1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/i386/pc.h" 16 #include "hw/i386/apic-msidef.h" 17 #include "hw/xen/xen_common.h" 18 #include "hw/xen/xen_backend.h" 19 #include "qmp-commands.h" 20 21 #include "qemu/error-report.h" 22 #include "qemu/range.h" 23 #include "sysemu/xen-mapcache.h" 24 #include "trace.h" 25 #include "exec/address-spaces.h" 26 27 #include <xen/hvm/ioreq.h> 28 #include <xen/hvm/params.h> 29 #include <xen/hvm/e820.h> 30 31 //#define DEBUG_XEN_HVM 32 33 #ifdef DEBUG_XEN_HVM 34 #define DPRINTF(fmt, ...) \ 35 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 36 #else 37 #define DPRINTF(fmt, ...) \ 38 do { } while (0) 39 #endif 40 41 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 42 static MemoryRegion *framebuffer; 43 static bool xen_in_migration; 44 45 /* Compatibility with older version */ 46 47 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 48 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 49 * needs to be included before this block and hw/xen/xen_common.h needs to 50 * be included before xen/hvm/ioreq.h 51 */ 52 #ifndef IOREQ_TYPE_VMWARE_PORT 53 #define IOREQ_TYPE_VMWARE_PORT 3 54 struct vmware_regs { 55 uint32_t esi; 56 uint32_t edi; 57 uint32_t ebx; 58 uint32_t ecx; 59 uint32_t edx; 60 }; 61 typedef struct vmware_regs vmware_regs_t; 62 63 struct shared_vmport_iopage { 64 struct vmware_regs vcpu_vmport_regs[1]; 65 }; 66 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 67 #endif 68 69 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 70 { 71 return shared_page->vcpu_ioreq[i].vp_eport; 72 } 73 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 74 { 75 return &shared_page->vcpu_ioreq[vcpu]; 76 } 77 78 #define BUFFER_IO_MAX_DELAY 100 79 80 typedef struct XenPhysmap { 81 hwaddr start_addr; 82 ram_addr_t size; 83 const char *name; 84 hwaddr phys_offset; 85 86 QLIST_ENTRY(XenPhysmap) list; 87 } XenPhysmap; 88 89 typedef struct XenIOState { 90 ioservid_t ioservid; 91 shared_iopage_t *shared_page; 92 shared_vmport_iopage_t *shared_vmport_page; 93 buffered_iopage_t *buffered_io_page; 94 QEMUTimer *buffered_io_timer; 95 CPUState **cpu_by_vcpu_id; 96 /* the evtchn port for polling the notification, */ 97 evtchn_port_t *ioreq_local_port; 98 /* evtchn local port for buffered io */ 99 evtchn_port_t bufioreq_local_port; 100 /* the evtchn fd for polling */ 101 xenevtchn_handle *xce_handle; 102 /* which vcpu we are serving */ 103 int send_vcpu; 104 105 struct xs_handle *xenstore; 106 MemoryListener memory_listener; 107 MemoryListener io_listener; 108 DeviceListener device_listener; 109 QLIST_HEAD(, XenPhysmap) physmap; 110 hwaddr free_phys_offset; 111 const XenPhysmap *log_for_dirtybit; 112 113 Notifier exit; 114 Notifier suspend; 115 Notifier wakeup; 116 } XenIOState; 117 118 /* Xen specific function for piix pci */ 119 120 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 121 { 122 return irq_num + ((pci_dev->devfn >> 3) << 2); 123 } 124 125 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 126 { 127 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 128 irq_num & 3, level); 129 } 130 131 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 132 { 133 int i; 134 135 /* Scan for updates to PCI link routes (0x60-0x63). */ 136 for (i = 0; i < len; i++) { 137 uint8_t v = (val >> (8 * i)) & 0xff; 138 if (v & 0x80) { 139 v = 0; 140 } 141 v &= 0xf; 142 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 143 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 144 } 145 } 146 } 147 148 int xen_is_pirq_msi(uint32_t msi_data) 149 { 150 /* If vector is 0, the msi is remapped into a pirq, passed as 151 * dest_id. 152 */ 153 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 154 } 155 156 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 157 { 158 xen_inject_msi(xen_domid, addr, data); 159 } 160 161 static void xen_suspend_notifier(Notifier *notifier, void *data) 162 { 163 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 164 } 165 166 /* Xen Interrupt Controller */ 167 168 static void xen_set_irq(void *opaque, int irq, int level) 169 { 170 xen_set_isa_irq_level(xen_domid, irq, level); 171 } 172 173 qemu_irq *xen_interrupt_controller_init(void) 174 { 175 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 176 } 177 178 /* Memory Ops */ 179 180 static void xen_ram_init(PCMachineState *pcms, 181 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 182 { 183 MemoryRegion *sysmem = get_system_memory(); 184 ram_addr_t block_len; 185 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), 186 PC_MACHINE_MAX_RAM_BELOW_4G, 187 &error_abort); 188 189 /* Handle the machine opt max-ram-below-4g. It is basically doing 190 * min(xen limit, user limit). 