xref: /openbmc/qemu/hw/i386/xen/xen-hvm.c (revision 93d43e7e)
1 /*
2  * Copyright (C) 2010       Citrix Ltd.
3  *
4  * This work is licensed under the terms of the GNU GPL, version 2.  See
5  * the COPYING file in the top-level directory.
6  *
7  * Contributions after 2012-01-13 are licensed under the terms of the
8  * GNU GPL, version 2 or (at your option) any later version.
9  */
10 
11 #include "qemu/osdep.h"
12 
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/i386/pc.h"
16 #include "hw/i386/apic-msidef.h"
17 #include "hw/xen/xen_common.h"
18 #include "hw/xen/xen_backend.h"
19 #include "qmp-commands.h"
20 
21 #include "sysemu/char.h"
22 #include "qemu/error-report.h"
23 #include "qemu/range.h"
24 #include "sysemu/xen-mapcache.h"
25 #include "trace.h"
26 #include "exec/address-spaces.h"
27 
28 #include <xen/hvm/ioreq.h>
29 #include <xen/hvm/params.h>
30 #include <xen/hvm/e820.h>
31 
32 //#define DEBUG_XEN_HVM
33 
34 #ifdef DEBUG_XEN_HVM
35 #define DPRINTF(fmt, ...) \
36     do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39     do { } while (0)
40 #endif
41 
42 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
43 static MemoryRegion *framebuffer;
44 static bool xen_in_migration;
45 
46 /* Compatibility with older version */
47 
48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
49  * installed.  This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
50  * needs to be included before this block and hw/xen/xen_common.h needs to
51  * be included before xen/hvm/ioreq.h
52  */
53 #ifndef IOREQ_TYPE_VMWARE_PORT
54 #define IOREQ_TYPE_VMWARE_PORT  3
55 struct vmware_regs {
56     uint32_t esi;
57     uint32_t edi;
58     uint32_t ebx;
59     uint32_t ecx;
60     uint32_t edx;
61 };
62 typedef struct vmware_regs vmware_regs_t;
63 
64 struct shared_vmport_iopage {
65     struct vmware_regs vcpu_vmport_regs[1];
66 };
67 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
68 #endif
69 
70 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
71 {
72     return shared_page->vcpu_ioreq[i].vp_eport;
73 }
74 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
75 {
76     return &shared_page->vcpu_ioreq[vcpu];
77 }
78 
79 #define BUFFER_IO_MAX_DELAY  100
80 
81 typedef struct XenPhysmap {
82     hwaddr start_addr;
83     ram_addr_t size;
84     const char *name;
85     hwaddr phys_offset;
86 
87     QLIST_ENTRY(XenPhysmap) list;
88 } XenPhysmap;
89 
90 typedef struct XenIOState {
91     ioservid_t ioservid;
92     shared_iopage_t *shared_page;
93     shared_vmport_iopage_t *shared_vmport_page;
94     buffered_iopage_t *buffered_io_page;
95     QEMUTimer *buffered_io_timer;
96     CPUState **cpu_by_vcpu_id;
97     /* the evtchn port for polling the notification, */
98     evtchn_port_t *ioreq_local_port;
99     /* evtchn local port for buffered io */
100     evtchn_port_t bufioreq_local_port;
101     /* the evtchn fd for polling */
102     xenevtchn_handle *xce_handle;
103     /* which vcpu we are serving */
104     int send_vcpu;
105 
106     struct xs_handle *xenstore;
107     MemoryListener memory_listener;
108     MemoryListener io_listener;
109     DeviceListener device_listener;
110     QLIST_HEAD(, XenPhysmap) physmap;
111     hwaddr free_phys_offset;
112     const XenPhysmap *log_for_dirtybit;
113 
114     Notifier exit;
115     Notifier suspend;
116     Notifier wakeup;
117 } XenIOState;
118 
119 /* Xen specific function for piix pci */
120 
121 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
122 {
123     return irq_num + ((pci_dev->devfn >> 3) << 2);
124 }
125 
126 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
127 {
128     xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
129                            irq_num & 3, level);
130 }
131 
132 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
133 {
134     int i;
135 
136     /* Scan for updates to PCI link routes (0x60-0x63). */
137     for (i = 0; i < len; i++) {
138         uint8_t v = (val >> (8 * i)) & 0xff;
139         if (v & 0x80) {
140             v = 0;
141         }
142         v &= 0xf;
143         if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
144             xen_set_pci_link_route(xen_domid, address + i - 0x60, v);
145         }
146     }
147 }
148 
149 int xen_is_pirq_msi(uint32_t msi_data)
150 {
151     /* If vector is 0, the msi is remapped into a pirq, passed as
152      * dest_id.
153      */
154     return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
155 }
156 
157 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
158 {
159     xen_inject_msi(xen_domid, addr, data);
160 }
161 
162 static void xen_suspend_notifier(Notifier *notifier, void *data)
163 {
164     xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
165 }
166 
167 /* Xen Interrupt Controller */
168 
169 static void xen_set_irq(void *opaque, int irq, int level)
170 {
171     xen_set_isa_irq_level(xen_domid, irq, level);
172 }
173 
174 qemu_irq *xen_interrupt_controller_init(void)
175 {
176     return qemu_allocate_irqs(xen_set_irq, NULL, 16);
177 }
178 
179 /* Memory Ops */
180 
181 static void xen_ram_init(PCMachineState *pcms,
182                          ram_addr_t ram_size, MemoryRegion **ram_memory_p)
183 {
184     MemoryRegion *sysmem = get_system_memory();
185     ram_addr_t block_len;
186     uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
187                                                    PC_MACHINE_MAX_RAM_BELOW_4G,
188                                                    &error_abort);
189 
190     /* Handle the machine opt max-ram-below-4g.  It is basically doing
191      * min(xen limit, user limit).
