1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/i386/pc.h" 16 #include "hw/i386/apic-msidef.h" 17 #include "hw/xen/xen_common.h" 18 #include "hw/xen/xen_backend.h" 19 #include "qmp-commands.h" 20 21 #include "sysemu/char.h" 22 #include "qemu/error-report.h" 23 #include "qemu/range.h" 24 #include "sysemu/xen-mapcache.h" 25 #include "trace.h" 26 #include "exec/address-spaces.h" 27 28 #include <xen/hvm/ioreq.h> 29 #include <xen/hvm/params.h> 30 #include <xen/hvm/e820.h> 31 32 //#define DEBUG_XEN_HVM 33 34 #ifdef DEBUG_XEN_HVM 35 #define DPRINTF(fmt, ...) \ 36 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 37 #else 38 #define DPRINTF(fmt, ...) \ 39 do { } while (0) 40 #endif 41 42 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 43 static MemoryRegion *framebuffer; 44 static bool xen_in_migration; 45 46 /* Compatibility with older version */ 47 48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 49 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 50 * needs to be included before this block and hw/xen/xen_common.h needs to 51 * be included before xen/hvm/ioreq.h 52 */ 53 #ifndef IOREQ_TYPE_VMWARE_PORT 54 #define IOREQ_TYPE_VMWARE_PORT 3 55 struct vmware_regs { 56 uint32_t esi; 57 uint32_t edi; 58 uint32_t ebx; 59 uint32_t ecx; 60 uint32_t edx; 61 }; 62 typedef struct vmware_regs vmware_regs_t; 63 64 struct shared_vmport_iopage { 65 struct vmware_regs vcpu_vmport_regs[1]; 66 }; 67 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 68 #endif 69 70 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 71 { 72 return shared_page->vcpu_ioreq[i].vp_eport; 73 } 74 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 75 { 76 return &shared_page->vcpu_ioreq[vcpu]; 77 } 78 79 #define BUFFER_IO_MAX_DELAY 100 80 81 typedef struct XenPhysmap { 82 hwaddr start_addr; 83 ram_addr_t size; 84 const char *name; 85 hwaddr phys_offset; 86 87 QLIST_ENTRY(XenPhysmap) list; 88 } XenPhysmap; 89 90 typedef struct XenIOState { 91 ioservid_t ioservid; 92 shared_iopage_t *shared_page; 93 shared_vmport_iopage_t *shared_vmport_page; 94 buffered_iopage_t *buffered_io_page; 95 QEMUTimer *buffered_io_timer; 96 CPUState **cpu_by_vcpu_id; 97 /* the evtchn port for polling the notification, */ 98 evtchn_port_t *ioreq_local_port; 99 /* evtchn local port for buffered io */ 100 evtchn_port_t bufioreq_local_port; 101 /* the evtchn fd for polling */ 102 xenevtchn_handle *xce_handle; 103 /* which vcpu we are serving */ 104 int send_vcpu; 105 106 struct xs_handle *xenstore; 107 MemoryListener memory_listener; 108 MemoryListener io_listener; 109 DeviceListener device_listener; 110 QLIST_HEAD(, XenPhysmap) physmap; 111 hwaddr free_phys_offset; 112 const XenPhysmap *log_for_dirtybit; 113 114 Notifier exit; 115 Notifier suspend; 116 Notifier wakeup; 117 } XenIOState; 118 119 /* Xen specific function for piix pci */ 120 121 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 122 { 123 return irq_num + ((pci_dev->devfn >> 3) << 2); 124 } 125 126 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 127 { 128 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 129 irq_num & 3, level); 130 } 131 132 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 133 { 134 int i; 135 136 /* Scan for updates to PCI link routes (0x60-0x63). */ 137 for (i = 0; i < len; i++) { 138 uint8_t v = (val >> (8 * i)) & 0xff; 139 if (v & 0x80) { 140 v = 0; 141 } 142 v &= 0xf; 143 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 144 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 145 } 146 } 147 } 148 149 int xen_is_pirq_msi(uint32_t msi_data) 150 { 151 /* If vector is 0, the msi is remapped into a pirq, passed as 152 * dest_id. 153 */ 154 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 155 } 156 157 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 158 { 159 xen_inject_msi(xen_domid, addr, data); 160 } 161 162 static void xen_suspend_notifier(Notifier *notifier, void *data) 163 { 164 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 165 } 166 167 /* Xen Interrupt Controller */ 168 169 static void xen_set_irq(void *opaque, int irq, int level) 170 { 171 xen_set_isa_irq_level(xen_domid, irq, level); 172 } 173 174 qemu_irq *xen_interrupt_controller_init(void) 175 { 176 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 177 } 178 179 /* Memory Ops */ 180 181 static void xen_ram_init(PCMachineState *pcms, 182 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 183 { 184 MemoryRegion *sysmem = get_system_memory(); 185 ram_addr_t block_len; 186 uint64_t user_lowmem = object_property_get_int(qdev_get_machine(), 187 PC_MACHINE_MAX_RAM_BELOW_4G, 188 &error_abort); 189 190 /* Handle the machine opt max-ram-below-4g. It is basically doing 191 * min(xen limit, user limit). 