->addr, req->data, req->count, req->size); 1049 1050 switch (req->type) { 1051 case IOREQ_TYPE_PIO: 1052 cpu_ioreq_pio(req); 1053 break; 1054 case IOREQ_TYPE_COPY: 1055 cpu_ioreq_move(req); 1056 break; 1057 case IOREQ_TYPE_VMWARE_PORT: 1058 handle_vmport_ioreq(state, req); 1059 break; 1060 case IOREQ_TYPE_TIMEOFFSET: 1061 break; 1062 case IOREQ_TYPE_INVALIDATE: 1063 xen_invalidate_map_cache(); 1064 break; 1065 case IOREQ_TYPE_PCI_CONFIG: 1066 cpu_ioreq_config(state, req); 1067 break; 1068 default: 1069 hw_error("Invalid ioreq type 0x%x\n", req->type); 1070 } 1071 if (req->dir == IOREQ_READ) { 1072 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 1073 req->addr, req->data, req->count, req->size); 1074 } 1075 } 1076 1077 static int handle_buffered_iopage(XenIOState *state) 1078 { 1079 buffered_iopage_t *buf_page = state->buffered_io_page; 1080 buf_ioreq_t *buf_req = NULL; 1081 ioreq_t req; 1082 int qw; 1083 1084 if (!buf_page) { 1085 return 0; 1086 } 1087 1088 memset(&req, 0x00, sizeof(req)); 1089 req.state = STATE_IOREQ_READY; 1090 req.count = 1; 1091 req.dir = IOREQ_WRITE; 1092 1093 for (;;) { 1094 uint32_t rdptr = buf_page->read_pointer, wrptr; 1095 1096 xen_rmb(); 1097 wrptr = buf_page->write_pointer; 1098 xen_rmb(); 1099 if (rdptr != buf_page->read_pointer) { 1100 continue; 1101 } 1102 if (rdptr == wrptr) { 1103 break; 1104 } 1105 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1106 req.size = 1U << buf_req->size; 1107 req.addr = buf_req->addr; 1108 req.data = buf_req->data; 1109 req.type = buf_req->type; 1110 xen_rmb(); 1111 qw = (req.size == 8); 1112 if (qw) { 1113 if (rdptr + 1 == wrptr) { 1114 hw_error("Incomplete quad word buffered ioreq"); 1115 } 1116 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1117 IOREQ_BUFFER_SLOT_NUM]; 1118 req.data |= ((uint64_t)buf_req->data) << 32; 1119 xen_rmb(); 1120 } 1121 1122 handle_ioreq(state, &req); 1123 1124 /* Only req.data may get updated by handle_ioreq(), albeit even that 1125 * should not happen as such data would never make it to the guest (we 1126 * can only usefully see writes here after all). 1127 */ 1128 assert(req.state == STATE_IOREQ_READY); 1129 assert(req.count == 1); 1130 assert(req.dir == IOREQ_WRITE); 1131 assert(!req.data_is_ptr); 1132 1133 atomic_add(&buf_page->read_pointer, qw + 1); 1134 } 1135 1136 return req.count; 1137 } 1138 1139 static void handle_buffered_io(void *opaque) 1140 { 1141 XenIOState *state = opaque; 1142 1143 if (handle_buffered_iopage(state)) { 1144 timer_mod(state->buffered_io_timer, 1145 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1146 } else { 1147 timer_del(state->buffered_io_timer); 1148 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1149 } 1150 } 1151 1152 static void cpu_handle_ioreq(void *opaque) 1153 { 1154 XenIOState *state = opaque; 1155 ioreq_t *req = cpu_get_ioreq(state); 1156 1157 handle_buffered_iopage(state); 1158 if (req) { 1159 ioreq_t copy = *req; 1160 1161 xen_rmb(); 1162 handle_ioreq(state, ©); 1163 req->data = copy.data; 1164 1165 if (req->state != STATE_IOREQ_INPROCESS) { 1166 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1167 "%x, ptr: %x, port: %"PRIx64", " 1168 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1169 req->state, req->data_is_ptr, req->addr, 1170 req->data, req->count, req->size, req->type); 1171 destroy_hvm_domain(false); 1172 return; 1173 } 1174 1175 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1176 1177 /* 1178 * We do this before we send the response so that the tools 1179 * have the opportunity to pick up on the reset before the 1180 * guest resumes and does a hlt with interrupts disabled which 1181 * causes Xen to powerdown the domain. 