192      */
193     if (!user_lowmem) {
194         user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
195     }
196     if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
197         user_lowmem = HVM_BELOW_4G_RAM_END;
198     }
199 
200     if (ram_size >= user_lowmem) {
201         pcms->above_4g_mem_size = ram_size - user_lowmem;
202         pcms->below_4g_mem_size = user_lowmem;
203     } else {
204         pcms->above_4g_mem_size = 0;
205         pcms->below_4g_mem_size = ram_size;
206     }
207     if (!pcms->above_4g_mem_size) {
208         block_len = ram_size;
209     } else {
210         /*
211          * Xen does not allocate the memory continuously, it keeps a
212          * hole of the size computed above or passed in.
213          */
214         block_len = (1ULL << 32) + pcms->above_4g_mem_size;
215     }
216     memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
217                            &error_fatal);
218     *ram_memory_p = &ram_memory;
219     vmstate_register_ram_global(&ram_memory);
220 
221     memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
222                              &ram_memory, 0, 0xa0000);
223     memory_region_add_subregion(sysmem, 0, &ram_640k);
224     /* Skip of the VGA IO memory space, it will be registered later by the VGA
225      * emulated device.
226      *
227      * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
228      * the Options ROM, so it is registered here as RAM.
229      */
230     memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
231                              &ram_memory, 0xc0000,
232                              pcms->below_4g_mem_size - 0xc0000);
233     memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
234     if (pcms->above_4g_mem_size > 0) {
235         memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
236                                  &ram_memory, 0x100000000ULL,
237                                  pcms->above_4g_mem_size);
238         memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
239     }
240 }
241 
242 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
243                    Error **errp)
244 {
245     unsigned long nr_pfn;
246     xen_pfn_t *pfn_list;
247     int i;
248 
249     if (runstate_check(RUN_STATE_INMIGRATE)) {
250         /* RAM already populated in Xen */
251         fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
252                 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
253                 __func__, size, ram_addr);
254         return;
255     }
256 
257     if (mr == &ram_memory) {
258         return;
259     }
260 
261     trace_xen_ram_alloc(ram_addr, size);
262 
263     nr_pfn = size >> TARGET_PAGE_BITS;
264     pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
265 
266     for (i = 0; i < nr_pfn; i++) {
267         pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
268     }
269 
270     if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
271         error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
272                    ram_addr);
273     }
274 
275     g_free(pfn_list);
276 }
277 
278 static XenPhysmap *get_physmapping(XenIOState *state,
279                                    hwaddr start_addr, ram_addr_t size)
280 {
281     XenPhysmap *physmap = NULL;
282 
283     start_addr &= TARGET_PAGE_MASK;
284 
285     QLIST_FOREACH(physmap, &state->physmap, list) {
286         if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
287             return physmap;
288         }
289     }
290     return NULL;
291 }
292 
293 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
294                                                    ram_addr_t size, void *opaque)
295 {
296     hwaddr addr = start_addr & TARGET_PAGE_MASK;
297     XenIOState *xen_io_state = opaque;
298     XenPhysmap *physmap = NULL;
299 
300     QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
301         if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
302             return physmap->start_addr;
303         }
304     }
305 
306     return start_addr;
307 }
308 
309 static int xen_add_to_physmap(XenIOState *state,
310                               hwaddr start_addr,
311                               ram_addr_t size,
312                               MemoryRegion *mr,
313                               hwaddr offset_within_region)
314 {
315     unsigned long i = 0;
316     int rc = 0;
317     XenPhysmap *physmap = NULL;
318     hwaddr pfn, start_gpfn;
319     hwaddr phys_offset = memory_region_get_ram_addr(mr);
320     char path[80], value[17];
321     const char *mr_name;
322 
323     if (get_physmapping(state, start_addr, size)) {
324         return 0;
325     }
326     if (size <= 0) {
327         return -1;
328     }
329 
330     /* Xen can only handle a single dirty log region for now and we want
331      * the linear framebuffer to be that region.