192 */ 193 if (!user_lowmem) { 194 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 195 } 196 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 197 user_lowmem = HVM_BELOW_4G_RAM_END; 198 } 199 200 if (ram_size >= user_lowmem) { 201 pcms->above_4g_mem_size = ram_size - user_lowmem; 202 pcms->below_4g_mem_size = user_lowmem; 203 } else { 204 pcms->above_4g_mem_size = 0; 205 pcms->below_4g_mem_size = ram_size; 206 } 207 if (!pcms->above_4g_mem_size) { 208 block_len = ram_size; 209 } else { 210 /* 211 * Xen does not allocate the memory continuously, it keeps a 212 * hole of the size computed above or passed in. 213 */ 214 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 215 } 216 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 217 &error_fatal); 218 *ram_memory_p = &ram_memory; 219 vmstate_register_ram_global(&ram_memory); 220 221 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 222 &ram_memory, 0, 0xa0000); 223 memory_region_add_subregion(sysmem, 0, &ram_640k); 224 /* Skip of the VGA IO memory space, it will be registered later by the VGA 225 * emulated device. 226 * 227 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 228 * the Options ROM, so it is registered here as RAM. 229 */ 230 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 231 &ram_memory, 0xc0000, 232 pcms->below_4g_mem_size - 0xc0000); 233 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 234 if (pcms->above_4g_mem_size > 0) { 235 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 236 &ram_memory, 0x100000000ULL, 237 pcms->above_4g_mem_size); 238 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 239 } 240 } 241 242 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 243 Error **errp) 244 { 245 unsigned long nr_pfn; 246 xen_pfn_t *pfn_list; 247 int i; 248 249 if (runstate_check(RUN_STATE_INMIGRATE)) { 250 /* RAM already populated in Xen */ 251 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 252 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 253 __func__, size, ram_addr); 254 return; 255 } 256 257 if (mr == &ram_memory) { 258 return; 259 } 260 261 trace_xen_ram_alloc(ram_addr, size); 262 263 nr_pfn = size >> TARGET_PAGE_BITS; 264 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 265 266 for (i = 0; i < nr_pfn; i++) { 267 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 268 } 269 270 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 271 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 272 ram_addr); 273 } 274 275 g_free(pfn_list); 276 } 277 278 static XenPhysmap *get_physmapping(XenIOState *state, 279 hwaddr start_addr, ram_addr_t size) 280 { 281 XenPhysmap *physmap = NULL; 282 283 start_addr &= TARGET_PAGE_MASK; 284 285 QLIST_FOREACH(physmap, &state->physmap, list) { 286 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 287 return physmap; 288 } 289 } 290 return NULL; 291 } 292 293 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr, 294 ram_addr_t size, void *opaque) 295 { 296 hwaddr addr = start_addr & TARGET_PAGE_MASK; 297 XenIOState *xen_io_state = opaque; 298 XenPhysmap *physmap = NULL; 299 300 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) { 301 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 302 return physmap->start_addr; 303 } 304 } 305 306 return start_addr; 307 } 308 309 static int xen_add_to_physmap(XenIOState *state, 310 hwaddr start_addr, 311 ram_addr_t size, 312 MemoryRegion *mr, 313 hwaddr offset_within_region) 314 { 315 unsigned long i = 0; 316 int rc = 0; 317 XenPhysmap *physmap = NULL; 318 hwaddr pfn, start_gpfn; 319 hwaddr phys_offset = memory_region_get_ram_addr(mr); 320 char path[80], value[17]; 321 const char *mr_name; 322 323 if (get_physmapping(state, start_addr, size)) { 324 return 0; 325 } 326 if (size <= 0) { 327 return -1; 328 } 329 330 /* Xen can only handle a single dirty log region for now and we want 331 * the linear framebuffer to be that region. 332 * Avoid tracking any regions that is not videoram and avoid tracking 333 * the legacy vga region. */ 334 if (mr == framebuffer && start_addr > 0xbffff) { 335 goto go_physmap; 336 } 337 return -1; 338 339 go_physmap: 340 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 341 start_addr, start_addr + size); 342 343 pfn = phys_offset >> TARGET_PAGE_BITS; 344 start_gpfn = start_addr >> TARGET_PAGE_BITS; 345 for (i = 0; i < size >> TARGET_PAGE_BITS; i++) { 346 unsigned long idx = pfn + i; 347 xen_pfn_t gpfn = start_gpfn + i; 348 349 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); 350 if (rc) { 351 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %" 352 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); 353 return -rc; 354 } 355 } 356 357 mr_name = memory_region_name(mr); 358 359 physmap = g_malloc(sizeof (XenPhysmap)); 360 361 physmap->start_addr = start_addr; 362 physmap->size = size; 363 physmap->name = mr_name; 364 physmap->phys_offset = phys_offset; 365 366 QLIST_INSERT_HEAD(&state->physmap, physmap, list); 367 368 xc_domain_pin_memory_cacheattr(xen_xc, xen_domid, 