191 */ 192 if (!user_lowmem) { 193 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 194 } 195 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 196 user_lowmem = HVM_BELOW_4G_RAM_END; 197 } 198 199 if (ram_size >= user_lowmem) { 200 pcms->above_4g_mem_size = ram_size - user_lowmem; 201 pcms->below_4g_mem_size = user_lowmem; 202 } else { 203 pcms->above_4g_mem_size = 0; 204 pcms->below_4g_mem_size = ram_size; 205 } 206 if (!pcms->above_4g_mem_size) { 207 block_len = ram_size; 208 } else { 209 /* 210 * Xen does not allocate the memory continuously, it keeps a 211 * hole of the size computed above or passed in. 212 */ 213 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 214 } 215 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 216 &error_fatal); 217 *ram_memory_p = &ram_memory; 218 219 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 220 &ram_memory, 0, 0xa0000); 221 memory_region_add_subregion(sysmem, 0, &ram_640k); 222 /* Skip of the VGA IO memory space, it will be registered later by the VGA 223 * emulated device. 224 * 225 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 226 * the Options ROM, so it is registered here as RAM. 227 */ 228 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 229 &ram_memory, 0xc0000, 230 pcms->below_4g_mem_size - 0xc0000); 231 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 232 if (pcms->above_4g_mem_size > 0) { 233 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 234 &ram_memory, 0x100000000ULL, 235 pcms->above_4g_mem_size); 236 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 237 } 238 } 239 240 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 241 Error **errp) 242 { 243 unsigned long nr_pfn; 244 xen_pfn_t *pfn_list; 245 int i; 246 247 if (runstate_check(RUN_STATE_INMIGRATE)) { 248 /* RAM already populated in Xen */ 249 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 250 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 251 __func__, size, ram_addr); 252 return; 253 } 254 255 if (mr == &ram_memory) { 256 return; 257 } 258 259 trace_xen_ram_alloc(ram_addr, size); 260 261 nr_pfn = size >> TARGET_PAGE_BITS; 262 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 263 264 for (i = 0; i < nr_pfn; i++) { 265 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 266 } 267 268 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 269 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 270 ram_addr); 271 } 272 273 g_free(pfn_list); 274 } 275 276 static XenPhysmap *get_physmapping(XenIOState *state, 277 hwaddr start_addr, ram_addr_t size) 278 { 279 XenPhysmap *physmap = NULL; 280 281 start_addr &= TARGET_PAGE_MASK; 282 283 QLIST_FOREACH(physmap, &state->physmap, list) { 284 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 285 return physmap; 286 } 287 } 288 return NULL; 289 } 290 291 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr, 292 ram_addr_t size, void *opaque) 293 { 294 hwaddr addr = start_addr & TARGET_PAGE_MASK; 295 XenIOState *xen_io_state = opaque; 296 XenPhysmap *physmap = NULL; 297 298 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) { 299 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 300 return physmap->start_addr; 301 } 302 } 303 304 return start_addr; 305 } 306 307 static int xen_add_to_physmap(XenIOState *state, 308 hwaddr start_addr, 309 ram_addr_t size, 310 MemoryRegion *mr, 311 hwaddr offset_within_region) 312 { 313 unsigned long i = 0; 314 int rc = 0; 315 XenPhysmap *physmap = NULL; 316 hwaddr pfn, start_gpfn; 317 hwaddr phys_offset = memory_region_get_ram_addr(mr); 318 char path[80], value[17]; 319 const char *mr_name; 320 321 if (get_physmapping(state, start_addr, size)) { 322 return 0; 323 } 324 if (size <= 0) { 325 return -1; 326 } 327 328 /* Xen can only handle a single dirty log region for now and we want 329 * the linear framebuffer to be that region. 330 * Avoid tracking any regions that is not videoram and avoid tracking 331 * the legacy vga region. */ 332 if (mr == framebuffer && start_addr > 0xbffff) { 333 goto go_physmap; 334 } 335 return -1; 336 337 go_physmap: 338 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 339 start_addr, start_addr + size); 340 341 pfn = phys_offset >> TARGET_PAGE_BITS; 342 start_gpfn = start_addr >> TARGET_PAGE_BITS; 343 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) { 344 unsigned long idx = pfn + i; 345 xen_pfn_t gpfn = start_gpfn + i; 346 347 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); 348 if (rc) { 349 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %" 350 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); 351 return -rc; 352 } 353 } 354 355 mr_name = memory_region_name(mr); 356 357 physmap = g_malloc(sizeof (XenPhysmap)); 358 359 physmap->start_addr = start_addr; 360 physmap->size = size; 361 physmap->name = mr_name; 362 physmap->phys_offset = phys_offset; 363 364 QLIST_INSERT_HEAD(&state->physmap, physmap, list); 365 366 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid, 367 start_addr >> TARGET_PAGE_BITS, 368 (start_addr + size - 1) >> TARGET_PAGE_BITS, 369 XEN_DOMCTL_MEM_CACHEATTR_WB); 370 371 snprintf(path, sizeof(path), 372 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 373 xen_domid, (uint64_t)phys_offset); 374 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr); 375 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 376 return -1; 377 } 378 snprintf(path, sizeof(path), 379 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 380 xen_domid, (uint64_t)phys_offset); 381 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size); 382 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 383 return -1; 384 } 385 if (mr_name) { 386 snprintf(path, sizeof(path), 387 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 388 xen_domid, (uint64_t)phys_offset); 389 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) { 390 return -1; 391 } 392 } 393 394 return 0; 395 } 396 397 static int xen_remove_from_physmap(XenIOState *state, 398 hwaddr start_addr, 399 ram_addr_t size) 400 { 401 unsigned long i = 0; 402 int rc = 0; 403 XenPhysmap *physmap = NULL; 404 hwaddr phys_offset = 0; 405 406 physmap = get_physmapping(state, start_addr, size); 407 if (physmap == NULL) { 408 return -1; 409 } 410 411 phys_offset = physmap->phys_offset; 412 size = physmap->size; 413 414 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 415 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 416 417 size >>= TARGET_PAGE_BITS; 418 start_addr >>= TARGET_PAGE_BITS; 419 phys_offset >>= TARGET_PAGE_BITS; 420 for (i = 0; i < size; i++) { 421 xen_pfn_t idx = start_addr + i; 422 xen_pfn_t gpfn = phys_offset + i; 423 424 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); 425 if (rc) { 426 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %" 427 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); 428 return -rc; 429 } 430 } 431 432 QLIST_REMOVE(physmap, list); 433 if (state->log_for_dirtybit == physmap) { 434 state->log_for_dirtybit = NULL; 435 } 436 g_free(physmap); 437 438 return 0; 439 } 440 441 static void xen_set_memory(struct MemoryListener *listener, 442 MemoryRegionSection *section, 443 bool add) 444 { 445 XenIOState *state = container_of(listener, XenIOState, memory_listener); 446 hwaddr start_addr = section->offset_within_address_space; 447 ram_addr_t size = int128_get64(section->size); 448 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 449 hvmmem_type_t mem_type; 450 451 if (section->mr == &ram_memory) { 452 return; 453 } else { 454 if (add) { 455 xen_map_memory_section(xen_domid, state->ioservid, 456 section); 457 } else { 458 xen_unmap_memory_section(xen_domid, state->ioservid, 459 section); 460 } 461 } 462 463 if (!memory_region_is_ram(section->mr)) { 464 return; 465 } 466 467 if (log_dirty != add) { 468 return; 469 } 470 471 trace_xen_client_set_memory(start_addr, size, log_dirty); 472 473 start_addr &= TARGET_PAGE_MASK; 474 size = TARGET_PAGE_ALIGN(size); 475 476 if (add) { 477 if (!memory_region_is_rom(section->mr)) { 478 xen_add_to_physmap(state, start_addr, size, 479 section->mr, section->offset_within_region); 480 } else { 481 mem_type = HVMMEM_ram_ro; 482 if (xen_set_mem_type(xen_domid, mem_type, 483 start_addr >> TARGET_PAGE_BITS, 484 size >> TARGET_PAGE_BITS)) { 485 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 486 start_addr); 487 } 488 } 489 } else { 490 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 491 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 492 } 493 } 494 } 495 496 static void xen_region_add(MemoryListener *listener, 497 MemoryRegionSection *section) 498 { 499 memory_region_ref(section->mr); 500 xen_set_memory(listener, section, true); 501 } 502 503 static void xen_region_del(MemoryListener *listener, 504 MemoryRegionSection *section) 505 { 506 xen_set_memory(listener, section, false); 507 memory_region_unref(section->mr); 508 } 509 510 static void xen_io_add(MemoryListener *listener, 511 MemoryRegionSection *section) 512 { 513 XenIOState *state = container_of(listener, XenIOState, io_listener); 514 MemoryRegion *mr = section->mr; 515 516 if (mr->ops == &unassigned_io_ops) { 517 return; 518 } 519 520 memory_region_ref(mr); 521 522 xen_map_io_section(xen_domid, state->ioservid, section); 523 } 524 525 static void xen_io_del(MemoryListener *listener, 526 MemoryRegionSection *section) 527 { 528 XenIOState *state = container_of(listener, XenIOState, io_listener); 529 MemoryRegion *mr = section->mr; 530 531 if (mr->ops == &unassigned_io_ops) { 532 return; 533 } 534 535 xen_unmap_io_section(xen_domid, state->ioservid, section); 536 537 memory_region_unref(mr); 538 } 539 540 static void xen_device_realize(DeviceListener *listener, 541 DeviceState *dev) 542 { 543 XenIOState *state = container_of(listener, XenIOState, device_listener); 544 545 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 546 PCIDevice *pci_dev = PCI_DEVICE(dev); 547 548 