332      * Avoid tracking any regions that is not videoram and avoid tracking
333      * the legacy vga region. */
334     if (mr == framebuffer && start_addr > 0xbffff) {
335         goto go_physmap;
336     }
337     return -1;
338 
339 go_physmap:
340     DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
341             start_addr, start_addr + size);
342 
343     pfn = phys_offset >> TARGET_PAGE_BITS;
344     start_gpfn = start_addr >> TARGET_PAGE_BITS;
345     for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
346         unsigned long idx = pfn + i;
347         xen_pfn_t gpfn = start_gpfn + i;
348 
349         rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
350         if (rc) {
351             DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
352                     PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
353             return -rc;
354         }
355     }
356 
357     mr_name = memory_region_name(mr);
358 
359     physmap = g_malloc(sizeof (XenPhysmap));
360 
361     physmap->start_addr = start_addr;
362     physmap->size = size;
363     physmap->name = mr_name;
364     physmap->phys_offset = phys_offset;
365 
366     QLIST_INSERT_HEAD(&state->physmap, physmap, list);
367 
368     xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
369                                    start_addr >> TARGET_PAGE_BITS,
370                                    (start_addr + size - 1) >> TARGET_PAGE_BITS,
371                                    XEN_DOMCTL_MEM_CACHEATTR_WB);
372 
373     snprintf(path, sizeof(path),
374             "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
375             xen_domid, (uint64_t)phys_offset);
376     snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
377     if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
378         return -1;
379     }
380     snprintf(path, sizeof(path),
381             "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
382             xen_domid, (uint64_t)phys_offset);
383     snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
384     if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
385         return -1;
386     }
387     if (mr_name) {
388         snprintf(path, sizeof(path),
389                 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
390                 xen_domid, (uint64_t)phys_offset);
391         if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
392             return -1;
393         }
394     }
395 
396     return 0;
397 }
398 
399 static int xen_remove_from_physmap(XenIOState *state,
400                                    hwaddr start_addr,
401                                    ram_addr_t size)
402 {
403     unsigned long i = 0;
404     int rc = 0;
405     XenPhysmap *physmap = NULL;
406     hwaddr phys_offset = 0;
407 
408     physmap = get_physmapping(state, start_addr, size);
409     if (physmap == NULL) {
410         return -1;
411     }
412 
413     phys_offset = physmap->phys_offset;
414     size = physmap->size;
415 
416     DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
417             "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
418 
419     size >>= TARGET_PAGE_BITS;
420     start_addr >>= TARGET_PAGE_BITS;
421     phys_offset >>= TARGET_PAGE_BITS;
422     for (i = 0; i < size; i++) {
423         xen_pfn_t idx = start_addr + i;
424         xen_pfn_t gpfn = phys_offset + i;
425 
426         rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
427         if (rc) {
428             fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
429                     PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
430             return -rc;
431         }
432     }
433 
434     QLIST_REMOVE(physmap, list);
435     if (state->log_for_dirtybit == physmap) {
436         state->log_for_dirtybit = NULL;
437     }
438     g_free(physmap);
439 
440     return 0;
441 }
442 
443 static void xen_set_memory(struct MemoryListener *listener,
444                            MemoryRegionSection *section,
445                            bool add)
446 {
447     XenIOState *state = container_of(listener, XenIOState, memory_listener);
448     hwaddr start_addr = section->offset_within_address_space;
449     ram_addr_t size = int128_get64(section->size);
450     bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
451     hvmmem_type_t mem_type;
452 
453     if (section->mr == &ram_memory) {
454         return;
455     } else {
456         if (add) {
457             xen_map_memory_section(xen_domid, state->ioservid,
458                                    section);
459         } else {
460             xen_unmap_memory_section(xen_domid, state->ioservid,
461                                      section);
462         }
463     }
464 
465     if (!memory_region_is_ram(section->mr)) {
466         return;
467     }
468 
469     if (log_dirty != add) {
470         return;
471     }
472 
473     trace_xen_client_set_memory(start_addr, size, log_dirty);
474 
475     start_addr &= TARGET_PAGE_MASK;
476     size = TARGET_PAGE_ALIGN(size);
477 
478     if (add) {
479         if (!memory_region_is_rom(section->mr)) {
480             xen_add_to_physmap(state, start_addr, size,
481                                section->mr, section->offset_within_region);
482         } else {
483             mem_type = HVMMEM_ram_ro;
484             if (xen_set_mem_type(xen_domid, mem_type,
485                                  start_addr >> TARGET_PAGE_BITS,
486                                  size >> TARGET_PAGE_BITS)) {
487                 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
488                         start_addr);
489             }
490         }
491     } else {
492         if (xen_remove_from_physmap(state, start_addr, size) < 0) {
493             DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
494         }
495     }
496 }
497 
498 static void xen_region_add(MemoryListener *listener,
499                            MemoryRegionSection *section)
500 {
501     memory_region_ref(section->mr);
502     xen_set_memory(listener, section, true);
503 }
504 
505 static void xen_region_del(MemoryListener *listener,
506                            MemoryRegionSection *section)
507 {
508     xen_set_memory(listener, section, false);
509     memory_region_unref(section->mr);
510 }
511 
512 static void xen_io_add(MemoryListener *listener,
513                        MemoryRegionSection *section)
514 {
515     XenIOState *state = container_of(listener, XenIOState, io_listener);
516     MemoryRegion *mr = section->mr;
517 
518     if (mr->ops == &unassigned_io_ops) {
519         return;
520     }
521 
522     memory_region_ref(mr);
523 
524     xen_map_io_section(xen_domid, state->ioservid, section);
525 }
526 
527 static void xen_io_del(MemoryListener *listener,
528                        MemoryRegionSection *section)
529 {
530     XenIOState *state = container_of(listener, XenIOState, io_listener);
531     MemoryRegion *mr = section->mr;
532 
533     if (mr->ops == &unassigned_io_ops) {
534         return;
535     }
536 
537     xen_unmap_io_section(xen_domid, state->ioservid, section);
538 
539     memory_region_unref(mr);
540 }
541 
542 static void xen_device_realize(DeviceListener *listener,
543 			       DeviceState *dev)
544 {