369 start_addr >> TARGET_PAGE_BITS, 370 (start_addr + size - 1) >> TARGET_PAGE_BITS, 371 XEN_DOMCTL_MEM_CACHEATTR_WB); 372 373 snprintf(path, sizeof(path), 374 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 375 xen_domid, (uint64_t)phys_offset); 376 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr); 377 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 378 return -1; 379 } 380 snprintf(path, sizeof(path), 381 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 382 xen_domid, (uint64_t)phys_offset); 383 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size); 384 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 385 return -1; 386 } 387 if (mr_name) { 388 snprintf(path, sizeof(path), 389 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 390 xen_domid, (uint64_t)phys_offset); 391 if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) { 392 return -1; 393 } 394 } 395 396 return 0; 397 } 398 399 static int xen_remove_from_physmap(XenIOState *state, 400 hwaddr start_addr, 401 ram_addr_t size) 402 { 403 unsigned long i = 0; 404 int rc = 0; 405 XenPhysmap *physmap = NULL; 406 hwaddr phys_offset = 0; 407 408 physmap = get_physmapping(state, start_addr, size); 409 if (physmap == NULL) { 410 return -1; 411 } 412 413 phys_offset = physmap->phys_offset; 414 size = physmap->size; 415 416 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 417 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 418 419 size >>= TARGET_PAGE_BITS; 420 start_addr >>= TARGET_PAGE_BITS; 421 phys_offset >>= TARGET_PAGE_BITS; 422 for (i = 0; i < size; i++) { 423 xen_pfn_t idx = start_addr + i; 424 xen_pfn_t gpfn = phys_offset + i; 425 426 rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn); 427 if (rc) { 428 fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %" 429 PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno); 430 return -rc; 431 } 432 } 433 434 QLIST_REMOVE(physmap, list); 435 if (state->log_for_dirtybit == physmap) { 436 state->log_for_dirtybit = NULL; 437 } 438 g_free(physmap); 439 440 return 0; 441 } 442 443 static void xen_set_memory(struct MemoryListener *listener, 444 MemoryRegionSection *section, 445 bool add) 446 { 447 XenIOState *state = container_of(listener, XenIOState, memory_listener); 448 hwaddr start_addr = section->offset_within_address_space; 449 ram_addr_t size = int128_get64(section->size); 450 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 451 hvmmem_type_t mem_type; 452 453 if (section->mr == &ram_memory) { 454 return; 455 } else { 456 if (add) { 457 xen_map_memory_section(xen_domid, state->ioservid, 458 section); 459 } else { 460 xen_unmap_memory_section(xen_domid, state->ioservid, 461 section); 462 } 463 } 464 465 if (!memory_region_is_ram(section->mr)) { 466 return; 467 } 468 469 if (log_dirty != add) { 470 return; 471 } 472 473 trace_xen_client_set_memory(start_addr, size, log_dirty); 474 475 start_addr &= TARGET_PAGE_MASK; 476 size = TARGET_PAGE_ALIGN(size); 477 478 if (add) { 479 if (!memory_region_is_rom(section->mr)) { 480 xen_add_to_physmap(state, start_addr, size, 481 section->mr, section->offset_within_region); 482 } else { 483 mem_type = HVMMEM_ram_ro; 484 if (xen_set_mem_type(xen_domid, mem_type, 485 start_addr >> TARGET_PAGE_BITS, 486 size >> TARGET_PAGE_BITS)) { 487 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 488 start_addr); 489 } 490 } 491 } else { 492 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 493 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 494 } 495 } 496 } 497 498 static void xen_region_add(MemoryListener *listener, 499 MemoryRegionSection *section) 500 { 501 memory_region_ref(section->mr); 502 xen_set_memory(listener, section, true); 503 } 504 505 static void xen_region_del(MemoryListener *listener, 506 MemoryRegionSection *section) 507 { 508 xen_set_memory(listener, section, false); 509 memory_region_unref(section->mr); 510 } 511 512 static void xen_io_add(MemoryListener *listener, 513 MemoryRegionSection *section) 514 { 515 XenIOState *state = container_of(listener, XenIOState, io_listener); 516 MemoryRegion *mr = section->mr; 517 518 if (mr->ops == &unassigned_io_ops) { 519 return; 520 } 521 522 memory_region_ref(mr); 523 524 xen_map_io_section(xen_domid, state->ioservid, section); 525 } 526 527 static void xen_io_del(MemoryListener *listener, 528 MemoryRegionSection *section) 529 { 530 XenIOState *state = container_of(listener, XenIOState, io_listener); 531 MemoryRegion *mr = section->mr; 532 533 if (mr->ops == &unassigned_io_ops) { 534 return; 535 } 536 537 xen_unmap_io_section(xen_domid, state->ioservid, section); 538 539 memory_region_unref(mr); 540 } 541 542 static void xen_device_realize(DeviceListener *listener, 543 DeviceState *dev) 544 { 545 XenIOState *state = container_of(listener, XenIOState, device_listener); 546 547 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 