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 549 } 550 } 551 552 static void xen_device_unrealize(DeviceListener *listener, 553 DeviceState *dev) 554 { 555 XenIOState *state = container_of(listener, XenIOState, device_listener); 556 557 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 558 PCIDevice *pci_dev = PCI_DEVICE(dev); 559 560 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 561 } 562 } 563 564 static void xen_sync_dirty_bitmap(XenIOState *state, 565 hwaddr start_addr, 566 ram_addr_t size) 567 { 568 hwaddr npages = size >> TARGET_PAGE_BITS; 569 const int width = sizeof(unsigned long) * 8; 570 unsigned long bitmap[DIV_ROUND_UP(npages, width)]; 571 int rc, i, j; 572 const XenPhysmap *physmap = NULL; 573 574 physmap = get_physmapping(state, start_addr, size); 575 if (physmap == NULL) { 576 /* not handled */ 577 return; 578 } 579 580 if (state->log_for_dirtybit == NULL) { 581 state->log_for_dirtybit = physmap; 582 } else if (state->log_for_dirtybit != physmap) { 583 /* Only one range for dirty bitmap can be tracked. */ 584 return; 585 } 586 587 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 588 npages, bitmap); 589 if (rc < 0) { 590 #ifndef ENODATA 591 #define ENODATA ENOENT 592 #endif 593 if (errno == ENODATA) { 594 memory_region_set_dirty(framebuffer, 0, size); 595 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 596 ", 0x" TARGET_FMT_plx "): %s\n", 597 start_addr, start_addr + size, strerror(errno)); 598 } 599 return; 600 } 601 602 for (i = 0; i < ARRAY_SIZE(bitmap); i++) { 603 unsigned long map = bitmap[i]; 604 while (map != 0) { 605 j = ctzl(map); 606 map &= ~(1ul << j); 607 memory_region_set_dirty(framebuffer, 608 (i * width + j) * TARGET_PAGE_SIZE, 609 TARGET_PAGE_SIZE); 610 }; 611 } 612 } 613 614 static void xen_log_start(MemoryListener *listener, 615 MemoryRegionSection *section, 616 int old, int new) 617 { 618 XenIOState *state = container_of(listener, XenIOState, memory_listener); 619 620 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 621 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 622 int128_get64(section->size)); 623 } 624 } 625 626 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 627 int old, int new) 628 { 629 XenIOState *state = container_of(listener, XenIOState, memory_listener); 630 631 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 632 state->log_for_dirtybit = NULL; 633 /* Disable dirty bit tracking */ 634 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 635 } 636 } 637 638 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 639 { 640 XenIOState *state = container_of(listener, XenIOState, memory_listener); 641 642 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 643 int128_get64(section->size)); 644 } 645 646 static void xen_log_global_start(MemoryListener *listener) 647 { 648 if (xen_enabled()) { 649 xen_in_migration = true; 650 } 651 } 652 653 static void xen_log_global_stop(MemoryListener *listener) 654 { 655 xen_in_migration = false; 656 } 657 658 static MemoryListener xen_memory_listener = { 659 .region_add = xen_region_add, 660 .region_del = xen_region_del, 661 .log_start = xen_log_start, 662 .log_stop = xen_log_stop, 663 .log_sync = xen_log_sync, 664 .log_global_start = xen_log_global_start, 665 .log_global_stop = xen_log_global_stop, 666 .priority = 10, 667 }; 668 669 static MemoryListener xen_io_listener = { 670 .region_add = xen_io_add, 671 .region_del = xen_io_del, 672 .priority = 10, 673 }; 674 675 static DeviceListener xen_device_listener = { 676 .realize = xen_device_realize, 677 .unrealize = xen_device_unrealize, 678 }; 679 680 /* get the ioreq packets from share mem */ 681 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 682 { 683 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 684 685 if (req->state != STATE_IOREQ_READY) { 686 DPRINTF("I/O request not ready: " 687 "%x, ptr: %x, port: %"PRIx64", " 688 "data: %"PRIx64", count: %u, size: %u\n", 689 req->state, req->data_is_ptr, req->addr, 690 req->data, req->count, req->size); 691 return NULL; 692 } 693 694 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 695 696 req->state = STATE_IOREQ_INPROCESS; 697 return req; 698 } 699 700 /* use poll to get the port notification */ 701 /* ioreq_vec--out,the */ 702 /* retval--the number of ioreq packet */ 703 static ioreq_t *cpu_get_ioreq(XenIOState *state) 704 { 705 int i; 706 evtchn_port_t port; 707 708 port = xenevtchn_pending(state->xce_handle); 709 if (port == state->bufioreq_local_port) { 710 timer_mod(state->buffered_io_timer, 711 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 712 return NULL; 713 } 714 715 if (port != -1) { 716 for (i = 0; i < max_cpus; i++) { 717 if (state->ioreq_local_port[i] == port) { 718 break; 719 } 720 } 721 722 if (i == max_cpus) { 723 hw_error("Fatal error while trying to get io event!