545     XenIOState *state = container_of(listener, XenIOState, device_listener);
546 
547     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
548         PCIDevice *pci_dev = PCI_DEVICE(dev);
549 
550         xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
551     }
552 }
553 
554 static void xen_device_unrealize(DeviceListener *listener,
555 				 DeviceState *dev)
556 {
557     XenIOState *state = container_of(listener, XenIOState, device_listener);
558 
559     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
560         PCIDevice *pci_dev = PCI_DEVICE(dev);
561 
562         xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
563     }
564 }
565 
566 static void xen_sync_dirty_bitmap(XenIOState *state,
567                                   hwaddr start_addr,
568                                   ram_addr_t size)
569 {
570     hwaddr npages = size >> TARGET_PAGE_BITS;
571     const int width = sizeof(unsigned long) * 8;
572     unsigned long bitmap[DIV_ROUND_UP(npages, width)];
573     int rc, i, j;
574     const XenPhysmap *physmap = NULL;
575 
576     physmap = get_physmapping(state, start_addr, size);
577     if (physmap == NULL) {
578         /* not handled */
579         return;
580     }
581 
582     if (state->log_for_dirtybit == NULL) {
583         state->log_for_dirtybit = physmap;
584     } else if (state->log_for_dirtybit != physmap) {
585         /* Only one range for dirty bitmap can be tracked. */
586         return;
587     }
588 
589     rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
590                               npages, bitmap);
591     if (rc < 0) {
592 #ifndef ENODATA
593 #define ENODATA  ENOENT
594 #endif
595         if (errno == ENODATA) {
596             memory_region_set_dirty(framebuffer, 0, size);
597             DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
598                     ", 0x" TARGET_FMT_plx "): %s\n",
599                     start_addr, start_addr + size, strerror(errno));
600         }
601         return;
602     }
603 
604     for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
605         unsigned long map = bitmap[i];
606         while (map != 0) {
607             j = ctzl(map);
608             map &= ~(1ul << j);
609             memory_region_set_dirty(framebuffer,
610                                     (i * width + j) * TARGET_PAGE_SIZE,
611                                     TARGET_PAGE_SIZE);
612         };
613     }
614 }
615 
616 static void xen_log_start(MemoryListener *listener,
617                           MemoryRegionSection *section,
618                           int old, int new)
619 {
620     XenIOState *state = container_of(listener, XenIOState, memory_listener);
621 
622     if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
623         xen_sync_dirty_bitmap(state, section->offset_within_address_space,
624                               int128_get64(section->size));
625     }
626 }
627 
628 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
629                          int old, int new)
630 {
631     XenIOState *state = container_of(listener, XenIOState, memory_listener);
632 
633     if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
634         state->log_for_dirtybit = NULL;
635         /* Disable dirty bit tracking */
636         xen_track_dirty_vram(xen_domid, 0, 0, NULL);
637     }
638 }
639 
640 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
641 {
642     XenIOState *state = container_of(listener, XenIOState, memory_listener);
643 
644     xen_sync_dirty_bitmap(state, section->offset_within_address_space,
645                           int128_get64(section->size));
646 }
647 
648 static void xen_log_global_start(MemoryListener *listener)
649 {
650     if (xen_enabled()) {
651         xen_in_migration = true;
652     }
653 }
654 
655 static void xen_log_global_stop(MemoryListener *listener)
656 {
657     xen_in_migration = false;
658 }
659 
660 static MemoryListener xen_memory_listener = {
661     .region_add = xen_region_add,
662     .region_del = xen_region_del,
663     .log_start = xen_log_start,
664     .log_stop = xen_log_stop,
665     .log_sync = xen_log_sync,
666     .log_global_start = xen_log_global_start,
667     .log_global_stop = xen_log_global_stop,
668     .priority = 10,
669 };
670 
671 static MemoryListener xen_io_listener = {
672     .region_add = xen_io_add,
673     .region_del = xen_io_del,
674     .priority = 10,
675 };
676 
677 static DeviceListener xen_device_listener = {
678     .realize = xen_device_realize,
679     .unrealize = xen_device_unrealize,
680 };
681 
682 /* get the ioreq packets from share mem */
683 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
684 {
685     ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
686 
687     if (req->state != STATE_IOREQ_READY) {
688         DPRINTF("I/O request not ready: "
689                 "%x, ptr: %x, port: %"PRIx64", "
690                 "data: %"PRIx64", count: %u, size: %u\n",
691                 req->state, req->data_is_ptr, req->addr,
692                 req->data, req->count, req->size);
693         return NULL;
694     }
695 
696     xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
697 
698     req->state = STATE_IOREQ_INPROCESS;
699     return req;
700 }
701 
702 /* use poll to get the port notification */
703 /* ioreq_vec--out,the */
704 /* retval--the number of ioreq packet */
705 static ioreq_t *cpu_get_ioreq(XenIOState *state)
706 {
707     int i;
708     evtchn_port_t port;
709 
710     port = xenevtchn_pending(state->xce_handle);
711     if (port == state->bufioreq_local_port) {
712         timer_mod(state->buffered_io_timer,
713                 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
714         return NULL;
715     }
716 
717     if (port != -1) {
718         for (i = 0; i < max_cpus; i++) {
719             if (state->ioreq_local_port[i] == port) {
720                 break;
721             }
722         }
723 
724         if (i == max_cpus) {
725             hw_error("Fatal error while trying to get io event!\n");
726         }
727 
728         /* unmask the wanted port again */
729         xenevtchn_unmask(state->xce_handle, port);
730 
731         /* get the io packet from shared memory */
732         state->send_vcpu = i;
733         return cpu_get_ioreq_from_shared_memory(state, i);
734     }
735 
736     /* read error or read nothing */
737     return NULL;
738 }
739 
740 static uint32_t do_inp(uint32_t addr, unsigned long size)
741 {
742     switch (size) {
743         case 1:
744             return cpu_inb(addr);
745         case 2:
746             return cpu_inw(addr);
747         case 4:
748             return cpu_inl(addr);
749         default:
750             hw_error("inp: bad size: %04x %lx", addr, size);
751     }
752 }
753 
754 static void do_outp(uint32_t addr,
755         unsigned long size, uint32_t val)
756 {
757     switch (size) {
758         case 1:
759             return cpu_outb(addr, val);
760         case 2:
761             return cpu_outw(addr, val);
762         case 4:
763             return cpu_outl(addr, val);
764         default:
765             hw_error("outp: bad size: %04x %lx", addr, size);
766     }
767 }
768 
769 /*
770  * Helper functions which read/write an object from/to physical guest
771  * memory, as part of the implementation of an ioreq.