1182 */ 1183 if (runstate_is_running()) { 1184 ShutdownCause request; 1185 1186 if (qemu_shutdown_requested_get()) { 1187 destroy_hvm_domain(false); 1188 } 1189 request = qemu_reset_requested_get(); 1190 if (request) { 1191 qemu_system_reset(request); 1192 destroy_hvm_domain(true); 1193 } 1194 } 1195 1196 req->state = STATE_IORESP_READY; 1197 xenevtchn_notify(state->xce_handle, 1198 state->ioreq_local_port[state->send_vcpu]); 1199 } 1200 } 1201 1202 static void xen_main_loop_prepare(XenIOState *state) 1203 { 1204 int evtchn_fd = -1; 1205 1206 if (state->xce_handle != NULL) { 1207 evtchn_fd = xenevtchn_fd(state->xce_handle); 1208 } 1209 1210 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1211 state); 1212 1213 if (evtchn_fd != -1) { 1214 CPUState *cpu_state; 1215 1216 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1217 CPU_FOREACH(cpu_state) { 1218 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1219 __func__, cpu_state->cpu_index, cpu_state); 1220 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1221 } 1222 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1223 } 1224 } 1225 1226 1227 static void xen_hvm_change_state_handler(void *opaque, int running, 1228 RunState rstate) 1229 { 1230 XenIOState *state = opaque; 1231 1232 if (running) { 1233 xen_main_loop_prepare(state); 1234 } 1235 1236 xen_set_ioreq_server_state(xen_domid, 1237 state->ioservid, 1238 (rstate == RUN_STATE_RUNNING)); 1239 } 1240 1241 static void xen_exit_notifier(Notifier *n, void *data) 1242 { 1243 XenIOState *state = container_of(n, XenIOState, exit); 1244 1245 xenevtchn_close(state->xce_handle); 1246 xs_daemon_close(state->xenstore); 1247 } 1248 1249 #ifdef XEN_COMPAT_PHYSMAP 1250 static void xen_read_physmap(XenIOState *state) 1251 { 1252 XenPhysmap *physmap = NULL; 1253 unsigned int len, num, i; 1254 char path[80], *value = NULL; 1255 char **entries = NULL; 1256 1257 snprintf(path, sizeof(path), 1258 "/local/domain/0/device-model/%d/physmap", xen_domid); 1259 entries = xs_directory(state->xenstore, 0, path, &num); 1260 if (entries == NULL) 1261 return; 1262 1263 for (i = 0; i < num; i++) { 1264 physmap = g_malloc(sizeof (XenPhysmap)); 1265 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1266 snprintf(path, sizeof(path), 1267 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1268 xen_domid, entries[i]); 1269 value = xs_read(state->xenstore, 0, path, &len); 1270 if (value == NULL) { 1271 g_free(physmap); 1272 continue; 1273 } 1274 physmap->start_addr = strtoull(value, NULL, 16); 1275 free(value); 1276 1277 snprintf(path, sizeof(path), 1278 "/local/domain/0/device-model/%d/physmap/%s/size", 1279 xen_domid, entries[i]); 1280 value = xs_read(state->xenstore, 0, path, &len); 1281 if (value == NULL) { 1282 g_free(physmap); 1283 continue; 1284 } 1285 physmap->size = strtoull(value, NULL, 16); 1286 free(value); 1287 1288 snprintf(path, sizeof(path), 1289 "/local/domain/0/device-model/%d/physmap/%s/name", 1290 xen_domid, entries[i]); 1291 physmap->name = xs_read(state->xenstore, 0, path, &len); 1292 1293 QLIST_INSERT_HEAD(&xen_physmap, physmap, list); 1294 } 1295 free(entries); 1296 } 1297 #else 1298 static void xen_read_physmap(XenIOState *state) 1299 { 1300 } 1301 #endif 1302 1303 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1304 { 1305 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1306 } 1307 1308 static int xen_map_ioreq_server(XenIOState *state) 1309 { 1310 void *addr = NULL; 1311 xenforeignmemory_resource_handle *fres; 1312 xen_pfn_t ioreq_pfn; 1313 xen_pfn_t bufioreq_pfn; 1314 evtchn_port_t bufioreq_evtchn; 1315 int rc; 1316 1317 /* 1318 * Attempt to map using the resource API and fall back to normal 1319 * foreign mapping if this is not supported. 