\n"); 724 } 725 726 /* unmask the wanted port again */ 727 xenevtchn_unmask(state->xce_handle, port); 728 729 /* get the io packet from shared memory */ 730 state->send_vcpu = i; 731 return cpu_get_ioreq_from_shared_memory(state, i); 732 } 733 734 /* read error or read nothing */ 735 return NULL; 736 } 737 738 static uint32_t do_inp(uint32_t addr, unsigned long size) 739 { 740 switch (size) { 741 case 1: 742 return cpu_inb(addr); 743 case 2: 744 return cpu_inw(addr); 745 case 4: 746 return cpu_inl(addr); 747 default: 748 hw_error("inp: bad size: %04x %lx", addr, size); 749 } 750 } 751 752 static void do_outp(uint32_t addr, 753 unsigned long size, uint32_t val) 754 { 755 switch (size) { 756 case 1: 757 return cpu_outb(addr, val); 758 case 2: 759 return cpu_outw(addr, val); 760 case 4: 761 return cpu_outl(addr, val); 762 default: 763 hw_error("outp: bad size: %04x %lx", addr, size); 764 } 765 } 766 767 /* 768 * Helper functions which read/write an object from/to physical guest 769 * memory, as part of the implementation of an ioreq. 770 * 771 * Equivalent to 772 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 773 * val, req->size, 0/1) 774 * except without the integer overflow problems. 775 */ 776 static void rw_phys_req_item(hwaddr addr, 777 ioreq_t *req, uint32_t i, void *val, int rw) 778 { 779 /* Do everything unsigned so overflow just results in a truncated result 780 * and accesses to undesired parts of guest memory, which is up 781 * to the guest */ 782 hwaddr offset = (hwaddr)req->size * i; 783 if (req->df) { 784 addr -= offset; 785 } else { 786 addr += offset; 787 } 788 cpu_physical_memory_rw(addr, val, req->size, rw); 789 } 790 791 static inline void read_phys_req_item(hwaddr addr, 792 ioreq_t *req, uint32_t i, void *val) 793 { 794 rw_phys_req_item(addr, req, i, val, 0); 795 } 796 static inline void write_phys_req_item(hwaddr addr, 797 ioreq_t *req, uint32_t i, void *val) 798 { 799 rw_phys_req_item(addr, req, i, val, 1); 800 } 801 802 803 static void cpu_ioreq_pio(ioreq_t *req) 804 { 805 uint32_t i; 806 807 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 808 req->data, req->count, req->size); 809 810 if (req->size > sizeof(uint32_t)) { 811 hw_error("PIO: bad size (%u)", req->size); 812 } 813 814 if (req->dir == IOREQ_READ) { 815 if (!req->data_is_ptr) { 816 req->data = do_inp(req->addr, req->size); 817 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 818 req->size); 819 } else { 820 uint32_t tmp; 821 822 for (i = 0; i < req->count; i++) { 823 tmp = do_inp(req->addr, req->size); 824 write_phys_req_item(req->data, req, i, &tmp); 825 } 826 } 827 } else if (req->dir == IOREQ_WRITE) { 828 if (!req->data_is_ptr) { 829 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 830 req->size); 831 do_outp(req->addr, req->size, req->data); 832 } else { 833 for (i = 0; i < req->count; i++) { 834 uint32_t tmp = 0; 835 836 read_phys_req_item(req->data, req, i, &tmp); 837 do_outp(req->addr, req->size, tmp); 838 } 839 } 840 } 841 } 842 843 static void cpu_ioreq_move(ioreq_t *req) 844 { 845 uint32_t i; 846 847 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 848 req->data, req->count, req->size); 849 850 if (req->size > sizeof(req->data)) { 851 hw_error("MMIO: bad size (%u)", req->size); 852 } 853 854 if (!req->data_is_ptr) { 855 if (req->dir == IOREQ_READ) { 856 for (i = 0; i < req->count; i++) { 857 read_phys_req_item(req->addr, req, i, &req->data); 858 } 859 } else if (req->dir == IOREQ_WRITE) { 860 for (i = 0; i < req->count; i++) { 861 write_phys_req_item(req->addr, req, i, &req->data); 862 } 863 } 864 } else { 865 uint64_t tmp; 866 867 if (req->dir == IOREQ_READ) { 868 for (i = 0; i < req->count; i++) { 869 read_phys_req_item(req->addr, req, i, &tmp); 870 write_phys_req_item(req->data, req, i, &tmp); 871 } 872 } else if (req->dir == IOREQ_WRITE) { 873 for (i = 0; i < req->count; i++) { 874 read_phys_req_item(req->data, req, i, &tmp); 875 write_phys_req_item(req->addr, req, i, &tmp); 876 } 877 } 878 } 879 } 880 881 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 882 { 883 X86CPU *cpu; 884 CPUX86State *env; 885 886 cpu = X86_CPU(current_cpu); 887 env = &cpu->env; 888 env->regs[R_EAX] = req->data; 889 env->regs[R_EBX] = vmport_regs->ebx; 890 env->regs[R_ECX] = vmport_regs->ecx; 891 env->regs[R_EDX] = vmport_regs->edx; 892 env->regs[R_ESI] = vmport_regs->esi; 893 env->regs[R_EDI] = vmport_regs->edi; 894 } 895 896 static void regs_from_cpu(vmware_regs_t *vmport_regs) 897 { 898 X86CPU *cpu = X86_CPU(current_cpu); 899 CPUX86State *env = &cpu->env; 900 901 vmport_regs->ebx = env->regs[R_EBX]; 902 vmport_regs->ecx = env->regs[R_ECX]; 903 vmport_regs->edx = env->regs[R_EDX]; 904 vmport_regs->esi = env->regs[R_ESI]; 905 vmport_regs->edi = env->regs[R_EDI]; 906 } 907 908 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 909 { 910 vmware_regs_t *vmport_regs; 911 912 assert(state->shared_vmport_page); 913 