772  *
773  * Equivalent to
774  *   cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
775  *                          val, req->size, 0/1)
776  * except without the integer overflow problems.
777  */
778 static void rw_phys_req_item(hwaddr addr,
779                              ioreq_t *req, uint32_t i, void *val, int rw)
780 {
781     /* Do everything unsigned so overflow just results in a truncated result
782      * and accesses to undesired parts of guest memory, which is up
783      * to the guest */
784     hwaddr offset = (hwaddr)req->size * i;
785     if (req->df) {
786         addr -= offset;
787     } else {
788         addr += offset;
789     }
790     cpu_physical_memory_rw(addr, val, req->size, rw);
791 }
792 
793 static inline void read_phys_req_item(hwaddr addr,
794                                       ioreq_t *req, uint32_t i, void *val)
795 {
796     rw_phys_req_item(addr, req, i, val, 0);
797 }
798 static inline void write_phys_req_item(hwaddr addr,
799                                        ioreq_t *req, uint32_t i, void *val)
800 {
801     rw_phys_req_item(addr, req, i, val, 1);
802 }
803 
804 
805 static void cpu_ioreq_pio(ioreq_t *req)
806 {
807     uint32_t i;
808 
809     trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
810                          req->data, req->count, req->size);
811 
812     if (req->size > sizeof(uint32_t)) {
813         hw_error("PIO: bad size (%u)", req->size);
814     }
815 
816     if (req->dir == IOREQ_READ) {
817         if (!req->data_is_ptr) {
818             req->data = do_inp(req->addr, req->size);
819             trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
820                                          req->size);
821         } else {
822             uint32_t tmp;
823 
824             for (i = 0; i < req->count; i++) {
825                 tmp = do_inp(req->addr, req->size);
826                 write_phys_req_item(req->data, req, i, &tmp);
827             }
828         }
829     } else if (req->dir == IOREQ_WRITE) {
830         if (!req->data_is_ptr) {
831             trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
832                                           req->size);
833             do_outp(req->addr, req->size, req->data);
834         } else {
835             for (i = 0; i < req->count; i++) {
836                 uint32_t tmp = 0;
837 
838                 read_phys_req_item(req->data, req, i, &tmp);
839                 do_outp(req->addr, req->size, tmp);
840             }
841         }
842     }
843 }
844 
845 static void cpu_ioreq_move(ioreq_t *req)
846 {
847     uint32_t i;
848 
849     trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
850                          req->data, req->count, req->size);
851 
852     if (req->size > sizeof(req->data)) {
853         hw_error("MMIO: bad size (%u)", req->size);
854     }
855 
856     if (!req->data_is_ptr) {
857         if (req->dir == IOREQ_READ) {
858             for (i = 0; i < req->count; i++) {
859                 read_phys_req_item(req->addr, req, i, &req->data);
860             }
861         } else if (req->dir == IOREQ_WRITE) {
862             for (i = 0; i < req->count; i++) {
863                 write_phys_req_item(req->addr, req, i, &req->data);
864             }
865         }
866     } else {
867         uint64_t tmp;
868 
869         if (req->dir == IOREQ_READ) {
870             for (i = 0; i < req->count; i++) {
871                 read_phys_req_item(req->addr, req, i, &tmp);
872                 write_phys_req_item(req->data, req, i, &tmp);
873             }
874         } else if (req->dir == IOREQ_WRITE) {
875             for (i = 0; i < req->count; i++) {
876                 read_phys_req_item(req->data, req, i, &tmp);
877                 write_phys_req_item(req->addr, req, i, &tmp);
878             }
879         }
880     }
881 }
882 
883 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
884 {
885     X86CPU *cpu;
886     CPUX86State *env;
887 
888     cpu = X86_CPU(current_cpu);
889     env = &cpu->env;
890     env->regs[R_EAX] = req->data;
891     env->regs[R_EBX] = vmport_regs->ebx;
892     env->regs[R_ECX] = vmport_regs->ecx;
893     env->regs[R_EDX] = vmport_regs->edx;
894     env->regs[R_ESI] = vmport_regs->esi;
895     env->regs[R_EDI] = vmport_regs->edi;
896 }
897 
898 static void regs_from_cpu(vmware_regs_t *vmport_regs)
899 {
900     X86CPU *cpu = X86_CPU(current_cpu);
901     CPUX86State *env = &cpu->env;
902 
903     vmport_regs->ebx = env->regs[R_EBX];
904     vmport_regs->ecx = env->regs[R_ECX];
905     vmport_regs->edx = env->regs[R_EDX];
906     vmport_regs->esi = env->regs[R_ESI];
907     vmport_regs->edi = env->regs[R_EDI];
908 }
909 
910 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
911 {
912     vmware_regs_t *vmport_regs;
913 
914     assert(state->shared_vmport_page);
915     vmport_regs =
916         &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
917     QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
918 
919     current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
920     regs_to_cpu(vmport_regs, req);
921     cpu_ioreq_pio(req);
922     regs_from_cpu(vmport_regs);
923     current_cpu = NULL;
924 }
925 
926 static void handle_ioreq(XenIOState *state, ioreq_t *req)
927 {
928     trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
929                        req->addr, req->data, req->count, req->size);
930 
931     if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
932             (req->size < sizeof (target_ulong))) {
933         req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
934     }
935 
936     if (req->dir == IOREQ_WRITE)
937         trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
938                                  req->addr, req->data, req->count, req->size);
939 
940     switch (req->type) {
941         case IOREQ_TYPE_PIO:
942             cpu_ioreq_pio(req);
943             break;
944         case IOREQ_TYPE_COPY:
945             cpu_ioreq_move(req);
946             break;
947         case IOREQ_TYPE_VMWARE_PORT:
948             handle_vmport_ioreq(state, req);
949             break;
950         case IOREQ_TYPE_TIMEOFFSET:
951             break;
952         case IOREQ_TYPE_INVALIDATE:
953             xen_invalidate_map_cache();
954             break;
955         case IOREQ_TYPE_PCI_CONFIG: {
956             uint32_t sbdf = req->addr >> 32;
957             uint32_t val;
958 
959             /* Fake a write to port 0xCF8 so that
960              * the config space access will target the
961              * correct device model.