1320 */ 1321 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0); 1322 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1); 1323 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid, 1324 XENMEM_resource_ioreq_server, 1325 state->ioservid, 0, 2, 1326 &addr, 1327 PROT_READ | PROT_WRITE, 0); 1328 if (fres != NULL) { 1329 trace_xen_map_resource_ioreq(state->ioservid, addr); 1330 state->buffered_io_page = addr; 1331 state->shared_page = addr + TARGET_PAGE_SIZE; 1332 } else if (errno != EOPNOTSUPP) { 1333 error_report("failed to map ioreq server resources: error %d handle=%p", 1334 errno, xen_xc); 1335 return -1; 1336 } 1337 1338 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1339 (state->shared_page == NULL) ? 1340 &ioreq_pfn : NULL, 1341 (state->buffered_io_page == NULL) ? 1342 &bufioreq_pfn : NULL, 1343 &bufioreq_evtchn); 1344 if (rc < 0) { 1345 error_report("failed to get ioreq server info: error %d handle=%p", 1346 errno, xen_xc); 1347 return rc; 1348 } 1349 1350 if (state->shared_page == NULL) { 1351 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1352 1353 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1354 PROT_READ | PROT_WRITE, 1355 1, &ioreq_pfn, NULL); 1356 if (state->shared_page == NULL) { 1357 error_report("map shared IO page returned error %d handle=%p", 1358 errno, xen_xc); 1359 } 1360 } 1361 1362 if (state->buffered_io_page == NULL) { 1363 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1364 1365 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1366 PROT_READ | PROT_WRITE, 1367 1, &bufioreq_pfn, 1368 NULL); 1369 if (state->buffered_io_page == NULL) { 1370 error_report("map buffered IO page returned error %d", errno); 1371 return -1; 1372 } 1373 } 1374 1375 if (state->shared_page == NULL || state->buffered_io_page == NULL) { 1376 return -1; 1377 } 1378 1379 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1380 1381 state->bufioreq_remote_port = bufioreq_evtchn; 1382 1383 return 0; 1384 } 1385 1386 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1387 { 1388 MachineState *ms = MACHINE(pcms); 1389 unsigned int max_cpus = ms->smp.max_cpus; 1390 int i, rc; 1391 xen_pfn_t ioreq_pfn; 1392 XenIOState *state; 1393 1394 state = g_malloc0(sizeof (XenIOState)); 1395 1396 state->xce_handle = xenevtchn_open(NULL, 0); 1397 if (state->xce_handle == NULL) { 1398 perror("xen: event channel open"); 1399 goto err; 1400 } 1401 1402 state->xenstore = xs_daemon_open(); 1403 if (state->xenstore == NULL) { 1404 perror("xen: xenstore open"); 1405 goto err; 1406 } 1407 1408 xen_create_ioreq_server(xen_domid, &state->ioservid); 1409 1410 state->exit.notify = xen_exit_notifier; 1411 qemu_add_exit_notifier(&state->exit); 1412 1413 state->suspend.notify = xen_suspend_notifier; 1414 qemu_register_suspend_notifier(&state->suspend); 1415 1416 state->wakeup.notify = xen_wakeup_notifier; 1417 qemu_register_wakeup_notifier(&state->wakeup); 1418 1419 /* 1420 * Register wake-up support in QMP query-current-machine API 1421 */ 1422 qemu_register_wakeup_support(); 1423 1424 rc = xen_map_ioreq_server(state); 1425 if (rc < 0) { 1426 goto err; 1427 } 1428 1429 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1430 if (!rc) { 1431 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1432 state->shared_vmport_page = 1433 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1434 1, &ioreq_pfn, NULL); 1435 if (state->shared_vmport_page == NULL) { 1436 error_report("map shared vmport IO page returned error %d handle=%p", 1437 errno, xen_xc); 1438 goto err; 1439 } 1440 } else if (rc != -ENOSYS) { 1441 error_report("get vmport regs pfn returned error %d, rc=%d", 1442 errno, rc); 1443 goto err; 1444 } 1445 1446 /* Note: cpus is empty at this point in init */ 1447 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1448 1449 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1450 if (rc < 0) { 1451 error_report("failed to enable ioreq server info: error %d handle=%p", 1452 errno, xen_xc); 1453 goto err; 1454 } 1455 1456 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1457 1458 /* FIXME: how about if we overflow the page here? */ 1459 for (i = 0; i < max_cpus; i++) { 1460 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1461 