vmport_regs = 914 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 915 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 916 917 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 918 regs_to_cpu(vmport_regs, req); 919 cpu_ioreq_pio(req); 920 regs_from_cpu(vmport_regs); 921 current_cpu = NULL; 922 } 923 924 static void handle_ioreq(XenIOState *state, ioreq_t *req) 925 { 926 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 927 req->addr, req->data, req->count, req->size); 928 929 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 930 (req->size < sizeof (target_ulong))) { 931 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 932 } 933 934 if (req->dir == IOREQ_WRITE) 935 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 936 req->addr, req->data, req->count, req->size); 937 938 switch (req->type) { 939 case IOREQ_TYPE_PIO: 940 cpu_ioreq_pio(req); 941 break; 942 case IOREQ_TYPE_COPY: 943 cpu_ioreq_move(req); 944 break; 945 case IOREQ_TYPE_VMWARE_PORT: 946 handle_vmport_ioreq(state, req); 947 break; 948 case IOREQ_TYPE_TIMEOFFSET: 949 break; 950 case IOREQ_TYPE_INVALIDATE: 951 xen_invalidate_map_cache(); 952 break; 953 case IOREQ_TYPE_PCI_CONFIG: { 954 uint32_t sbdf = req->addr >> 32; 955 uint32_t val; 956 957 /* Fake a write to port 0xCF8 so that 958 * the config space access will target the 959 * correct device model. 960 */ 961 val = (1u << 31) | 962 ((req->addr & 0x0f00) << 16) | 963 ((sbdf & 0xffff) << 8) | 964 (req->addr & 0xfc); 965 do_outp(0xcf8, 4, val); 966 967 /* Now issue the config space access via 968 * port 0xCFC 969 */ 970 req->addr = 0xcfc | (req->addr & 0x03); 971 cpu_ioreq_pio(req); 972 break; 973 } 974 default: 975 hw_error("Invalid ioreq type 0x%x\n", req->type); 976 } 977 if (req->dir == IOREQ_READ) { 978 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 979 req->addr, req->data, req->count, req->size); 980 } 981 } 982 983 static int handle_buffered_iopage(XenIOState *state) 984 { 985 buffered_iopage_t *buf_page = state->buffered_io_page; 986 buf_ioreq_t *buf_req = NULL; 987 ioreq_t req; 988 int qw; 989 990 if (!buf_page) { 991 return 0; 992 } 993 994 memset(&req, 0x00, sizeof(req)); 995 req.state = STATE_IOREQ_READY; 996 req.count = 1; 997 req.dir = IOREQ_WRITE; 998 999 for (;;) { 1000 uint32_t rdptr = buf_page->read_pointer, wrptr; 1001 1002 xen_rmb(); 1003 wrptr = buf_page->write_pointer; 1004 xen_rmb(); 1005 if (rdptr != buf_page->read_pointer) { 1006 continue; 1007 } 1008 if (rdptr == wrptr) { 1009 break; 1010 } 1011 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1012 req.size = 1U << buf_req->size; 1013 req.addr = buf_req->addr; 1014 req.data = buf_req->data; 1015 req.type = buf_req->type; 1016 xen_rmb(); 1017 qw = (req.size == 8); 1018 if (qw) { 1019 if (rdptr + 1 == wrptr) { 1020 hw_error("Incomplete quad word buffered ioreq"); 1021 } 1022 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1023 IOREQ_BUFFER_SLOT_NUM]; 1024 req.data |= ((uint64_t)buf_req->data) << 32; 1025 xen_rmb(); 1026 } 1027 1028 handle_ioreq(state, &req); 1029 1030 /* Only req.data may get updated by handle_ioreq(), albeit even that 1031 * should not happen as such data would never make it to the guest (we 1032 * can only usefully see writes here after all). 1033 */ 1034 assert(req.state == STATE_IOREQ_READY); 1035 assert(req.count == 1); 1036 assert(req.dir == IOREQ_WRITE); 1037 assert(!req.data_is_ptr); 1038 1039 atomic_add(&buf_page->read_pointer, qw + 1); 1040 } 1041 1042 return req.count; 1043 } 1044 1045 static void handle_buffered_io(void *opaque) 1046 { 1047 XenIOState *state = opaque; 1048 1049 if (handle_buffered_iopage(state)) { 1050 timer_mod(state->buffered_io_timer, 1051 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1052 } else { 1053 timer_del(state->buffered_io_timer); 1054 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1055 } 1056 } 1057 1058 static void cpu_handle_ioreq(void *opaque) 1059 { 1060 XenIOState *state = opaque; 1061 ioreq_t *req = cpu_get_ioreq(state); 1062 1063 handle_buffered_iopage(state); 1064 if (req) { 1065 ioreq_t copy = *req; 1066 1067 xen_rmb(); 1068 handle_ioreq(state, ©); 1069 req->data = copy.data; 1070 1071 if (req->state != STATE_IOREQ_INPROCESS) { 1072 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1073 "%x, ptr: %x, port: %"PRIx64", " 1074 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1075 req->state, req->data_is_ptr, req->addr, 1076 req->data, req->count, req->size, req->type); 1077 destroy_hvm_domain(false); 1078 return; 1079 } 1080 1081 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1082 1083 /* 1084 * We do this before we send the response so that the tools 1085 * have the opportunity to pick up on the reset before the 1086 * guest resumes and does a hlt with interrupts disabled which 1087 * causes Xen to powerdown the domain. 