962              */
963             val = (1u << 31) |
964                   ((req->addr & 0x0f00) << 16) |
965                   ((sbdf & 0xffff) << 8) |
966                   (req->addr & 0xfc);
967             do_outp(0xcf8, 4, val);
968 
969             /* Now issue the config space access via
970              * port 0xCFC
971              */
972             req->addr = 0xcfc | (req->addr & 0x03);
973             cpu_ioreq_pio(req);
974             break;
975         }
976         default:
977             hw_error("Invalid ioreq type 0x%x\n", req->type);
978     }
979     if (req->dir == IOREQ_READ) {
980         trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
981                                 req->addr, req->data, req->count, req->size);
982     }
983 }
984 
985 static int handle_buffered_iopage(XenIOState *state)
986 {
987     buffered_iopage_t *buf_page = state->buffered_io_page;
988     buf_ioreq_t *buf_req = NULL;
989     ioreq_t req;
990     int qw;
991 
992     if (!buf_page) {
993         return 0;
994     }
995 
996     memset(&req, 0x00, sizeof(req));
997     req.state = STATE_IOREQ_READY;
998     req.count = 1;
999     req.dir = IOREQ_WRITE;
1000 
1001     for (;;) {
1002         uint32_t rdptr = buf_page->read_pointer, wrptr;
1003 
1004         xen_rmb();
1005         wrptr = buf_page->write_pointer;
1006         xen_rmb();
1007         if (rdptr != buf_page->read_pointer) {
1008             continue;
1009         }
1010         if (rdptr == wrptr) {
1011             break;
1012         }
1013         buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1014         req.size = 1U << buf_req->size;
1015         req.addr = buf_req->addr;
1016         req.data = buf_req->data;
1017         req.type = buf_req->type;
1018         xen_rmb();
1019         qw = (req.size == 8);
1020         if (qw) {
1021             if (rdptr + 1 == wrptr) {
1022                 hw_error("Incomplete quad word buffered ioreq");
1023             }
1024             buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1025                                            IOREQ_BUFFER_SLOT_NUM];
1026             req.data |= ((uint64_t)buf_req->data) << 32;
1027             xen_rmb();
1028         }
1029 
1030         handle_ioreq(state, &req);
1031 
1032         /* Only req.data may get updated by handle_ioreq(), albeit even that
1033          * should not happen as such data would never make it to the guest (we
1034          * can only usefully see writes here after all).
1035          */
1036         assert(req.state == STATE_IOREQ_READY);
1037         assert(req.count == 1);
1038         assert(req.dir == IOREQ_WRITE);
1039         assert(!req.data_is_ptr);
1040 
1041         atomic_add(&buf_page->read_pointer, qw + 1);
1042     }
1043 
1044     return req.count;
1045 }
1046 
1047 static void handle_buffered_io(void *opaque)
1048 {
1049     XenIOState *state = opaque;
1050 
1051     if (handle_buffered_iopage(state)) {
1052         timer_mod(state->buffered_io_timer,
1053                 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1054     } else {
1055         timer_del(state->buffered_io_timer);
1056         xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1057     }
1058 }
1059 
1060 static void cpu_handle_ioreq(void *opaque)
1061 {
1062     XenIOState *state = opaque;
1063     ioreq_t *req = cpu_get_ioreq(state);
1064 
1065     handle_buffered_iopage(state);
1066     if (req) {
1067         ioreq_t copy = *req;
1068 
1069         xen_rmb();
1070         handle_ioreq(state, &copy);
1071         req->data = copy.data;
1072 
1073         if (req->state != STATE_IOREQ_INPROCESS) {
1074             fprintf(stderr, "Badness in I/O request ... not in service?!: "
1075                     "%x, ptr: %x, port: %"PRIx64", "
1076                     "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1077                     req->state, req->data_is_ptr, req->addr,
1078                     req->data, req->count, req->size, req->type);
1079             destroy_hvm_domain(false);
1080             return;
1081         }
1082 
1083         xen_wmb(); /* Update ioreq contents /then/ update state. */
1084 
1085         /*
1086          * We do this before we send the response so that the tools
1087          * have the opportunity to pick up on the reset before the
1088          * guest resumes and does a hlt with interrupts disabled which
1089          * causes Xen to powerdown the domain.