548 PCIDevice *pci_dev = PCI_DEVICE(dev); 549 550 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 551 } 552 } 553 554 static void xen_device_unrealize(DeviceListener *listener, 555 DeviceState *dev) 556 { 557 XenIOState *state = container_of(listener, XenIOState, device_listener); 558 559 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 560 PCIDevice *pci_dev = PCI_DEVICE(dev); 561 562 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 563 } 564 } 565 566 static void xen_sync_dirty_bitmap(XenIOState *state, 567 hwaddr start_addr, 568 ram_addr_t size) 569 { 570 hwaddr npages = size >> TARGET_PAGE_BITS; 571 const int width = sizeof(unsigned long) * 8; 572 unsigned long bitmap[DIV_ROUND_UP(npages, width)]; 573 int rc, i, j; 574 const XenPhysmap *physmap = NULL; 575 576 physmap = get_physmapping(state, start_addr, size); 577 if (physmap == NULL) { 578 /* not handled */ 579 return; 580 } 581 582 if (state->log_for_dirtybit == NULL) { 583 state->log_for_dirtybit = physmap; 584 } else if (state->log_for_dirtybit != physmap) { 585 /* Only one range for dirty bitmap can be tracked. */ 586 return; 587 } 588 589 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 590 npages, bitmap); 591 if (rc < 0) { 592 #ifndef ENODATA 593 #define ENODATA ENOENT 594 #endif 595 if (errno == ENODATA) { 596 memory_region_set_dirty(framebuffer, 0, size); 597 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 598 ", 0x" TARGET_FMT_plx "): %s\n", 599 start_addr, start_addr + size, strerror(errno)); 600 } 601 return; 602 } 603 604 for (i = 0; i < ARRAY_SIZE(bitmap); i++) { 605 unsigned long map = bitmap[i]; 606 while (map != 0) { 607 j = ctzl(map); 608 map &= ~(1ul << j); 609 memory_region_set_dirty(framebuffer, 610 (i * width + j) * TARGET_PAGE_SIZE, 611 TARGET_PAGE_SIZE); 612 }; 613 } 614 } 615 616 static void xen_log_start(MemoryListener *listener, 617 MemoryRegionSection *section, 618 int old, int new) 619 { 620 XenIOState *state = container_of(listener, XenIOState, memory_listener); 621 622 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 623 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 624 int128_get64(section->size)); 625 } 626 } 627 628 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 629 int old, int new) 630 { 631 XenIOState *state = container_of(listener, XenIOState, memory_listener); 632 633 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 634 state->log_for_dirtybit = NULL; 635 /* Disable dirty bit tracking */ 636 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 637 } 638 } 639 640 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 641 { 642 XenIOState *state = container_of(listener, XenIOState, memory_listener); 643 644 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 645 int128_get64(section->size)); 646 } 647 648 static void xen_log_global_start(MemoryListener *listener) 649 { 650 if (xen_enabled()) { 651 xen_in_migration = true; 652 } 653 } 654 655 static void xen_log_global_stop(MemoryListener *listener) 656 { 657 xen_in_migration = false; 658 } 659 660 static MemoryListener xen_memory_listener = { 661 .region_add = xen_region_add, 662 .region_del = xen_region_del, 663 .log_start = xen_log_start, 664 .log_stop = xen_log_stop, 665 .log_sync = xen_log_sync, 666 .log_global_start = xen_log_global_start, 667 .log_global_stop = xen_log_global_stop, 668 .priority = 10, 669 }; 670 671 static MemoryListener xen_io_listener = { 672 .region_add = xen_io_add, 673 .region_del = xen_io_del, 674 .priority = 10, 675 }; 676 677 static DeviceListener xen_device_listener = { 678 .realize = xen_device_realize, 679 .unrealize = xen_device_unrealize, 680 }; 681 682 /* get the ioreq packets from share mem */ 683 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 684 { 685 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 686 687 if (req->state != STATE_IOREQ_READY) { 688 DPRINTF("I/O request not ready: " 689 "%x, ptr: %x, port: %"PRIx64", " 690 "data: %"PRIx64", count: %u, size: %u\n", 691 req->state, req->data_is_ptr, req->addr, 692 req->data, req->count, req->size); 693 return NULL; 694 } 695 696 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 697 698 req->state = STATE_IOREQ_INPROCESS; 699 return req; 700 } 701 702 /* use poll to get the port notification */ 703 /* ioreq_vec--out,the */ 704 /* retval--the number of ioreq packet */ 705 static ioreq_t *cpu_get_ioreq(XenIOState *state) 706 { 707 int i; 708 evtchn_port_t port; 709 710 port = xenevtchn_pending(state->xce_handle); 711 if (port == state->bufioreq_local_port) { 712 timer_mod(state->buffered_io_timer, 713 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 714 return NULL; 715 } 716 717 if (port != -1) { 718 for (i = 0; i < max_cpus; i++) { 719 if (state->ioreq_local_port[i] == port) { 720 break; 721 } 722 } 723 724 if (i == max_cpus) { 725 hw_error("Fatal error while trying to get io event!