1088 */ 1089 if (runstate_is_running()) { 1090 ShutdownCause request; 1091 1092 if (qemu_shutdown_requested_get()) { 1093 destroy_hvm_domain(false); 1094 } 1095 request = qemu_reset_requested_get(); 1096 if (request) { 1097 qemu_system_reset(request); 1098 destroy_hvm_domain(true); 1099 } 1100 } 1101 1102 req->state = STATE_IORESP_READY; 1103 xenevtchn_notify(state->xce_handle, 1104 state->ioreq_local_port[state->send_vcpu]); 1105 } 1106 } 1107 1108 static void xen_main_loop_prepare(XenIOState *state) 1109 { 1110 int evtchn_fd = -1; 1111 1112 if (state->xce_handle != NULL) { 1113 evtchn_fd = xenevtchn_fd(state->xce_handle); 1114 } 1115 1116 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1117 state); 1118 1119 if (evtchn_fd != -1) { 1120 CPUState *cpu_state; 1121 1122 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1123 CPU_FOREACH(cpu_state) { 1124 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1125 __func__, cpu_state->cpu_index, cpu_state); 1126 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1127 } 1128 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1129 } 1130 } 1131 1132 1133 static void xen_hvm_change_state_handler(void *opaque, int running, 1134 RunState rstate) 1135 { 1136 XenIOState *state = opaque; 1137 1138 if (running) { 1139 xen_main_loop_prepare(state); 1140 } 1141 1142 xen_set_ioreq_server_state(xen_domid, 1143 state->ioservid, 1144 (rstate == RUN_STATE_RUNNING)); 1145 } 1146 1147 static void xen_exit_notifier(Notifier *n, void *data) 1148 { 1149 XenIOState *state = container_of(n, XenIOState, exit); 1150 1151 xenevtchn_close(state->xce_handle); 1152 xs_daemon_close(state->xenstore); 1153 } 1154 1155 static void xen_read_physmap(XenIOState *state) 1156 { 1157 XenPhysmap *physmap = NULL; 1158 unsigned int len, num, i; 1159 char path[80], *value = NULL; 1160 char **entries = NULL; 1161 1162 snprintf(path, sizeof(path), 1163 "/local/domain/0/device-model/%d/physmap", xen_domid); 1164 entries = xs_directory(state->xenstore, 0, path, &num); 1165 if (entries == NULL) 1166 return; 1167 1168 for (i = 0; i < num; i++) { 1169 physmap = g_malloc(sizeof (XenPhysmap)); 1170 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1171 snprintf(path, sizeof(path), 1172 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1173 xen_domid, entries[i]); 1174 value = xs_read(state->xenstore, 0, path, &len); 1175 if (value == NULL) { 1176 g_free(physmap); 1177 continue; 1178 } 1179 physmap->start_addr = strtoull(value, NULL, 16); 1180 free(value); 1181 1182 snprintf(path, sizeof(path), 1183 "/local/domain/0/device-model/%d/physmap/%s/size", 1184 xen_domid, entries[i]); 1185 value = xs_read(state->xenstore, 0, path, &len); 1186 if (value == NULL) { 1187 g_free(physmap); 1188 continue; 1189 } 1190 physmap->size = strtoull(value, NULL, 16); 1191 free(value); 1192 1193 snprintf(path, sizeof(path), 1194 "/local/domain/0/device-model/%d/physmap/%s/name", 1195 xen_domid, entries[i]); 1196 physmap->name = xs_read(state->xenstore, 0, path, &len); 1197 1198 QLIST_INSERT_HEAD(&state->physmap, physmap, list); 1199 } 1200 free(entries); 1201 } 1202 1203 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1204 { 1205 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1206 } 1207 1208 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1209 { 1210 int i, rc; 1211 xen_pfn_t ioreq_pfn; 1212 xen_pfn_t bufioreq_pfn; 1213 evtchn_port_t bufioreq_evtchn; 1214 XenIOState *state; 1215 1216 state = g_malloc0(sizeof (XenIOState)); 1217 1218 state->xce_handle = xenevtchn_open(NULL, 0); 1219 if (state->xce_handle == NULL) { 1220 perror("xen: event channel open"); 1221 goto err; 1222 } 1223 1224 state->xenstore = xs_daemon_open(); 1225 if (state->xenstore == NULL) { 1226 perror("xen: xenstore open"); 1227 goto err; 1228 } 1229 1230 if (xen_domid_restrict) { 1231 rc = xen_restrict(xen_domid); 1232 if (rc < 0) { 1233 error_report("failed to restrict: error %d", errno); 1234 goto err; 1235 } 1236 } 1237 1238 xen_create_ioreq_server(xen_domid, &state->ioservid); 1239 1240 state->exit.notify = xen_exit_notifier; 1241 qemu_add_exit_notifier(&state->exit); 1242 1243 state->suspend.notify = xen_suspend_notifier; 1244 qemu_register_suspend_notifier(&state->suspend); 1245 1246 state->wakeup.notify = xen_wakeup_notifier; 1247 qemu_register_wakeup_notifier(&state->wakeup); 1248 1249 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1250 &ioreq_pfn, &bufioreq_pfn, 1251 &bufioreq_evtchn); 1252 if (rc < 0) { 1253 error_report("failed to get ioreq server info: error %d handle=%p", 1254 errno, xen_xc); 1255 goto err; 1256 } 1257 1258 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1259 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1260 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1261 1262 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1263 PROT_READ|PROT_WRITE, 1264 1, &ioreq_pfn, NULL); 1265 if (state->shared_page == NULL) { 1266 error_report("map shared IO page returned error %d handle=%p", 1267 errno, xen_xc); 1268 goto err; 1269 } 1270 1271 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1272 if (!rc) { 1273 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1274 state->shared_vmport_page = 1275 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1276 1, &ioreq_pfn, NULL); 1277 if (state->shared_vmport_page == NULL) { 1278 error_report("map shared vmport IO page returned error %d handle=%p", 1279 errno, xen_xc); 1280 goto err; 1281 } 1282 } else if (rc != -ENOSYS) { 1283 error_report("get vmport regs pfn returned error %d, rc=%d", 1284 errno, rc); 1285 goto err; 1286 } 1287 1288 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1289 PROT_READ|PROT_WRITE, 1290 1, &bufioreq_pfn, NULL); 1291 if (state->buffered_io_page == NULL) { 1292 error_report("map buffered IO page returned error %d", errno); 1293 goto err; 1294 } 1295 1296 /* Note: cpus is empty at this point in init */ 1297 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1298 1299 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1300 if (rc < 0) { 1301 error_report("failed to enable ioreq server info: error %d handle=%p", 1302 errno, xen_xc); 1303 goto err; 1304 } 1305 1306 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1307 1308 /* FIXME: how about if we overflow the page here? */ 1309 for (i = 0; i < max_cpus; i++) { 1310 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1311 xen_vcpu_eport(state->shared_page, i)); 1312 if (rc == -1) { 1313 error_report("shared evtchn %d bind error %d", i, errno); 1314 goto err; 1315 } 1316 state->ioreq_local_port[i] = rc; 1317 } 1318 1319 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1320 bufioreq_evtchn); 1321 if (rc == -1) { 1322 error_report("buffered evtchn bind error %d", errno); 1323 goto err; 1324 } 1325 state->bufioreq_local_port = rc; 1326 1327 /* Init RAM management */ 1328 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1329 xen_ram_init(pcms, ram_size, ram_memory); 1330 1331 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1332 1333 state->memory_listener = xen_memory_listener; 1334 QLIST_INIT(&state->physmap); 1335 memory_listener_register(&state->memory_listener, &address_space_memory); 1336 state->log_for_dirtybit = NULL; 1337 1338 state->io_listener = xen_io_listener; 1339 memory_listener_register(&state->io_listener, &address_space_io); 1340 1341 state->device_listener = xen_device_listener; 1342 device_listener_register(&state->device_listener); 1343 1344 /* Initialize backend core & drivers */ 1345 if (xen_be_init() != 0) { 1346 error_report("xen backend core setup failed"); 1347 goto err; 1348 } 1349 xen_be_register_common(); 1350 xen_read_physmap(state); 1351 1352 /* Disable ACPI build because Xen handles it */ 1353 pcms->acpi_build_enabled = false; 1354 1355 return; 1356 1357 err: 1358 error_report("xen hardware virtual machine initialisation failed"); 1359 exit(1); 1360 } 1361 1362 void destroy_hvm_domain(bool reboot) 1363 { 1364 xc_interface *xc_handle; 1365 int sts; 1366 1367 xc_handle = xc_interface_open(0, 0, 0); 1368 if (xc_handle == NULL) { 1369 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1370 } else { 1371 sts = xc_domain_shutdown(xc_handle, xen_domid, 1372 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff); 1373 if (sts != 0) { 1374 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1375 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1376 sts, strerror(errno)); 1377 } else { 1378 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1379 reboot ? "reboot" : "poweroff"); 1380 } 1381 xc_interface_close(xc_handle); 1382 } 1383 } 1384 1385 void xen_register_framebuffer(MemoryRegion *mr) 1386 { 1387 framebuffer = mr; 1388 } 1389 1390 void xen_shutdown_fatal_error(const char *fmt, ...) 1391 { 1392 va_list ap; 1393 1394 va_start(ap, fmt); 1395 vfprintf(stderr, fmt, ap); 1396 va_end(ap); 1397 fprintf(stderr, "Will destroy the domain.\n"); 1398 /* destroy the domain */ 1399 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1400 } 1401 1402 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1403 { 1404 if (unlikely(xen_in_migration)) { 1405 int rc; 1406 ram_addr_t start_pfn, nb_pages; 1407 1408 if (length == 0) { 1409 length = TARGET_PAGE_SIZE; 1410 } 1411 start_pfn = start >> TARGET_PAGE_BITS; 1412 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1413 - start_pfn; 1414 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1415 if (rc) { 1416 fprintf(stderr, 1417 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1418 __func__, start, nb_pages, rc, strerror(-rc)); 1419 } 1420 } 1421 } 1422 1423 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1424 { 1425 if (enable) { 1426 memory_global_dirty_log_start(); 1427 } else { 1428 memory_global_dirty_log_stop(); 1429 } 1430 } 1431