xen_vcpu_eport(state->shared_page, i)); 1462 if (rc == -1) { 1463 error_report("shared evtchn %d bind error %d", i, errno); 1464 goto err; 1465 } 1466 state->ioreq_local_port[i] = rc; 1467 } 1468 1469 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1470 state->bufioreq_remote_port); 1471 if (rc == -1) { 1472 error_report("buffered evtchn bind error %d", errno); 1473 goto err; 1474 } 1475 state->bufioreq_local_port = rc; 1476 1477 /* Init RAM management */ 1478 #ifdef XEN_COMPAT_PHYSMAP 1479 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1480 #else 1481 xen_map_cache_init(NULL, state); 1482 #endif 1483 xen_ram_init(pcms, ram_size, ram_memory); 1484 1485 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1486 1487 state->memory_listener = xen_memory_listener; 1488 memory_listener_register(&state->memory_listener, &address_space_memory); 1489 state->log_for_dirtybit = NULL; 1490 1491 state->io_listener = xen_io_listener; 1492 memory_listener_register(&state->io_listener, &address_space_io); 1493 1494 state->device_listener = xen_device_listener; 1495 QLIST_INIT(&state->dev_list); 1496 device_listener_register(&state->device_listener); 1497 1498 xen_bus_init(); 1499 1500 /* Initialize backend core & drivers */ 1501 if (xen_be_init() != 0) { 1502 error_report("xen backend core setup failed"); 1503 goto err; 1504 } 1505 xen_be_register_common(); 1506 1507 QLIST_INIT(&xen_physmap); 1508 xen_read_physmap(state); 1509 1510 /* Disable ACPI build because Xen handles it */ 1511 pcms->acpi_build_enabled = false; 1512 1513 return; 1514 1515 err: 1516 error_report("xen hardware virtual machine initialisation failed"); 1517 exit(1); 1518 } 1519 1520 void destroy_hvm_domain(bool reboot) 1521 { 1522 xc_interface *xc_handle; 1523 int sts; 1524 int rc; 1525 1526 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff; 1527 1528 if (xen_dmod) { 1529 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason); 1530 if (!rc) { 1531 return; 1532 } 1533 if (errno != ENOTTY /* old Xen */) { 1534 perror("xendevicemodel_shutdown failed"); 1535 } 1536 /* well, try the old thing then */ 1537 } 1538 1539 xc_handle = xc_interface_open(0, 0, 0); 1540 if (xc_handle == NULL) { 1541 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1542 } else { 1543 sts = xc_domain_shutdown(xc_handle, xen_domid, reason); 1544 if (sts != 0) { 1545 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1546 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1547 sts, strerror(errno)); 1548 } else { 1549 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1550 reboot ? "reboot" : "poweroff"); 1551 } 1552 xc_interface_close(xc_handle); 1553 } 1554 } 1555 1556 void xen_register_framebuffer(MemoryRegion *mr) 1557 { 1558 framebuffer = mr; 1559 } 1560 1561 void xen_shutdown_fatal_error(const char *fmt, ...) 1562 { 1563 va_list ap; 1564 1565 va_start(ap, fmt); 1566 vfprintf(stderr, fmt, ap); 1567 va_end(ap); 1568 fprintf(stderr, "Will destroy the domain.\n"); 1569 /* destroy the domain */ 1570 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1571 } 1572 1573 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1574 { 1575 if (unlikely(xen_in_migration)) { 1576 int rc; 1577 ram_addr_t start_pfn, nb_pages; 1578 1579 start = xen_phys_offset_to_gaddr(start, length); 1580 1581 if (length == 0) { 1582 length = TARGET_PAGE_SIZE; 1583 } 1584 start_pfn = start >> TARGET_PAGE_BITS; 1585 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1586 - start_pfn; 1587 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1588 if (rc) { 1589 fprintf(stderr, 1590 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1591 __func__, start, nb_pages, errno, strerror(errno)); 1592 } 1593 } 1594 } 1595 1596 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1597 { 1598 if (enable) { 1599 memory_global_dirty_log_start(); 1600 } else { 1601 memory_global_dirty_log_stop(); 1602 } 1603 } 1604