\n"); 726 } 727 728 /* unmask the wanted port again */ 729 xenevtchn_unmask(state->xce_handle, port); 730 731 /* get the io packet from shared memory */ 732 state->send_vcpu = i; 733 return cpu_get_ioreq_from_shared_memory(state, i); 734 } 735 736 /* read error or read nothing */ 737 return NULL; 738 } 739 740 static uint32_t do_inp(uint32_t addr, unsigned long size) 741 { 742 switch (size) { 743 case 1: 744 return cpu_inb(addr); 745 case 2: 746 return cpu_inw(addr); 747 case 4: 748 return cpu_inl(addr); 749 default: 750 hw_error("inp: bad size: %04x %lx", addr, size); 751 } 752 } 753 754 static void do_outp(uint32_t addr, 755 unsigned long size, uint32_t val) 756 { 757 switch (size) { 758 case 1: 759 return cpu_outb(addr, val); 760 case 2: 761 return cpu_outw(addr, val); 762 case 4: 763 return cpu_outl(addr, val); 764 default: 765 hw_error("outp: bad size: %04x %lx", addr, size); 766 } 767 } 768 769 /* 770 * Helper functions which read/write an object from/to physical guest 771 * memory, as part of the implementation of an ioreq. 772 * 773 * Equivalent to 774 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 775 * val, req->size, 0/1) 776 * except without the integer overflow problems. 777 */ 778 static void rw_phys_req_item(hwaddr addr, 779 ioreq_t *req, uint32_t i, void *val, int rw) 780 { 781 /* Do everything unsigned so overflow just results in a truncated result 782 * and accesses to undesired parts of guest memory, which is up 783 * to the guest */ 784 hwaddr offset = (hwaddr)req->size * i; 785 if (req->df) { 786 addr -= offset; 787 } else { 788 addr += offset; 789 } 790 cpu_physical_memory_rw(addr, val, req->size, rw); 791 } 792 793 static inline void read_phys_req_item(hwaddr addr, 794 ioreq_t *req, uint32_t i, void *val) 795 { 796 rw_phys_req_item(addr, req, i, val, 0); 797 } 798 static inline void write_phys_req_item(hwaddr addr, 799 ioreq_t *req, uint32_t i, void *val) 800 { 801 rw_phys_req_item(addr, req, i, val, 1); 802 } 803 804 805 static void cpu_ioreq_pio(ioreq_t *req) 806 { 807 uint32_t i; 808 809 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 810 req->data, req->count, req->size); 811 812 if (req->size > sizeof(uint32_t)) { 813 hw_error("PIO: bad size (%u)", req->size); 814 } 815 816 if (req->dir == IOREQ_READ) { 817 if (!req->data_is_ptr) { 818 req->data = do_inp(req->addr, req->size); 819 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 820 req->size); 821 } else { 822 uint32_t tmp; 823 824 for (i = 0; i < req->count; i++) { 825 tmp = do_inp(req->addr, req->size); 826 write_phys_req_item(req->data, req, i, &tmp); 827 } 828 } 829 } else if (req->dir == IOREQ_WRITE) { 830 if (!req->data_is_ptr) { 831 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 832 req->size); 833 do_outp(req->addr, req->size, req->data); 834 } else { 835 for (i = 0; i < req->count; i++) { 836 uint32_t tmp = 0; 837 838 read_phys_req_item(req->data, req, i, &tmp); 839 do_outp(req->addr, req->size, tmp); 840 } 841 } 842 } 843 } 844 845 static void cpu_ioreq_move(ioreq_t *req) 846 { 847 uint32_t i; 848 849 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 850 req->data, req->count, req->size); 851 852 if (req->size > sizeof(req->data)) { 853 hw_error("MMIO: bad size (%u)", req->size); 854 } 855 856 if (!req->data_is_ptr) { 857 if (req->dir == IOREQ_READ) { 858 for (i = 0; i < req->count; i++) { 859 read_phys_req_item(req->addr, req, i, &req->data); 860 } 861 } else if (req->dir == IOREQ_WRITE) { 862 for (i = 0; i < req->count; i++) { 863 write_phys_req_item(req->addr, req, i, &req->data); 864 } 865 } 866 } else { 867 uint64_t tmp; 868 869 if (req->dir == IOREQ_READ) { 870 for (i = 0; i < req->count; i++) { 871 read_phys_req_item(req->addr, req, i, &tmp); 872 write_phys_req_item(req->data, req, i, &tmp); 873 } 874 } else if (req->dir == IOREQ_WRITE) { 875 for (i = 0; i < req->count; i++) { 876 read_phys_req_item(req->data, req, i, &tmp); 877 write_phys_req_item(req->addr, req, i, &tmp); 878 } 879 } 880 } 881 } 882 883 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 884 { 885 X86CPU *cpu; 886 CPUX86State *env; 887 888 cpu = X86_CPU(current_cpu); 889 env = &cpu->env; 890 env->regs[R_EAX] = req->data; 891 env->regs[R_EBX] = vmport_regs->ebx; 892 env->regs[R_ECX] = vmport_regs->ecx; 893 env->regs[R_EDX] = vmport_regs->edx; 894 env->regs[R_ESI] = vmport_regs->esi; 895 env->regs[R_EDI] = vmport_regs->edi; 896 } 897 898 static void regs_from_cpu(vmware_regs_t *vmport_regs) 899 { 900 X86CPU *cpu = X86_CPU(current_cpu); 901 CPUX86State *env = &cpu->env; 902 903 vmport_regs->ebx = env->regs[R_EBX]; 904 vmport_regs->ecx = env->regs[R_ECX]; 905 vmport_regs->edx = env->regs[R_EDX]; 906 vmport_regs->esi = env->regs[R_ESI]; 907 vmport_regs->edi = env->regs[R_EDI]; 908 } 909 910 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 911 { 912 