1090          */
1091         if (runstate_is_running()) {
1092             if (qemu_shutdown_requested_get()) {
1093                 destroy_hvm_domain(false);
1094             }
1095             if (qemu_reset_requested_get()) {
1096                 qemu_system_reset(VMRESET_REPORT);
1097                 destroy_hvm_domain(true);
1098             }
1099         }
1100 
1101         req->state = STATE_IORESP_READY;
1102         xenevtchn_notify(state->xce_handle,
1103                          state->ioreq_local_port[state->send_vcpu]);
1104     }
1105 }
1106 
1107 static void xen_main_loop_prepare(XenIOState *state)
1108 {
1109     int evtchn_fd = -1;
1110 
1111     if (state->xce_handle != NULL) {
1112         evtchn_fd = xenevtchn_fd(state->xce_handle);
1113     }
1114 
1115     state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1116                                                  state);
1117 
1118     if (evtchn_fd != -1) {
1119         CPUState *cpu_state;
1120 
1121         DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1122         CPU_FOREACH(cpu_state) {
1123             DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1124                     __func__, cpu_state->cpu_index, cpu_state);
1125             state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1126         }
1127         qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1128     }
1129 }
1130 
1131 
1132 static void xen_hvm_change_state_handler(void *opaque, int running,
1133                                          RunState rstate)
1134 {
1135     XenIOState *state = opaque;
1136 
1137     if (running) {
1138         xen_main_loop_prepare(state);
1139     }
1140 
1141     xen_set_ioreq_server_state(xen_domid,
1142                                state->ioservid,
1143                                (rstate == RUN_STATE_RUNNING));
1144 }
1145 
1146 static void xen_exit_notifier(Notifier *n, void *data)
1147 {
1148     XenIOState *state = container_of(n, XenIOState, exit);
1149 
1150     xenevtchn_close(state->xce_handle);
1151     xs_daemon_close(state->xenstore);
1152 }
1153 
1154 static void xen_read_physmap(XenIOState *state)
1155 {
1156     XenPhysmap *physmap = NULL;
1157     unsigned int len, num, i;
1158     char path[80], *value = NULL;
1159     char **entries = NULL;
1160 
1161     snprintf(path, sizeof(path),
1162             "/local/domain/0/device-model/%d/physmap", xen_domid);
1163     entries = xs_directory(state->xenstore, 0, path, &num);
1164     if (entries == NULL)
1165         return;
1166 
1167     for (i = 0; i < num; i++) {
1168         physmap = g_malloc(sizeof (XenPhysmap));
1169         physmap->phys_offset = strtoull(entries[i], NULL, 16);
1170         snprintf(path, sizeof(path),
1171                 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1172                 xen_domid, entries[i]);
1173         value = xs_read(state->xenstore, 0, path, &len);
1174         if (value == NULL) {
1175             g_free(physmap);
1176             continue;
1177         }
1178         physmap->start_addr = strtoull(value, NULL, 16);
1179         free(value);
1180 
1181         snprintf(path, sizeof(path),
1182                 "/local/domain/0/device-model/%d/physmap/%s/size",
1183                 xen_domid, entries[i]);
1184         value = xs_read(state->xenstore, 0, path, &len);
1185         if (value == NULL) {
1186             g_free(physmap);
1187             continue;
1188         }
1189         physmap->size = strtoull(value, NULL, 16);
1190         free(value);
1191 
1192         snprintf(path, sizeof(path),
1193                 "/local/domain/0/device-model/%d/physmap/%s/name",
1194                 xen_domid, entries[i]);
1195         physmap->name = xs_read(state->xenstore, 0, path, &len);
1196 
1197         QLIST_INSERT_HEAD(&state->physmap, physmap, list);
1198     }
1199     free(entries);
1200 }
1201 
1202 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1203 {
1204     xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1205 }
1206 
1207 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1208 {
1209     int i, rc;
1210     xen_pfn_t ioreq_pfn;
1211     xen_pfn_t bufioreq_pfn;
1212     evtchn_port_t bufioreq_evtchn;
1213     XenIOState *state;
1214 
1215     state = g_malloc0(sizeof (XenIOState));
1216 
1217     state->xce_handle = xenevtchn_open(NULL, 0);
1218     if (state->xce_handle == NULL) {
1219         perror("xen: event channel open");
1220         goto err;
1221     }
1222 
1223     state->xenstore = xs_daemon_open();
1224     if (state->xenstore == NULL) {
1225         perror("xen: xenstore open");
1226         goto err;
1227     }
1228 
1229     if (xen_domid_restrict) {
1230         rc = xen_restrict(xen_domid);
1231         if (rc < 0) {
1232             error_report("failed to restrict: error %d", errno);
1233             goto err;
1234         }
1235     }
1236 
1237     xen_create_ioreq_server(xen_domid, &state->ioservid);
1238 
1239     state->exit.notify = xen_exit_notifier;
1240     qemu_add_exit_notifier(&state->exit);
1241 
1242     state->suspend.notify = xen_suspend_notifier;
1243     qemu_register_suspend_notifier(&state->suspend);
1244 
1245     state->wakeup.notify = xen_wakeup_notifier;
1246     qemu_register_wakeup_notifier(&state->wakeup);
1247 
1248     rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1249                                    &ioreq_pfn, &bufioreq_pfn,
1250                                    &bufioreq_evtchn);
1251     if (rc < 0) {
1252         error_report("failed to get ioreq server info: error %d handle=%p",
1253                      errno, xen_xc);
1254         goto err;
1255     }
1256 
1257     DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1258     DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1259     DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1260 
1261     state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1262                                               PROT_READ|PROT_WRITE,