vmware_regs_t *vmport_regs; 913 914 assert(state->shared_vmport_page); 915 vmport_regs = 916 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 917 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 918 919 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 920 regs_to_cpu(vmport_regs, req); 921 cpu_ioreq_pio(req); 922 regs_from_cpu(vmport_regs); 923 current_cpu = NULL; 924 } 925 926 static void handle_ioreq(XenIOState *state, ioreq_t *req) 927 { 928 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 929 req->addr, req->data, req->count, req->size); 930 931 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 932 (req->size < sizeof (target_ulong))) { 933 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 934 } 935 936 if (req->dir == IOREQ_WRITE) 937 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 938 req->addr, req->data, req->count, req->size); 939 940 switch (req->type) { 941 case IOREQ_TYPE_PIO: 942 cpu_ioreq_pio(req); 943 break; 944 case IOREQ_TYPE_COPY: 945 cpu_ioreq_move(req); 946 break; 947 case IOREQ_TYPE_VMWARE_PORT: 948 handle_vmport_ioreq(state, req); 949 break; 950 case IOREQ_TYPE_TIMEOFFSET: 951 break; 952 case IOREQ_TYPE_INVALIDATE: 953 xen_invalidate_map_cache(); 954 break; 955 case IOREQ_TYPE_PCI_CONFIG: { 956 uint32_t sbdf = req->addr >> 32; 957 uint32_t val; 958 959 /* Fake a write to port 0xCF8 so that 960 * the config space access will target the 961 * correct device model. 962 */ 963 val = (1u << 31) | 964 ((req->addr & 0x0f00) << 16) | 965 ((sbdf & 0xffff) << 8) | 966 (req->addr & 0xfc); 967 do_outp(0xcf8, 4, val); 968 969 /* Now issue the config space access via 970 * port 0xCFC 971 */ 972 req->addr = 0xcfc | (req->addr & 0x03); 973 cpu_ioreq_pio(req); 974 break; 975 } 976 default: 977 hw_error("Invalid ioreq type 0x%x\n", req->type); 978 } 979 if (req->dir == IOREQ_READ) { 980 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 981 req->addr, req->data, req->count, req->size); 982 } 983 } 984 985 static int handle_buffered_iopage(XenIOState *state) 986 { 987 buffered_iopage_t *buf_page = state->buffered_io_page; 988 buf_ioreq_t *buf_req = NULL; 989 ioreq_t req; 990 int qw; 991 992 if (!buf_page) { 993 return 0; 994 } 995 996 memset(&req, 0x00, sizeof(req)); 997 req.state = STATE_IOREQ_READY; 998 req.count = 1; 999 req.dir = IOREQ_WRITE; 1000 1001 for (;;) { 1002 uint32_t rdptr = buf_page->read_pointer, wrptr; 1003 1004 xen_rmb(); 1005 wrptr = buf_page->write_pointer; 1006 xen_rmb(); 1007 if (rdptr != buf_page->read_pointer) { 1008 continue; 1009 } 1010 if (rdptr == wrptr) { 1011 break; 1012 } 1013 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1014 req.size = 1U << buf_req->size; 1015 req.addr = buf_req->addr; 1016 req.data = buf_req->data; 1017 req.type = buf_req->type; 1018 xen_rmb(); 1019 qw = (req.size == 8); 1020 if (qw) { 1021 if (rdptr + 1 == wrptr) { 1022 hw_error("Incomplete quad word buffered ioreq"); 1023 } 1024 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1025 IOREQ_BUFFER_SLOT_NUM]; 1026 req.data |= ((uint64_t)buf_req->data) << 32; 1027 xen_rmb(); 1028 } 1029 1030 handle_ioreq(state, &req); 1031 1032 /* Only req.data may get updated by handle_ioreq(), albeit even that 1033 * should not happen as such data would never make it to the guest (we 1034 * can only usefully see writes here after all). 1035 */ 1036 assert(req.state == STATE_IOREQ_READY); 1037 assert(req.count == 1); 1038 assert(req.dir == IOREQ_WRITE); 1039 assert(!req.data_is_ptr); 1040 1041 atomic_add(&buf_page->read_pointer, qw + 1); 1042 } 1043 1044 return req.count; 1045 } 1046 1047 static void handle_buffered_io(void *opaque) 1048 { 1049 XenIOState *state = opaque; 1050 1051 if (handle_buffered_iopage(state)) { 1052 timer_mod(state->buffered_io_timer, 1053 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1054 } else { 1055 timer_del(state->buffered_io_timer); 1056 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1057 } 1058 } 1059 1060 static void cpu_handle_ioreq(void *opaque) 1061 { 1062 XenIOState *state = opaque; 1063 ioreq_t *req = cpu_get_ioreq(state); 1064 1065 handle_buffered_iopage(state); 1066 if (req) { 1067 ioreq_t copy = *req; 1068 1069 xen_rmb(); 1070 handle_ioreq(state, ©); 1071 req->data = copy.data; 1072 1073 if (req->state != STATE_IOREQ_INPROCESS) { 1074 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1075 "%x, ptr: %x, port: %"PRIx64", " 1076 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1077 req->state, req->data_is_ptr, req->addr, 1078 req->data, req->count, req->size, req->type); 1079 destroy_hvm_domain(false); 1080 return; 1081 } 1082 1083 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1084 1085 /* 1086 * We do this before we send the response so that the tools 1087 * have the opportunity to pick up on the reset before the 1088 * guest resumes and does a hlt with interrupts disabled which 1089 * causes Xen to powerdown the domain. 