1263                                               1, &ioreq_pfn, NULL);
1264     if (state->shared_page == NULL) {
1265         error_report("map shared IO page returned error %d handle=%p",
1266                      errno, xen_xc);
1267         goto err;
1268     }
1269 
1270     rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1271     if (!rc) {
1272         DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1273         state->shared_vmport_page =
1274             xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1275                                  1, &ioreq_pfn, NULL);
1276         if (state->shared_vmport_page == NULL) {
1277             error_report("map shared vmport IO page returned error %d handle=%p",
1278                          errno, xen_xc);
1279             goto err;
1280         }
1281     } else if (rc != -ENOSYS) {
1282         error_report("get vmport regs pfn returned error %d, rc=%d",
1283                      errno, rc);
1284         goto err;
1285     }
1286 
1287     state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1288                                                    PROT_READ|PROT_WRITE,
1289                                                    1, &bufioreq_pfn, NULL);
1290     if (state->buffered_io_page == NULL) {
1291         error_report("map buffered IO page returned error %d", errno);
1292         goto err;
1293     }
1294 
1295     /* Note: cpus is empty at this point in init */
1296     state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1297 
1298     rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1299     if (rc < 0) {
1300         error_report("failed to enable ioreq server info: error %d handle=%p",
1301                      errno, xen_xc);
1302         goto err;
1303     }
1304 
1305     state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1306 
1307     /* FIXME: how about if we overflow the page here? */
1308     for (i = 0; i < max_cpus; i++) {
1309         rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1310                                         xen_vcpu_eport(state->shared_page, i));
1311         if (rc == -1) {
1312             error_report("shared evtchn %d bind error %d", i, errno);
1313             goto err;
1314         }
1315         state->ioreq_local_port[i] = rc;
1316     }
1317 
1318     rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1319                                     bufioreq_evtchn);
1320     if (rc == -1) {
1321         error_report("buffered evtchn bind error %d", errno);
1322         goto err;
1323     }
1324     state->bufioreq_local_port = rc;
1325 
1326     /* Init RAM management */
1327     xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1328     xen_ram_init(pcms, ram_size, ram_memory);
1329 
1330     qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1331 
1332     state->memory_listener = xen_memory_listener;
1333     QLIST_INIT(&state->physmap);
1334     memory_listener_register(&state->memory_listener, &address_space_memory);
1335     state->log_for_dirtybit = NULL;
1336 
1337     state->io_listener = xen_io_listener;
1338     memory_listener_register(&state->io_listener, &address_space_io);
1339 
1340     state->device_listener = xen_device_listener;
1341     device_listener_register(&state->device_listener);
1342 
1343     /* Initialize backend core & drivers */
1344     if (xen_be_init() != 0) {
1345         error_report("xen backend core setup failed");
1346         goto err;
1347     }
1348     xen_be_register_common();
1349     xen_read_physmap(state);
1350 
1351     /* Disable ACPI build because Xen handles it */
1352     pcms->acpi_build_enabled = false;
1353 
1354     return;
1355 
1356 err:
1357     error_report("xen hardware virtual machine initialisation failed");
1358     exit(1);
1359 }
1360 
1361 void destroy_hvm_domain(bool reboot)
1362 {
1363     xc_interface *xc_handle;
1364     int sts;
1365 
1366     xc_handle = xc_interface_open(0, 0, 0);
1367     if (xc_handle == NULL) {
1368         fprintf(stderr, "Cannot acquire xenctrl handle\n");
1369     } else {
1370         sts = xc_domain_shutdown(xc_handle, xen_domid,
1371                                  reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
1372         if (sts != 0) {
1373             fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1374                     "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1375                     sts, strerror(errno));
1376         } else {
1377             fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1378                     reboot ? "reboot" : "poweroff");
1379         }
1380         xc_interface_close(xc_handle);
1381     }
1382 }
1383 
1384 void xen_register_framebuffer(MemoryRegion *mr)
1385 {
1386     framebuffer = mr;
1387 }
1388 
1389 void xen_shutdown_fatal_error(const char *fmt, ...)
1390 {
1391     va_list ap;
1392 
1393     va_start(ap, fmt);
1394     vfprintf(stderr, fmt, ap);
1395     va_end(ap);
1396     fprintf(stderr, "Will destroy the domain.\n");
1397     /* destroy the domain */
1398     qemu_system_shutdown_request();
1399 }
1400 
1401 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1402 {
1403     if (unlikely(xen_in_migration)) {
1404         int rc;
1405         ram_addr_t start_pfn, nb_pages;
1406 
1407         if (length == 0) {
1408             length = TARGET_PAGE_SIZE;
1409         }
1410         start_pfn = start >> TARGET_PAGE_BITS;
1411         nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1412             - start_pfn;
1413         rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1414         if (rc) {
1415             fprintf(stderr,
1416                     "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1417                     __func__, start, nb_pages, rc, strerror(-rc));
1418         }
1419     }
1420 }
1421 
1422 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1423 {
1424     if (enable) {
1425         memory_global_dirty_log_start();
1426     } else {
1427         memory_global_dirty_log_stop();
1428     }
1429 }
1430