1090 */ 1091 if (runstate_is_running()) { 1092 if (qemu_shutdown_requested_get()) { 1093 destroy_hvm_domain(false); 1094 } 1095 if (qemu_reset_requested_get()) { 1096 qemu_system_reset(VMRESET_REPORT); 1097 destroy_hvm_domain(true); 1098 } 1099 } 1100 1101 req->state = STATE_IORESP_READY; 1102 xenevtchn_notify(state->xce_handle, 1103 state->ioreq_local_port[state->send_vcpu]); 1104 } 1105 } 1106 1107 static void xen_main_loop_prepare(XenIOState *state) 1108 { 1109 int evtchn_fd = -1; 1110 1111 if (state->xce_handle != NULL) { 1112 evtchn_fd = xenevtchn_fd(state->xce_handle); 1113 } 1114 1115 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1116 state); 1117 1118 if (evtchn_fd != -1) { 1119 CPUState *cpu_state; 1120 1121 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1122 CPU_FOREACH(cpu_state) { 1123 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1124 __func__, cpu_state->cpu_index, cpu_state); 1125 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1126 } 1127 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1128 } 1129 } 1130 1131 1132 static void xen_hvm_change_state_handler(void *opaque, int running, 1133 RunState rstate) 1134 { 1135 XenIOState *state = opaque; 1136 1137 if (running) { 1138 xen_main_loop_prepare(state); 1139 } 1140 1141 xen_set_ioreq_server_state(xen_domid, 1142 state->ioservid, 1143 (rstate == RUN_STATE_RUNNING)); 1144 } 1145 1146 static void xen_exit_notifier(Notifier *n, void *data) 1147 { 1148 XenIOState *state = container_of(n, XenIOState, exit); 1149 1150 xenevtchn_close(state->xce_handle); 1151 xs_daemon_close(state->xenstore); 1152 } 1153 1154 static void xen_read_physmap(XenIOState *state) 1155 { 1156 XenPhysmap *physmap = NULL; 1157 unsigned int len, num, i; 1158 char path[80], *value = NULL; 1159 char **entries = NULL; 1160 1161 snprintf(path, sizeof(path), 1162 "/local/domain/0/device-model/%d/physmap", xen_domid); 1163 entries = xs_directory(state->xenstore, 0, path, &num); 1164 if (entries == NULL) 1165 return; 1166 1167 for (i = 0; i < num; i++) { 1168 physmap = g_malloc(sizeof (XenPhysmap)); 1169 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1170 snprintf(path, sizeof(path), 1171 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1172 xen_domid, entries[i]); 1173 value = xs_read(state->xenstore, 0, path, &len); 1174 if (value == NULL) { 1175 g_free(physmap); 1176 continue; 1177 } 1178 physmap->start_addr = strtoull(value, NULL, 16); 1179 free(value); 1180 1181 snprintf(path, sizeof(path), 1182 "/local/domain/0/device-model/%d/physmap/%s/size", 1183 xen_domid, entries[i]); 1184 value = xs_read(state->xenstore, 0, path, &len); 1185 if (value == NULL) { 1186 g_free(physmap); 1187 continue; 1188 } 1189 physmap->size = strtoull(value, NULL, 16); 1190 free(value); 1191 1192 snprintf(path, sizeof(path), 1193 "/local/domain/0/device-model/%d/physmap/%s/name", 1194 xen_domid, entries[i]); 1195 physmap->name = xs_read(state->xenstore, 0, path, &len); 1196 1197 QLIST_INSERT_HEAD(&state->physmap, physmap, list); 1198 } 1199 free(entries); 1200 } 1201 1202 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1203 { 1204 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1205 } 1206 1207 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1208 { 1209 int i, rc; 1210 xen_pfn_t ioreq_pfn; 1211 xen_pfn_t bufioreq_pfn; 1212 evtchn_port_t bufioreq_evtchn; 1213 XenIOState *state; 1214 1215 state = g_malloc0(sizeof (XenIOState)); 1216 1217 state->xce_handle = xenevtchn_open(NULL, 0); 1218 if (state->xce_handle == NULL) { 1219 perror("xen: event channel open"); 1220 goto err; 1221 } 1222 1223 state->xenstore = xs_daemon_open(); 1224 if (state->xenstore == NULL) { 1225 perror("xen: xenstore open"); 1226 goto err; 1227 } 1228 1229 if (xen_domid_restrict) { 1230 rc = xen_restrict(xen_domid); 1231 if (rc < 0) { 1232 error_report("failed to restrict: error %d", errno); 1233 goto err; 1234 } 1235 } 1236 1237 xen_create_ioreq_server(xen_domid, &state->ioservid); 1238 1239 state->exit.notify = xen_exit_notifier; 1240 qemu_add_exit_notifier(&state->exit); 1241 1242 state->suspend.notify = xen_suspend_notifier; 1243 qemu_register_suspend_notifier(&state->suspend); 1244 1245 state->wakeup.notify = xen_wakeup_notifier; 1246 qemu_register_wakeup_notifier(&state->wakeup); 1247 1248 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1249 &ioreq_pfn, &bufioreq_pfn, 1250 &bufioreq_evtchn); 1251 if (rc < 0) { 1252 error_report("failed to get ioreq server info: error %d handle=%p", 1253 errno, xen_xc); 1254 goto err; 1255 } 1256 1257 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1258 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1259 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1260 1261 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1262 PROT_READ|PROT_WRITE, 1263 1, &ioreq_pfn, NULL); 1264 if (state->shared_page == NULL) { 1265 error_report("map shared IO page returned error %d handle=%p", 1266 errno, xen_xc); 1267 goto err; 1268 } 1269 1270 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1271 if (!rc) { 1272 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1273 state->shared_vmport_page = 1274 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1275 1, &ioreq_pfn, NULL); 1276 if (state->shared_vmport_page == NULL) { 1277 error_report("map shared vmport IO page returned error %d handle=%p", 1278 errno, xen_xc); 1279 goto err; 1280 } 1281 } else if (rc != -ENOSYS) { 1282 error_report("get vmport regs pfn returned error %d, rc=%d", 1283 errno, rc); 1284 goto err; 1285 } 1286 1287 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1288 PROT_READ|PROT_WRITE, 1289 1, &bufioreq_pfn, NULL); 1290 if (state->buffered_io_page == NULL) { 1291 error_report("map buffered IO page returned error %d", errno); 1292 goto err; 1293 } 1294 1295 /* Note: cpus is empty at this point in init */ 1296 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1297 1298 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1299 if (rc < 0) { 1300 error_report("failed to enable ioreq server info: error %d handle=%p", 1301 errno, xen_xc); 1302 goto err; 1303 } 1304 1305 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1306 1307 /* FIXME: how about if we overflow the page here? */ 1308 for (i = 0; i < max_cpus; i++) { 1309 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1310 xen_vcpu_eport(state->shared_page, i)); 1311 if (rc == -1) { 1312 error_report("shared evtchn %d bind error %d", i, errno); 1313 goto err; 1314 } 1315 state->ioreq_local_port[i] = rc; 1316 } 1317 1318 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1319 bufioreq_evtchn); 1320 if (rc == -1) { 1321 error_report("buffered evtchn bind error %d", errno); 1322 goto err; 1323 } 1324 state->bufioreq_local_port = rc; 1325 1326 /* Init RAM management */ 1327 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1328 xen_ram_init(pcms, ram_size, ram_memory); 1329 1330 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1331 1332 state->memory_listener = xen_memory_listener; 1333 QLIST_INIT(&state->physmap); 1334 memory_listener_register(&state->memory_listener, &address_space_memory); 1335 state->log_for_dirtybit = NULL; 1336 1337 state->io_listener = xen_io_listener; 1338 memory_listener_register(&state->io_listener, &address_space_io); 1339 1340 state->device_listener = xen_device_listener; 1341 device_listener_register(&state->device_listener); 1342 1343 /* Initialize backend core & drivers */ 1344 if (xen_be_init() != 0) { 1345 error_report("xen backend core setup failed"); 1346 goto err; 1347 } 1348 xen_be_register_common(); 1349 xen_read_physmap(state); 1350 1351 /* Disable ACPI build because Xen handles it */ 1352 pcms->acpi_build_enabled = false; 1353 1354 return; 1355 1356 err: 1357 error_report("xen hardware virtual machine initialisation failed"); 1358 exit(1); 1359 } 1360 1361 void destroy_hvm_domain(bool reboot) 1362 { 1363 xc_interface *xc_handle; 1364 int sts; 1365 1366 xc_handle = xc_interface_open(0, 0, 0); 1367 if (xc_handle == NULL) { 1368 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1369 } else { 1370 sts = xc_domain_shutdown(xc_handle, xen_domid, 1371 reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff); 1372 if (sts != 0) { 1373 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1374 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1375 sts, strerror(errno)); 1376 } else { 1377 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1378 reboot ? "reboot" : "poweroff"); 1379 } 1380 xc_interface_close(xc_handle); 1381 } 1382 } 1383 1384 void xen_register_framebuffer(MemoryRegion *mr) 1385 { 1386 framebuffer = mr; 1387 } 1388 1389 void xen_shutdown_fatal_error(const char *fmt, ...) 1390 { 1391 va_list ap; 1392 1393 va_start(ap, fmt); 1394 vfprintf(stderr, fmt, ap); 1395 va_end(ap); 1396 fprintf(stderr, "Will destroy the domain.\n"); 1397 /* destroy the domain */ 1398 qemu_system_shutdown_request(); 1399 } 1400 1401 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1402 { 1403 if (unlikely(xen_in_migration)) { 1404 int rc; 1405 ram_addr_t start_pfn, nb_pages; 1406 1407 if (length == 0) { 1408 length = TARGET_PAGE_SIZE; 1409 } 1410 start_pfn = start >> TARGET_PAGE_BITS; 1411 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1412 - start_pfn; 1413 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1414 if (rc) { 1415 fprintf(stderr, 1416 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1417 __func__, start, nb_pages, rc, strerror(-rc)); 1418 } 1419 } 1420 } 1421 1422 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1423 { 1424 if (enable) { 1425 memory_global_dirty_log_start(); 1426 } else { 1427 memory_global_dirty_log_stop(); 1428 } 1429 } 1430